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We consider the problem of neutrino masses and mixing within the general framework of standard

(type-I) seesaw models leading to three light neutrinos. Under the assumption of a hierarchical neutrino

mass spectrum �4:�:1, consistent with present data, we examine possible lopsided patterns for the

neutrino Yukawa couplings that can account for the observed mixing angles, including a small but

nonvanishing jUe3j. An embedding of the above within a general class of SOð10Þ models is also

considered.
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I. INTRODUCTION

The observation of neutrino oscillations has confirmed,
through a number of independent experiments [1], not only
the existence of at least two massive neutrinos but also a
mismatch between flavor and mass eigenstates in the lep-
ton sector. This fact by itself provides a first piece of
compelling evidence for physics beyond the standard
model (SM). Present data [2], although not yet conclusive
on the full neutrino mass spectrum, favor a three generation
scenario for the light neutrinos at an overall mass scale
M� 10�1 eV. Based on the squared mass differences
�m2

12 � 7:65� 10�5 eV2, �m2
23 � 2:4� 10�3 eV2 which

are currently determined by experiment, three distinct
possibilities may rise, depending on the explicit hierarch-
ical spectrum one assumes. In the normal hierarchy (NH)

case, for m1 � ð�m2
12Þ1=2, one obtains m1 � m2 �

ð�m2
12Þ1=2, m2 � m3 � ð�m2

23Þ1=2, while in the inverse

hierarchy (IH) case, for m3 � ð�m2
23Þ1=2, one obtains

m3 � m1 � m2 � ð�m2
23Þ1=2. An almost degenerate spec-

trum is also possible for m1 � m2 � m3 * 10�1 eV
( & 1 eV). In the last two cases of partial or complete
degeneracy the mass spectrum exhibits a tuned form and
the relation �m2

12 � �m2
23 seems accidental. In contrast,

such a relation seems more natural in the NH scenario and
thus adds to its attractiveness. Nevertheless, this has to
be reconciled with the large mixing angles observed in
neutrino oscillations.

Lepton mixing [3] in the framework of the SM can arise
if one considers general mass matrices for the neutrinos.
The mass matrix of the light neutrinos and that of the
charged leptons diagonalize simultaneously by distinct
unitary and biunitary transformations leaving a physical
trace on the charged weak current. In a way analogous to
quark mixing in the CKM matrix, lepton mixing can be

described byUPMNS � Uy
e U� whereUe,U� are the unitary

transformations of the left-handed charged leptons and the
light neutrinos, respectively. Not all parameters in this
expression are observable. In general, the physical parame-
ters ofUPMNS can be expressed in terms of three real angles
and 1 or 3 CP-violating phases in case of Dirac or

Majorana neutrinos, respectively [2,4,5]. At present, neu-
trino oscillation experiments favor a nearly bimaximal
pattern for the 2 real mixing angles and a small but non-
vanishing value for the third (&12�).
Focusing on the issue of reconciling a normal mass

hierarchy with large mixing, one finds that for a symmetric
hierarchical neutrino mass matrix, the corresponding uni-
tary transformation U� is likely to contribute small angles
to UPMNS and in fact of comparable or smaller magnitude
than the relevant mass ratios. Then, a pragmatic approach
to solve the problem ‘‘large mixing-large hierarchy’’
would be to assume large asymmetric (lopsided) elements
in the mass matrix of the charged leptons [6,7]. In this way

the observed bimaximal mixing originates fromUy
e and the

hierarchical mass matrix of the light neutrinos contributes
small or negligible corrections throughU�. Note, however,
that the above initial argument is not general. Symmetric
matrices may accommodate a large hierarchical spectrum
and at the same time contribute large mixing angles with-
out fine-tuning. The general idea is that the symmetric light
neutrino matrix may have an underlying lopsided substruc-
ture. The seesaw mechanism, besides explaining the small-
ness of the overall light neutrino mass scale, seems to
provide us with a suitable framework for this to happen
in a natural way. In this approach, based on the attractive
properties of the lopsided models, the observed bimaximal
mixing can be partially or completely accounted for by the
neutrino sector [8].
In what follows we examine analytically a number of

lopsided ansatze for the lepton sector that can potentially
fit current low energy data under the assumption of a
normal hierarchy spectrum for the neutrinos of the form
�4:�:1 (� � 0:18). Large lepton mixing is raised from both
the charged leptons and the neutrinos or through the neu-
trino sector exclusively, as in the case of a particularly
simple ansatz, which is investigated thoroughly. We
explore the possibility of embedding this pattern within a
class of SOð10Þ models with realistic fermion masses and
mixings. In Sec. II we illustrate the general features of
lopsided models and their relation to large mixing.
In Sec. III we discuss briefly the standard type-I seesaw
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framework and present our conventions. In Sec. IV we
consider and study a number of lopsided patterns that
lead to the observed lepton mixing. In Sec. V we concen-
trate on a particularly simple ansatz that leads to lepton
mixing exclusively through the neutrino sector. In Sec. VI
we consider the embedding of the above in a class of
SOð10Þ models and, finally, in Sec. VII we state our
conclusions.

