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Abstract 

The Higgs mixing term coefficient buff is calculated in the scalar potential in supergravity theories with string origin, in 
a model independent approach. A general low energy effective expression is derived, where new contributions are included 

which depend on the modular weights ql,z of the Higgs superfields, the moduli and derivative terms. We find that in a class 
of models obtained in the case of compactifications of the heterotic superstring, the derivative terms are identically zero. 
Further, the total pu,B-term vanishes identically if the sum of the two modular weights q1 + q2 is equal to two. Subleading 

,u-corrections, in the presence of intermediate gauge symmetries predicted in viable string scenarios, are also discussed. 

In the minimal supersymmetric standard model 

(MSSM) , non-zero masses for the quarks and leptons 
require the existence of two higgs superfields HI, HT. 
In the effective superpotential of the model, one of the 
higgs doublets couples to the up-type quarks, while 
the second higgs provides with masses the down-type 
quarks and charged leptons. If only these terms were 
present in the effective superpotential, the latter is 
invariant under a Peccei-Quinn (PQ) symmetry [l] 
which finally implies the existence of a higgs boson, 
the ‘electroweak axion’, with zero bare mass [ 21. A 
way to avoid an unacceptably low mass for the axion 
in the MSSM, is to introduce a mixing term pHlH2 
[3,4] where the mass parameter p should be of the 
order of the electroweak scale. The value of ,CL could 
be related to the gravitino mass m3/2 or arise from the 
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vacuum expectation value of a scalar component of a 
singlet field qhH1 HZ ---f (4) HI HZ [ 31. Nevertheless, 
the introduction of an explicit ,u-term in the theory 

generates a new hierarchy problem, since one has to 
introduce a new scale in the theory, associated with 
this mixing term. 

In the context of the N = 1 effective supergravity 
theories, which emerge as a low energy limit of a 
superstring theory, it is possible to obtain an induced 

higgs mixing term [ 5,6] due to the effects of a hidden 
sector. From the point of view of string theories, the 
above features can be found in models with a gauge 
group G containing both an observable and a hidden 
sector. In general, the observable part has a rank larger 
than that of the MSSM symmetry. Usually, G breaks 3 
down to the Standard Model (SM)-gauge group at an 
intermediate scale Mx, some two orders of magnitude 
below the string scale. A new mixing term for the 

Higgs fields responsible for the intermediate symmetry 

3 In certain cases this breaking may occur radiatively [ 7 ] 
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breaking may also appear. In addition, induced mixing 
terms from intermediate symmetry effects are possible 

for the standard higgs doublets. 
In this letter, we derive the p-mixing terms in an 

effective supergravity theory with the generic stringy 
features described above. Taking into account these 
features and symmetries from the string, one obtains 
an N = 1 supergravity with the following ingredients: 
A real gauge invariant Kahler potential K: which de- 
pends on the chiral superfields and moduli which are 
exact flat directions of the scalar potential, and a su- 
perpotential W which is a holomorphic function of 
the chiral superfields Q. The second derivatives of 

the Kahler potential determine the kinetic terms of the 
various fields in the chiral supermultiplets, while the 

Yukawa couplings appearing in the superpotential are 

subject to string constraints. The Kahler function 6 is 
defined [ 81 

G(L.3 =K(z,Z) +logIW(z)12 (1) 

Denoting z = (@, Q) , where CI, stands for the dilaton 

field S and other moduli Ti, Ui while Q stands for the 
chiral superfields, the superpotential W ( z > , at the tree 

level, is given by 

+... (2) 

where kn is a model dependent constant [ 91 and {. . .} 
stand for possible non-renormalizable contributions. 
Terms bilinear in the fields Qi refer in fact to a higgs 
mixing term. At the perturbative level, due to the ana- 
lyticity of the superpotential and the presence of a PQ- 
symmetry, the parameters ,U and A do not depend on 
the dilaton field S. Non-perturbative effects however, 
may allow dilaton contributions to the superpotential 

of the form oc e -snzs, thus breaking the original PQ - 

symmetry which allows only S + S dilaton combina- 
tions. 