II. LOPSIDED MODELS AND LARGE MIXING

In order to illustrate some of the main features of
lopsided models we may consider a general matrix Yij ¼
Cij�j

Y ¼
C11�1 C12�2 C13

C21�1 C22�2 C23

C31�1 C32�2 C33

0
BB@

1
CCA; (1)

with a hierarchy of the form

�1 � �2 � �3 � 1 (2)

and randomOð1Þ coefficients Cij, taken real for simplicity.

Diagonalization proceeds as usual with the biorthogonal
transformation

YD ¼ UT
1YU2 ¼ UT

2Y
TU1; (3)

but with U1 including large Oð1Þ rotation angles, while
those of U2 are small. Depending on the explicit hierarch-
ical form of the matrix the largest rotation angle inside U2

may beOð�2Þ orOð�1=�2Þ. If U1 participates in the PMNS
matrix andU2 in the CKMmatrix, as is the case in standard

SUð5Þ, where Y � YðdÞ ¼ ðYðeÞÞT , large angles will be
attributed to the former and small to the latter.

Another attractive aspect of lopsided matrices is that
they can produce symmetric matrices that can both accom-
modate a hierarchical spectrum and large mixing angles in
a natural way. Since

Y2
D ¼ UT

1YY
TU1 ¼ UT

2Y
TYU2; (4)

both symmetric matrices YYT and YTY share the same
eigenvalues [9]. In fact, it is much easier to extract the
mass eigenvalues from YTY which diagonalizes with small
angles due to its hierarchical form. On the other hand YYT

can be re-expressed as

YYT ¼ Aþ �22Bþ �21C; (5)

where A, B, C are symmetric rank-1 matrices. First we
diagonalize A with UA ¼ U12U23 where

1

tan 12 ¼ C13=C23; tan23 ¼ ðC2
13 þ C2

23Þ1=2
C33

and, thus,

UT
AYYTUA ¼ AD þ �22B

0 þ �21C
0;

AD ¼
0 0 0

0 0 0

0 0
P
k

C2
k3

0
BBB@

1
CCCA: (6)

We should note that there is no reason for the rotated B0
or C0 to be diagonal. In fact, such a tuned case would
correspond to proportional coefficients inside Y and thus
imply a rank-2 or even a rank-1 form. Next, we rotate
with UB0 ¼ U0

12, where now tan012 ¼ C0
12=C

0
22, and

obtain2

UT
B0UT

AYYTUAUB0 ¼ AD þ �22B
00 þ �21C

00; (7)

B00 ¼
0 0 0

0 C02
12 þC02

22 C0
32ðC02

12 þC02
22Þ1=2

0 C0
32ðC02

12 þC02
22Þ1=2 C02

32

0
BB@

1
CCA: (8)

The full rotation matrix can be approximated by U1 �
UAUB0 ¼ U12U23U

0
12 at dominant level which results to

a form

UT
1YY

TU1 �
�21 �21 �21

�21 �22 �22

�21 �22 1

0
BB@

1
CCA: (9)

Diagonalization is then completed with subdominant
rotations of Oð�22Þ or Oð�21=�22Þ.
In the above analysis we considered real coefficients Cij

for the elements of the Yukawa matrices allowing for an
analytic treatment of the rotation matrices and eigenvalues.
In the general case of complex parameters Eq. (4) is no
longer valid but the main properties of lopsided matrices
still hold. For example, YYT and YTY, which now have
different eigenvalues, are diagonalized by U0

1 and U0
2,

respectively. These are different from the U1, U2 that

diagonalize Y directly through YD ¼ Uy
1YU2. Both sym-

metric matrices though, in general, share a similar
hierarchical spectrum and Eqs. (5)–(9) still hold for analo-
gous complex rotations.

III. MASS SCALES AND SEESAW

Choosing as a general framework the two Higgs doublet
model, electroweak symmetry breaking is realized through
a nonvanishing vacuum expectation value (VEV) for H u,

1We use the notation tanij � tan�ij for trigonometric functions
where subscripts indicate rotations in the respective planes of
family space.

2Primed coefficients correspond to the elements of the rotated
matrices. The explicit expressions are

C0
12 ¼ C12cos12 � C22sin12;

C0
22 ¼ ðC12sin12 þ C22cos12Þcos23 � C32sin23:
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H d in the direction of their neutral component. Thus, we
obtain the mass terms for the charged fermions

vdY
ðdÞ
ij dci dj þ vuY

ðuÞ
ij uci uj þ vdY

ðeÞ
ij e

c
i ej (10)

and for the neutrinos

vuY
ðNÞ
ij �iN c

j þ 1
2MRY

ðRÞ
ij N c

iN
c
j : (11)

For a right-handed neutrino mass scale in the neighborhood
of MR � 1014 GeV, a standard seesaw mechanism can be
realized leading to the effective light neutrino mass

M� � � v2
u

MR

YðNÞYðRÞ�1YðNÞT: (12)

Then, the resulting overall mass scale (v2
u=MR) comes out

roughly as �10�1 eV, in agreement with present data.

Of course, for the above formula to be valid, vuY
ðNÞ
D �

MRY
ðRÞ
D should in general hold for the eigenvalues. If this is

not the case, then heavy OðMWÞ Dirac-like masses would
be produced reducing the number of light neutrinos. Under
these considerations and neglecting the overall mass scale,
Eq. (12) can be re-expressed in the more convenient
form as

Yð�Þ � YYT; (13)

where

Y � YðNÞðYðRÞ
D Þ�1=2: (14)

This allows us to manipulate neutrino masses and mixings
as in Eqs. (5)–(9). All Yukawa matrices for fermions are
expressed in a basis where the right-handed neutrino mass
matrix is diagonal with real and positive entries. The
definition in Eq. (14) is then straightforward.

A lopsided structure, along with the desired hierarchy,

may arise in various ways. For example, if YðRÞ
D is a diago-

nal matrix (possibly with a suitable hierarchy), YðNÞ can be
responsible for the lopsided form of Y and an associated
hierarchy, a possibility well motivated by grand unified
theory (GUT) considerations. Alternatively, if one assumes

a generic YðNÞ withOð1Þmatrix elements and a hierarchical

YðRÞ
D , an analogous lopsided Y can be obtained but in this

case a lower bound for the mass of the lightest neutrino is
also inherited.3 In what follows, we will be interested in the
explicit form of Y with the remark that the examined
patterns can be obtained from the more fundamental

matrices YðRÞ, YðNÞ.

IV. LOPSIDED LEPTON PATTERNS

Next we proceed with the examination of possible lop-
sided patterns for the matrix Y defined in Eq. (14) that can
contribute large mixing angles to UPMNS through the
neutrino sector. Three working examples are the following
Y1, Y2, Y3:

C11�
2 C12�

1=2 C13

C21�
2 C22�

1=2 C23

C31�
2 C32�

1=2 C33

0
BB@

1
CCA;

C11�
2 C12�

1=2 . . .

C21�
2 C22�

1=2 . . .

C31�
2 C32�

1=2 C33

0
BB@

1
CCA;

C11�
2 C12�

1=2 . . .

C21�
2 C22�

1=2 . . .

. . . . . . C33

0
BB@

1
CCA;

where the dots signify entries smaller than the ones explic-
itly shown which we can safely neglect, i.e. . . . � Oð�2Þ.
One should not be alarmed by the half-integer powers of
the bookkeeping small parameter �, since these matrices
correspond, through the seesaw formula, to couplings with
integer powers of �, as could be expected to arise in various
flavor-symmetry breaking schemes. All Yi’s correspond to
a typical spectrum �4:�:1 in the NH case of the neutrinos,
although they can be easily modified to accommodate a
smaller value for the mass of the lightest neutrino.

The associated charged lepton matrices YðeÞ
1 , YðeÞ

2 , YðeÞ
3

are

~C11�
3 ~C12�

3 . . .

C13� C23� . . .

. . . . . . ~C33

0
BB@

1
CCA;

~C11�
3 . . . . . .

. . . ~C22� ~C23�

. . . ~C32
~C33

0
BB@

1
CCA;

~C11�
3 . . . . . .