In the following we will assume that the Kahler 
potential K: can be expanded in inverse powers of the 
(S + S) fields with a tree level piece KO (T, I?) which 
takes the following general form: [ 561: 

Ko(T,F) = -log(S+ S) - C,h,log(T, +Tn) 

+ 2ijQiQj + ( iMij (T, T) QiQj + C-C.) (3) 

where for simplicity T represents all kinds of moduli 
except from the dilaton field. Modular symmetries and 
K8hler transformations may be applied to obtain the 

transformation properties of the tree level matrices 2 
and M as well as of the chiral fields and the superpo- 
tential [ 6,7,10] . We will soon see that one of the main 
sources of the induced p-term in the superpotential is 

the matrix M appearing in the Kahler function. 
In order to calculate the relevant contributions, we 

need the inverse K$hler metric GFi, which in the ba- 

sis chosen has the block diagonal form (Xii, Kij_‘) 

where the subscripts denote differentiation with re- 

spect to the fields zz while Xi?’ is a N+2@N+2 matrix 

with the indices i, j taking the values 0, I, . . . . N + 1 
for the fields T~,...,N, HI, HZ, respectively. In particu- 
lar, in the simplest case of the presence of only one 

modulus T, Xii1 is given by 

1 Kli 43 -Kai K2Z -KoZ 4i 
=-- 

A 
- KIO K2? Km K2? - Kti K20 KlisOi 

-K20Kii Koi K20 Km KIi - Koi K16 

(4) 

where A denotes the determinant of the Ici, matrix. The 

extension to N-moduli, is straightforward. To proceed 
further, we find it convenient to define the following 
covariant p-derivatives: 

DTfiij =&f.Lij +Wdrb"fi,j (5) 

Dr,&;j = dr& + war& (6) 

and the combination 

Fij = pij + WMij (7) 

The part of the effective scalar potential related to the 

supersymmetry breaking effects is given by 

VF=eG G&,>‘G’sJ-~ 
( ) 

+... (8) 

where {. . a} represent D-term contributions. Assum- 
ing a form of the Ktihler potential and the superpoten- 
tial dictated from modular symmetries, we can now 
define through (8) the boundary conditions for soft 
mass terms as well as the induced higgs mixing. As 
stressed in the introduction, any low energy effective 
supersymmetric field theory contains in its massless 
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spectrum at least two higgs fields associated with the 
standard two doublets of the MSSM and the existence 
of a higgs mixing term, - ,u-term - in theories of two 
higgs doublets is necessary. In effective quantum field 

theories arising from the heterotic string, the form of 
the Kahler potential may provide such terms in the 
effective superpotential. 

Thus, in the KWer function we will assume the ex- 
istence of a higgs mixing term of the form MijHiHj 
where M depends on the moduli (T,, i=,,) . An explicit 
higgs mixing term (the p-term) may also exist in the 
original superpotential of the model. The most gen- 
eral form of the tree level superpotential arising in 
the theories under consideration, has been written in 

Eq. (2). As explained above, we will restrict our anal- 
ysis in cases where the tree level Yukawa couplings 

of the superpotential W are functions of the moduli 
T,, i.e., pij(T), &k(T) but at the tree level, they do 
not depend on the dilaton S. For a more involved sit- 
uation however, in a final example we will allow the 
possibility of the existence of an ‘unobservable’ phase 
p( T, ;i;) for the case of the ,u-tree level term, which 
could in principle depend on T and T moduli. Such a 
phase can be justified from the transformation prop- 
erties under modular invariance of the physical mix- 

ing mass in certain compactifications of the heterotic 
string theory [ 51. Then, we will soon see that due to 
the presence of induced ,u contributions involving the 
derivatives of higgs mixing mass terms, such a phase 
will manifest itself in the effective ~-term. Finally, 
due to the possible existence of the intermediate sym- 
metry breaking, new threshold effects can arise and in 
principle should not be ignored. 

Under the above assumptions, we calculate the 
quantities involved in the effective potential including 

also terms proportional to the vacuum expectation 
values (vevs) of the higgs. The various kinds of 
derivatives which can arise are the following: 

i 
& HiI?; + $ Wel’DT&j HiH,i 

Gi = r-4iI;T, + ),$I-’ - 
1 PijHj (11) 

G, = r-4,H. + )iii-‘&~& 
I J U 1 (12) 

where r = T + T and qi are the modular weights of 
the corresponding higgs field. To obtain the inverse 
metric we also need the elements of Kls matrix which 
are given by 

1 
A=- 

+ww2 
h + Cqi(qi + ~)T-~‘H~R; 

i 

+ Q-4’ 
( 

-q19-- “HI +T& 
( 

)/li-‘,E;i RT 
>> 

X (-qlTpqlI;TT + ~JF (W-lfiljHj))] (16) 

In the presence of higgs fields with vevs not very far 
from the unification point, there are in principle, nu- 
merous mixing terms arising from all combinations 
of light and heavy higgs fields through the quantity 
G,GJ,‘G1. However, in the following we will assume 
that the intermediate gauge symmetry breaks down 
to the standard gauge group at a scale at least one 
or two orders of magnitude bellow Mseng_ The pos- 
sible vev-dependent ,+contributions depend quadrat- 
ically on these vevs, thus they are rather suppressed. 
On the contrary, there exist vev-independent contribu- 
tions which are of the order of the gravitino mass rn312, 
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and/or the possibly existing explicit p-mass term of 
the tree level superpotential. Obviously, since these 
terms are independent of the large higgs vev’s, it turns 

out that they are present even in the absence of any 
intermediate symmetry. 