~� ~C22� ~C23�

. . . ~C32
~C33

0
BB@

1
CCA;

all corresponding to the mass hierarchy �3:�:1 parame-
trized by the small parameter � ¼ m�=m� in a manner

consistent with current low energy data.
Y1 has been previously used in Sec. II as an example

where an arbitrary hierarchy �21:�
2
2:1 was assigned to YYT .

By substituting �21, �
2
2 with �4, �, respectively, we obtain

the desired neutrino hierarchy and the unitary transforma-
tion U� � U12U23U

0
12U

0
23. Among these unitary matrices

only U0
23 is the subdominant rotation of Oð�Þ needed to

complete diagonalization (up to negligible corrections) and
all other are Oð1Þ. The large mixing angles are explicitly
given by the same expressions as before, namely

tan12 ¼ C13

C23

; tan23 ¼ ðC2
13 þ C2

23Þ1=2
C33

;

tan012 ¼
ðC12cos12 � C22sin12Þ

ðC12sin12 þ C22cos12Þcos23 � C32sin23
:

3A typical hierarchy �4:�:1 for the light neutrinos, parame-
trized by � � ð�m2

12=�m
2
23Þ1=2 � 0:18, would, in general,

require an inverse hierarchy ��4:��1:1 for the right-handed
neutrinos, implying a mass eigenvalue MR�

�4 close to the
physical cutoff of the theory whether this is the GUT, String,
or Planck scale.
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If we neglect the contribution from the charged lepton
sector, a direct comparison with the standard parametriza-
tion UPMNS ¼ U23U13U12 results in three Oð1Þ angles
and therefore a trimaximal scheme in disagreement with
present observations. Then, in order to fit the mixing
angles, perhaps the easiest way is to assume a large con-
tribution from the charged leptons along with a certain
amount of fine-tuning through the relation Ue ¼ U12

with tan12 � C13=C23. In this sense YðeÞ
1 has what is

required to obtain UPMNS � U23U
0
12U

0
23 that fits better

the observed mixing pattern.
Using again the formalism developed in Eqs. (5)–(9) for

Y2 we obtain the unitary transformation U� � U12U
0
23,

where now the neutrino mixing angles are given by the
expressions

tan 12 ¼ C12

C22

; tan023 � �
C32

C2
33

ðC2
12 þ C2

22Þ1=2:

Since only one large angle is obtained in this way, the
contribution of the charged leptons is again required but
with the apparent advantage that no fine-tuning has to

be imposed. Then, YðeÞ
2 is diagonalized by a rotation of

the left-handed fields Ue ¼ U23 with an Oð1Þ mixing

angle given by tan23 � ~C32= ~C33. The resulting unitary
transformation describing lepton mixing will then be

UPMNS � Uy
23U12U

0
23, which can easily fit lepton mixing

data.
There is a third pattern that can be seen as a variation

of the previous one with the difference that now the ob-
served small angle of the lepton mixing originates from
the charged lepton sector. Assuming Y3 for the neutrinos,
we obtain U� ¼ U12 with tan12 � C12=C22. On the other

hand from YðeÞ
3 , with the additional choice for the new

scale ~�� ��, we obtain Ue � U23U
0
12 up to Oð�2Þ cor-

rections with tan23 ¼ ~C32= ~C33, tan012 ¼ ~�=½ð ~C22cos23 �
~C23sin23Þ�� � �. Consequently, lepton mixing is now

described by UPMNS � U0y
12U

y
23U12, an expression also

consistent with present data.

V. A LOPSIDED NEUTRINO PATTERN

There is an interesting and attractive possibility that the
lepton mixing pattern observed in nature originates solely

from the neutrino sector. In this section we shall explore
this possibility in the general case of complex Oð1Þ co-
efficients Cij ¼ jCijjei	ij . The related unitary transforma-

tions can be parametrized in terms of a real angle and a
complex phase. For example, a unitary complex rotation
in the f12g plane can be described by4

U12 ¼
cos12 sin12e

�i�12 0
�sin12e

i�12 cos12 0
0 0 1

0
B@

1
CA: (15)

Let us consider

Y ¼
C11�

2 C12�
1=2 . . .

C21�
2 C22�

1=2 C23

C31�
2 C32�

1=2 C33

0
B@

1
CA (16)

for the matrix of the neutrinos defined in (14), which, as
before, corresponds to a typical hierarchy �4:�:1 of the
NH case. Furthermore, we assume a negligible contribu-
tion to lepton mixing from the charged lepton sector, an
assumption motivated by the large mass hierarchy of the
charged leptons. This covers a large variety of distinct

realistic patterns for the YðeÞ’s. In this sense we can have
to a good approximation Ue � I and, as a result, the useful
property that diagonal phase matrices commute with Ue.
Diagonalization of the neutrino matrix proceeds as usual

through the formalism developed in (5)–(9). Note that by a
field redefinition we can absorb the complex phases of C12,
C23, C33. Diagonalization then begins with the unitary
transformation U23U12 describing two successive rota-
tions. The corresponding large rotation angles and the
complex phases are given by

tan23 ¼ C23=C33; �23 ¼ 0; tan12 ¼ C12=jC0
22j;

�12 ¼ �	0
22; (17)

with the complex primed coefficients

C0
22 ¼ C22cos23 � C32sin23;

C0
32 ¼ C22sin23 þ C32cos23:

(18)

Thus, the neutrino mass matrix YYT is brought into the
hierarchical form

C02
11�

4 ð. . .Þ�4 ð. . .Þ�4

ð. . .Þ�4 e2i	
0
22ðC2

12 þ jC0
22j2Þ� eið	0

22þ	0
32ÞjC0

32jðC2
12 þ jC0

22j2Þ1=2�
ð. . .Þ�4 eið	0

22
þ	0

32
ÞjC0

32jðC2
12 þ jC0

22j2Þ1=2� C2
23 þ C2

33 þ �C02
32

0
B@

1
CA:

4Lepton mixing can be described by various equivalent parametrizations [5]. Nevertheless, the symmetrical parametrization
U23ð�̂23; �̂23ÞU13ð�̂13; �̂13ÞU12ð�̂12; �̂12Þ in the presence of CP-violating phases seems more attractive for model building
purposes [4].
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The coefficients denoted by dots and multiplying the �4

elements are irrelevant since only C0
11 is in practice asso-

ciated with the lightest neutrino mass and a contribution to
the CP-violating phases.5 A subsequent small complex
rotation U0

23, with

tan023 ¼ �jC0
32j

ðC2
12 þ jC0

22j2Þ1=2
ðC2

23 þ C2
33Þ

þOð�2Þ;

�0
23 ¼ 	0

22 þ	0
32 þOð�Þ;

along with negligibleOð�3Þ rotations, will finally bring the
neutrino matrix to the diagonal form

Yð�Þ
D �

C02
11�

4 0 0

0 e2i	
0
22ðC2

12þjC0
22j2Þ� 0

0 0 C2
23þC2

33þ�C02
32

0
BB@

1
CCA:

(19)

To summarize, lepton mixing in this model is described by
the unitary transformation

U23ð�23;0ÞU12ð�12;�	0
22ÞU0

23ð�023;	0
22þ	0

32Þ 	P ; (20)

with

P � diagðe�i	0
11 ; e�i	0

22 ; 1Þ: (21)

P guarantees the real positive mass eigenvalues. We
already notice the predictive power of this pattern.
Starting from a general complex matrix Y for the neutrinos,
with 8 complex parameters, and assuming a lopsided
structure, consistent with a typical hierarchical spectrum,
we obtained an one to one fit between C23, C33, C12, jC22j,
jC32j, 	22, 	32 and the two heavier neutrino masses, the
three rotation angles and the two (out of three)
CP-violating phases. Furthermore, the two rotation angles
are predicted Oð1Þ, while the third is Oð�Þ as a conse-
quence of the neutrino mass hierarchy �:1.

In order to exhibit the explicit relations of observables,
we first note that the expression (20) is unique up to a left
multiplication by an arbitrary diagonal phase matrix. By a
field redefinition of the left-handed charged leptons, having
assumed that Ue � I, we obtain

UPMNS � P�1U23ð�23; 0ÞU12ð�12;�	0
22Þ

�U0
23ð�023;	0

22 þ	0
32ÞP : (22)

A direct comparison with the symmetrical parametrization
of the physical quantities results in the following relations:

tan�sol � tanb12 � tan12; (23)

tan�atm � tanb23 � jtan23 þ e�ið	0
22
þ	0

32
Þcos12tan023j; (24)

jUe3j � sinb13 � sin12sin
0
23; (25)

�̂ 12 � �	0
11; �̂13 � 	0

32 �	0
11; �̂23 � �	0

22;

(26)

where the relations for the phases hold up to Oð�Þ correc-
tions. The Dirac CP-phase of the standard parametrization
responsible for CP-violation in neutrino oscillations is
identified as

�
lep
D � �̂13 � �̂12 � �̂23 � 	0

22 þ	0
32:

Our initial choice of same order parametrization coeffi-
cients, so that Cij �Oð1Þ, is well justified by fitting the

current experimental data from neutrino oscillation phe-
nomena. Nevertheless, the DiracCP-phase is required for a
more accurate fit between the three observed mixing
angles, the two heavier neutrino masses, and the subset
of the parameters fC23; C33; C12; jC0

22j; jC0
32jg. A more con-

clusive test for this model, including the complex phases
	22, 	32, would further require the measurement of any
existing physical Majorana phases. Even at this stage,
however, taking at face value sin023 � �, we arrive at the

interesting estimate

jUe3j � � sin�sol � sin5:9�: (27)

Concluding our discussion, we note some of the general
characteristics and perspectives of this pattern. If any or all
of the Ci1’s in (16) are substituted by texture zeros (or
smaller entries) the same relations are obtained up to a
different complex phase contribution 	0

11 and a different
corresponding light neutrino spectrum of the form
ð<�4Þ:�:1, something still consistent with observations.
If, on the other hand, either C22 or C32 (but not both) are
replaced with texture zeros, two additional predictive rela-
tions are obtained. By taking C32 zero we obtain a straight-
forward relation for the complex phases in (26) since
	0

22 ¼ 	0
32 ¼ 	22 and the relation for the mixing angles

tan�atm � jUe3j
tan�sol

��������
ðm�3

�m�2
cos�lep

D Þ
m�2

cos2�sol
þ cos�lep

D

��������:
(28)

Using current best-fit values for tan�atm, tan�sol, m�2
=m�3

,

the small angle �̂13 is predicted in the (4
�–6�) region. For a

vanishing C22 an analogous relation can be obtained.

VI. EMBEDDING IN GUTS

In the previous section we showed how a lopsided
structure in the neutrino sector may lead to the observed
lepton mixing angles. An interesting feature of this ap-
proach is that a similar lopsided structure may account for
the small mixing in the quark sector [8]. Such a possibility,
apart from its obvious simplicity, is also well motivated by
GUT considerations. In what follows we consider as a

5C0
11 is given explicitly by C0

11 ¼ C11cos12 � ðC21cos23 �
C31sin23Þsin12e�i	0

22 .

BIMAXIMAL MIXING FROM LOPSIDED NEUTRINOS PHYSICAL REVIEW D 85, 073014 (2012)

073014-5



framework a class of SOð10Þmodels [6,7] with the realistic
mass matrices

YðuÞ ¼
0 k0 0

0 k b

0 0 a

0
BB@

1
CCAmu; YðNÞ ¼

0 k0 0

0 k b

0 0 a

0
BB@

1
CCAmu;

(29)

YðdÞ ¼
0 �0 � k0 �

�0 �k �0 � b

� � a

0
BB@

1
CCAmd;

YðeÞ ¼
0 �0 � k0 �

�0 �k �� b

� �0 a

0
BB@

1
CCAmd: (30)

Only the (common) (33) entry of these matrices, denoted
by a, is assumed to arise from the standard renormalizable
term 16316310H. All other mass entries arise from effective
nonrenormalizable operators involving additional Higgs
fields 16H, 16

0
H, 45H. These contributions are subdominant

and are denoted by a number of small parameters
ðk; k0; �; �0; �; �0Þ, with the exception of the contribution
to the (23) entry, which is assumed to be of the same order
as the renormalizable contribution and denoted by the
parameter b. The small elements �, �0 arise from a non-
renormalizable operator f16i16Hgf16j160Hg. The VEV

h160Hi � hNc0
H i �MG breaks SOð10Þ to SUð5Þ, while the

VEV h16Hi � hH0
di �MW breaks it down to SUð3Þc �

Uð1Þem. Only down quarks and charged leptons get con-
tributions from this term. The relevant Yukawa couplings

of this operator respect the SUð5Þ relation YðeÞ ¼ ðYðdÞÞT ,
which has been associated with a lopsided structure in the
charged lepton sector [6]. The symmetric elements �; �0
arise from a different contraction of the same representa-
tions, namely f16i16jgf16H160Hg, appearing again only in

YðdÞ and YðeÞ. A common lopsided structure in the quark
and lepton mass matrices arises from the operator
f16i10Hg16f16j45Hg16 through the elements k, k0, b. The
VEV h45Hi �MG lies in the right-handed isospin direction
I3R, responsible for the breaking of the SUð2ÞR subgroup of
SOð10Þ, while h10Hi �MW is the standard VEV in the
electroweak breaking direction. The contraction employed
allows for general Yukawa textures that respect the relation

YðuÞ ¼ YðNÞ ¼ �YðdÞ ¼ �YðeÞ, the minus sign arising from
the different I3R charge of the respective fields.