In the following we present first the vev-independent 
contributions and show their origin. It is enough for 
the moment to concentrate on the SM-higgs doublets. 
First we approximate a - r2+t+r12, while we assume 
a single pair of higgs fields. In this case we will 
simplify our notation by the replacement /Li,i + ,~t2 

or even simply p. Starting from the diagonal terms 
G,G;!Gr, where I = T, HI, Hz, we obtain for I = T, 

G,G;; GT --+ -+& (T + F) {DT + or} F12 (17) 

while two more contributions result from the diagonal 
terms with respect to the derivatives of the two higgs 

fields Hi=l,z, namely 

i 

(18) 

The terms in Eqs. ( 17)) ( 18) are the same with those 
obtained in previous works [5,6] and constitute the 
Yukawa coupling of the corresponding fermion mass. 
Now, in the scalar potential the corresponding soft 
parameter receives additional contributions from off- 
diagonal terms GiGGG~ where Z $ J. In particular, 
it can be easily seen that these contributions are ob- 
tained from the two terms G,G,‘Gi, i = 1,2. TWO 
types of terms may arise here. The first one is directly 
proportional to the combination of jX multiplied by 
the modular weight qi of the corresponding higgs field 
Hi. There is a second term common in both (i = 1,2) 
terms which depends on the properties of the quan- 
tity 9 under differentiation with respect to the moduli. 
More explicitly for the first of the two contributions 
we have 

xGrG&‘Gi + -(ql +qz)k w 
i 

(19) 

where the normalization of the fields has been taken 
into account. The second type is proportional to the 
covariant p-derivative, i.e., 

6 [(T + T)DF] @12 (20) 

A third contribution similar to the second is also possi- 

ble, however this is proportional to the ,ur221ru~dr~U t2, 
where Vi is the vev of the corresponding higgs, and 
is assumed to be small. The remarkable fact however, 
is that even if the higgs vevs are sent to zero and 
no intermediate scale exists, these new mixing terms 
from off-diagonal KG -elements contribute substan- 
tially to the p-term. In particular in the large radius 
limit, i.e., for large values of the moduli T > 1, the 
contribution (20) might be significant as it is propor- 

tional to T + 5? = 2 Re T and should not be ignored. 
We may conclude that, although the analysis above 
is done for rather general effective supergravity mod- 
els, the parameters entering the ,+formula are rather 
constrained. Indeed, starting from the second term in 
( 19), it is a remarkable fact that only the sum of the 
two Higgs modular weights q = q1 + q2 enters in the ,u 
expression. Although the q: themselves are model de- 

pendent, the value of q however, could be constrained 
from general requirements. For example, certain con- 
straints can be put on q [ 7,111 from the transforma- 

tion properties of the superpotential terms. 
Let us now collect the above contributions into an 

effective higgs mixing mass term. For practical pur- 
poses it is useful to simplify the above formulae and 

keep the leading terms. With the definition, 

psim(T,T) E ’ + M (21) 
C 

with c being a numerical value associated with the 
vacuum expectation value of the superpotential, 

c = (]Wl) = ,-(K)‘%n3,2 (22) 

we summarize our results in the following simple for- 
mulae: 

0 01 0 02 
--qhT -(2+dpsim 

CT KFo’ GO + G> K,&‘Go + 2h~-(‘+q)3~~~i, 

Gi K,;’ G2, GZK2j’GI + 0 (23) 

Adding all the above terms and dividing by the deter- 
minant hT-c2+q) we arrive at our final result for the 

leading part of the low energy coefficient of the effec- 
tive p-term, 
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g={l -4-ReT(dr-a,)}~~im(T,~) (24) 

with 4 = 9. This formula can be further simpli- 
fied in models where p and M parameters are having 
simple and well defined properties under the modular 
transformations. Consider in particular the case where 
p is a constant whilst M (T, Tj has a scaling property 
under the T and T derivatives [ 51, i.e., 

(T + T’)d,,,M(T,T) = M(T,T’) 

In this case, the derivative term in (24) vanishes and 
the formula takes the simple form 

,& = (1 - g) (elKc)/*p + m3pM) (25) 

We should point out here, that under the above assump- 
tions we can see from (25) that there exists a pos- 
sibility where the presence of the higgs mixing term 
M in the Kahler function does not imply an effec- 

tive p-term in the low energy potential, namely when 
qt + q2 = 2. In fact, as we will see in our example, this 
is the case of a class of string models obtained in the 
(2,2) compactifications of the heterotic superstring. 