We proceed by assuming that [6] �, �0, k, k0 � �, �0 �
a, b. Note that out of these parameters one can be absorbed
in an overall scale redefinition. Equivalently, here we shall
impose the simplifying b2 þ a2 � 1. Next, by a field re-
definition of the down quarks and charged leptons we
restrict the complex phases to the (21), (22), and (23)
elements, leaving the rest real and positive. Then, without
loss of generality, we express (21) and (12) entries in both

the down quarks and charged lepton matrices as Y21 � �z,
Y12 � j�0 � k0j. Furthermore, assuming �� �0 � b, we
approximate the (23) entry as Y23 � b. Thus all parameters

besides z, �0, k, k0 are now real in both YðeÞ, YðdÞ.
Neglecting the overall mass scales, we obtain in this re-
defined notation (at MG)

mb � m� � ðb2 þ a2Þ1=2 � 1; (31)

ms=mb � �b; m�=m� � �0b; (32)

j detYðdÞj � j detYðeÞj � j�0 � k0jjza� bj�: (33)

The model by construction is consistent with the b� �
unification as a result of the common b, a entries. This is a
favorable prediction common in SOð10Þ and SUð5Þmodels
and consistent with the low energy data. To fit the masses
ms, m� of the down quarks and charged leptons we notice

that these are controlled by the elements b�, b�0. Then the

relation j detYðdÞj � j detYðeÞj, along withmb � m�, results
in md=me � m�=ms (at MG), which is in general agree-

ment with the expected relevant mass ratios at the unifica-
tion scale. By taking �0=� � 3, the Georgi-Jarlskog factors
can be obtained [10].
For the up quark masses we have

mc=mt � ðjk0j2 þ jakj2Þ1=2; mu � 0: (34)

The prediction for a massless up quark is, of course, wrong,
but since mu=mt � 10�5, a tiny mass for the up quark can
always arise from a nonrenormalizable operator. Such a
small entry in the mass matrices cannot in practice affect
the rest of the relations. Furthermore, the parameter k0ð�kÞ
which appears in both the mass ratio mc=mt and the

expression for j detYðeÞj will allow for a relation between
the respective scales.
Next, we notice that since the MG-relation mc=mt �

ms=mb is expected to hold, the diagonalization of the up
quark matrix will contribute only small corrections to
CKM and therefore we can safely consider, in this scheme,
quark mixing originating from the down quark matrix.
Then, we have the relations

Vcb � �a; Vub � �ðz
bþ aÞ; (35)

Vus � ��� VcbVub

ðms=mbÞ2
; �VudV



ub

VcdV


cb

� b2ðzbþ aÞ
a� a2ðzbþ aÞ ;

(36)

where we can easily fit all mixing angles and the
CP-violating phase of the quark sector. Using current

best-fit values and the expected scale j detYðeÞj � 2�
10�5, we obtain the rough estimate

mc=mtjMG
� ðjk0j2 þ jakj2Þ1=2 � j�0 � k0j � 4� 10�3;

(37)
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within the expected allowed range. An additional impor-
tant relation is also derived from the quark sector, namely,

b=a � ms=mb

jVcbj : (38)

We are going to see shortly that this ratio will appear as the
dominant contribution to tan�atm of the neutrino mixing.

Let us now proceed assuming6 a diagonal Majorana

mass matrix for the right-handed neutrinos YðRÞ
D �

diagð1;�; 1ÞMR. The new scale� is introduced to counter-
act the large mass hierarchy inherited from the up quark
sector to the Dirac neutrino matrix through the relation

YðuÞ ¼ YðNÞ. If this were not the case, the neutrino spectrum
would be inconsistent with the observed squared mass
differences. The (11) element, taken unity for convenience,
is in practice arbitrary as long as the mass ratio m�1

=m�3

for the light neutrinos, obtained through the seesaw mecha-
nism, is comparable or smaller than �4. We can then
manipulate neutrino masses and mixing as previously.
Neglecting the overall mass scales, the neutrino matrix
defined in (14) is now

Y �
0 d0 0
0 dei�d b
0 0 a

0
@

1
A: (39)

Since the charged lepton matrix is diagonalized with small
rotations, in contrast to the large ones observed in neutrino
oscillations, we may consider Ue � I to a good approxi-
mation. A diagonal phase matrix can then be used to absorb
all complex phases [besides the (22) element] and bring the
matrix Y into this form. This form is a special case of the
‘‘lopsided neutrino pattern’’ we previously examined and,
thus, using the same treatment we obtain the following
relations:

UPMNS�U23ð�23;0ÞU12ð�12;��dÞU0
23ð�023;2�dÞ	P ; (40)

P ¼ diagðe�i�1 ; e�i�d ; 1Þ; (41)

tan 23 � b=a; tan12 � d0=ðdcos23Þ;

tan023 �
dsin23

ðb2 þ a2Þ ðd
02 þ ðdcos23Þ2Þ1=2;

(42)

m�3
� jb2 þ a2 þ ðdsin23Þ2e2i�d j � 1;

m�2
=m�3

� d02 þ ðdcos23Þ2 � �:
(43)

For the diagonal YðRÞ
D we obtain through the seesaw formula

d0=d ¼ k0=k. This ratio will allow for a direct fit of the
solar angle. We have for the physical parameters

tan�sol � tan12;

tan�atm � jtan23 þ e�2i�dcos12tan
0
23j;

jUe3j � sin12sin
0
23; (44)

�̂12 � ��1; �̂13 � �d � �1;

�̂23 � ��d; �lep
D ffi 2�d: (45)

From these relations we directly obtain the prediction for
the complex phases of the symmetrical parametrization

�̂23 þ �̂13 � �̂12 � 0. By fitting the best-fit value for the
ratio tan23 � b=a � 0:6 we notice a significant deviation
from the observed atmospheric angle tan�atm � 1, which
cannot be accounted for by the subleading term in (44). An
exact fit would requirems=mb ! jVcbj atMG and, perhaps,
a smaller value �atm � 40� still within current experimen-
tal bounds.7 Subleading corrections can also have signifi-
cant effect on this ratio (especially of our initial working
assumption j�0 � bj � b). In any case, �d will be close to
zero in this model, giving small CP-violation in neutrino

oscillation phenomena but also �̂13 � �̂12. The small mix-
ing angle will obey the relation (28) for the corresponding
MG values of the relevant parameters.

VII. BRIEF CONCLUSIONS

To summarize, we have shown how a lopsided structure
hidden within the symmetric light neutrino matrix may
account partially or completely for the large lepton mixing
angles observed in neutrino oscillation phenomena.
Although this idea has been previously considered in other
models, here, the assumption of a very light neutrino mass
(m�1

=m�3
& �4) allows for an analytic treatment of neu-

trino masses and mixing. An attractive feature of the
formalism developed is that approximations enter only at
the stage where the matrix has already been brought to a
hierarchical form, thus allowing for exact expressions of
the large mixing angles. A more general approach on the
problem of reconciling large mixing with a large hierarchy
is also obtained in this way, as long as the lightest neutrino
mass is smaller8 than m�1

=m�3
& �3. It should be further

noted that for this very light neutrino mass the effective
mass of the neutrinoless double beta decay is bound to lie

6Considering Majorana masses that arise from 16i126H16j or
the effective operator 16i16j16H16H, all Yukawa couplings,
without loss of generality, can be expressed in the basis where
YðRÞ
ij is diagonal.

7Alternatively, by assuming a large but subleading contribu-
tion from f16310Hg16f16345Hg16 in the (33) entries, the predic-
tion for b� � unification is preserved but with the corresponding
lepton rotation angle tan23 ¼ b=a0 with a0 � a, thus allowing for
a direct fit of �atm.

8For a relatively heavier mass ratio m�1
=m�3 * �2 still con-

sistent with a normal hierarchy spectrum, the previously negli-
gible rotations needed to complete diagonalization become
important. Thus, new variables enter the expressions for the
mixing angles rendering the model nonpredictive and an analytic
treatment ineffective.
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within the ð2� 3Þ � 10�3 eV region independent of the
exact value of m�1

.

Among the four instructive lepton patterns considered,
which can potentially fit current lepton mixing data, the
lopsided neutrino pattern has a number of appealing fea-
tures. Specifically, in this model the magnitudes of the
lepton mixing angles are predicted within current experi-
mental bounds and the smallness of the �13 angle is
associated with the neutrino mass ratio of the NH case
m�2=m�3

� �. Furthermore, since an analogous lopsided

form for the quarks may account for the observed small
mixing in the CKM, we also explored the possibility of a

common lopsided structure within an SOð10Þ model with
realistic masses and mixing.
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