As we have explained above, in the case of the inter- 

mediate symmetry additional terms can play a role in 
the mixing of the higgs fields involved in the symme- 
try breaking. The sub-leading p-contributions are pro- 
portional to Uiuj and have the highest negative power 
of 7. We note that such terms can come also from the 
expansion of A. Indeed, from the sub-leading terms 
of the matrix (4) and the leading, vev-independent, 
term of A, we get the following contribution to the the 
p-term (for simplicity we assume vi = Uj = v) 

Pw2( q1q* + q>u* 

while expanding the A and taking the sub-leading 
terms we get 

r-ilh-l2( _4)v* 

Adding up we get the total sub-leading contribution 

7-@h-l2q, qp* (26) 

For example if 4 G (41 + q2)/2 is around 3, then 
this contribution is a 10% correction to the leading 
term, assuming r - 0.1 and v N 0.01, while they are 
suppressed in the large radius limit. 

As an application of the above procedure, we con- 
sider the general form of the Kahler function 

=- (Tn + Tn)’ - QiGi 1 (27) 

where the Qi denote fields which, in general, corre- 
spond to linear combinations of the eigenstates. Ex- 
panding the logarithm in terms of the eigenstates, one 
gets 

K(T, T, Qi, &i) = - C h& log (Tn + Tn) 
n,i 

+ ZiyQiQi + &MijQiQj + * *. (28) 

where the matrices 2 , M are proportional to nI, (T, + 
Tn,, 4. 

Our example is a generalization of the K?ihler forms 
obtained [5] in (2,2) compactifications of the het- 
erotic superstring. Nevertheless, it can be easily seen 

that as far as we work at the tree level approximation, 
the approximated KShler potential has definite proper- 
ties under the group of modular transforms [ 71 and it 

is the same in both cases. We will present here a spe- 
cific example in order to see how a matrix M, may 
arise. Consider for example the case of two moduli 
T,UandthefieldsQ=A+B,Q=/T+BofRef.[5], 
where A, B belong to 27 and 23 of E6. The Kahler 
function reads 

K=-log(T+T)(U+u) - (A+&(/i+B)) 

(29) 

where A, B are identified with the higgs fields. Ex- 
panding in terms of the latter, one gets at first order 
the higgs mixing term M 

M= 
1 

(U+f?)(T+T’) 

which has the same form as in the general case above. 
Let us now return to our ,u-formulae. Due to the prop- 
erties of the IGhler function and assuming J.L con- 
stant, we conclude that ,~,=ft is given by (25). More- 
over, in a class of models compactified on an orbifold 
the untwisted A, B fields associated with the higgses 
transform as modular forms of weight 1, thus the sum 
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41 fq2 is equal to two, and the total ,!.L~E vanishes iden- 
tically. Thus, even if the KZhler potential contains a 
higgs mixing term of the form (30), due to intriguing 
cancellations, it is not possible to generate an effec- 
tive ,u-term in the scalar potential within this class of 

orbifold string constructions unless an explicit- mod- 
uli dependent- ,!L term is present in the superpoten- 
tial. This is the case of the particular model discussed 
in [5]. 

Furthermore, consider a more general case where 
the ,u parameter of the superpotential depends on a 
phase factor of the form 

(31) 

while assume a scaling property for ~0 (T) , i.e., (T + 
7) dr,uc( T) = ,!.Q (T) . The interesting point to note 
here is that this phase will have an observable effect 
through the derivative part in the ,uu,e formula (24). 
In fact this term will give a contribution 

(T + T) (Jr- - a,)P(T,i’) 

= { 1+2 ( ,~~~,c,)2),c~~~ (32) 

which is proportional to ,u, up to a factor whose exis- 
tence is due to the p-phase. 

In conclusion, in the context of effective supergrav- 
ities characterised by properties of compactified het- 
erotic string theories, we have derived a general form 
of the effective higgs mixing term ,uLc,rr of the low en- 
ergy effective scalar potential. Using a gauge invariant 
form of the Kahler function, constrained by modular 
symmetries, we find additional contributions to pu,n. 
To leading order, these are found to depend on a spe- 
cific combination p,im of the higgs mixing - moduli- 
dependent - matrix M of the K%hler potential and 
the possible p-term coefficient of the superpotential 
as shown in formula (24). Thus, all possible sources 
can be classified in the following two categories: (i) a 
term directly proportional to this combination with a 
proportionality factor 1 - 4 where 4 is half the sum of 

the modular weights of the two higgs fields breaking 
the symmetry, and (ii) a derivative term on psim with 
respect to the moduli T, F’. 

We discussed models with properties dictated by 

modular symmetries where some of these contribu- 
tions vanish. We further examined cases correspond- 
ing to models with intermediate symmetry breaking 
scales which are not far from the string unification 
point. There, in addition to the above contributions 
there are vev-dependent terms which could be impor- 

tant in specific regions of the 4, T, vev-parameters. 
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