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A brane evolving in the background of a charged AdS black hole displays in genkoaingingbehavior

with a smooth transition from a contracting to an expanding phase. We examine in detail the conditions and
consequences of this behavior in various cases. For a cosmological-constant-dominated brane, we obtain a
singularity-free, inflationary era which is shown to be compatible only with an intermediate-scale fundamental
Planck mass. For a radiation-dominated brane, the bouncing behavior can occur only for background-charge
values exceeding those allowed for non-extremal black holes. For a matter-dominated brane, the black-hole
mass affects the proper volume or the expansion rate of the brane. We also consider the brane evolving in an
asymmetric background of two distinct charged AdS black hole spacetimes being bounded by the brane and
find that, in the case of an empty critical brane, bouncing behavior occurs only if the black-hole mass
difference is smaller than a certain value. The effects of a brane curvature term on the bounce at early and late
times are also investigated.
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[. INTRODUCTION only of acritical brane of a vanishing four-dimensional cos-
mological constant but also of mon-critical brane as well.
The idea of realizing our Universe as a defgtf in a  The bulk space background will be taken to be that of a (4
higher-dimensional spacetime has received a lot of attentior- 1)-dimensional AdS black hol¢12,14,13 with charge
in the recent years after the introduction of D-braf8si.e.  [16]. Recent investigatioNd 7,18 seem to indicate that, due
membranes on which the fundamental string fields satisfyo the non-vanishing charge, uncinguniverse could, in
Dirichlet boundary conditions. Motivated by string or M principle, arise, i.e. a universe that bounces from a contract-
theory[3] and the AdS/Conformal Field TheofZFT) cor- ing phase to an expanding one without encountering a sin-
respondencé4], brane models have revealed new possibili-gularity (see alsd13] and[19-2§; for earlier examples of
ties for the resolution of the hierarchy problem of particle singularity-free solutions in the framework of superstring
physics[5—8]. The D-brane is assigned an intrinsic energytheory, seq29]). Referencg17] considers a semi-realistic
density and pressure arising both from an underlying braneadiation-dominated brane, while R¢i.8] studies a gener-
tension and from ordinary (81)-dimensional matter ally non-critical but empty brane.
trapped on it by stringy effects. Gravitons, on the other hand, In the present article, we extend existing studies consid-
propagate into the higher-dimensional bulk. Nevertheless, asring a brane evolving in a charged AdS black hole back-
it turns out in the Randall-Sundrum mod@&S) [9,10], vir-  ground. After presenting the theoretical framework of our
tual gravitons are localized near the brane due to the curvanalysis and briefly reviewing the derivation of the Fried-
ture of the higher-dimensional bulk. In this model, our spacemann equation on the brane, we reconsider the evolution of
time is embedded in a higher dimensional space with amoth a critical and non-critical brane. In the former case, we
extra highly curved but infinite fifth dimension. The localiza- reconfirm the occurrence of a bounce at small scales that
tion distance of gravity is proportional to the characteristicrenders the solutions free from both past and future singu-
length defined by the cosmological constant of the anti—déarities. In the latter case, the singularity-free, early regime is
Sitter (AdS) bulk space. While the Poincaievariant RS  followed by an asymptotically expanding de Sitter epoch, the
solution requires a fine-tuning of the brane tension, nonsequence of which successfully models an early, inflationary
Poincareinvariant solutions are also possible. A four- period. We find that the asymptotic Hubble parameter for the
dimensional Friedmann-Robertson-WalkgiRW) universe expansion on the brane is bounded from above by the black-
can arise on a brane embedded in an AdS BUl{ or an  hole mass and that this model is compatible only with
AdS-black-hole bulk spacetime2,13. However, in both intermediate-scale gravitational theories, i.e. witls
cases, the presence of extra terms, remnants from higher-10 °Mp,. We then proceed to study the evolution of a
dimensional theory, may lead to modifications in the evolu-radiation-dominated brane and to derive the exact solution
tion of the brane at small scales. for the scale factor of the four-dimensional subspace, which
The brane-world framework that will be followed in this is indeed characterized by a non-vanishing minimum value.
paper consists of our physical universe being regarded as/ careful examination, however, reveals that the bouncing
(3+1)-dimensional hypersurface embedded in(4a+1)- behavior for a radiation-dominated brane occurs for
dimensional AdS bulk. The recent observational evidence obackground-charge values exceeding those allowed for non-
cosmological acceleration motivates the consideration nogxtremal black holes. Finally, in the case of a brane filled
with a matter energy density, the presence of the charge bulk
parameter ensures once again the avoidance of the future
*On leave from the University of loannina, Greece. singularity in the case of a closed universe. The presence of
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the black-hole mass, which survives in the Friedmann equawith
tion at large scales during the same period, also affects the

evolution on the brane: the main implication for a closed r2 u g
universe is the increase in its proper volume while, for a flat f(r)= —+ k— -+t 4
and open universe, this term increases or decreases, respec- ¢ r- r

tively, the rate of expansion.

We then proceed to consider a brane evolving in an asymin the aboved3, stands for a 3D spatial geometry with the
metric background of two distinct charged AdS black-holetopology of a plane K=0), a sphereK=1) or a hyperbo-
spacetimes being bounded by the brane. In the case of doid (k=—1). The parameters appearing in the metric func-
empty critical brane, we find that, for the occurrence of ation f(r) are related to the Arnowitt-Deser-MisnéADM )
bounce, the asymmetry in the black-hole mass parameteraass and charge parameters of the black hole thfough
has to be smaller than a certain value, in contrast to the
symmetric case where bouncing behavior occurs generically. u=wsM, q253w§Q2/16, (5)

For a radiation- or matter-dominated brane, the effect of the
asymmetry is irrelevant both at small and large scales. Wgii, w4=16wG/30 ;= 8G/3.

finally assume the presence pf an intrinsic boun_dary CUVa- The black hole possesses in general two horizons the po-
ture term in the action which is expected to modify the evo-gjiion of which is determined by the solution of the cubic
lution of the universe only at large scales. We show thatgyationf(r)=0. It will be useful, at this point, to introduce
indeed, the value of the scale factor at the bouncing poin . . L 2

e dimensionless parameters and variallesu/€<, q

does not depend on this term, even for large values of the ~, ", R e .
associated parameter that determines the magnitude of th|=%?] s/(forfg:]sd g: drs /tf; .;hgg'ozhti:iﬁ;rdigo distinct hori-
term in the action, and that the only effects coming from the P vaid 9

boundary curvature term are relevant in the large scale factor

regime. %<0, (6)
Il. THE (4+1)-DIMENSIONAL CHARGED where
BLACK HOLE BACKGROUND
2\ 3/2
We shall consider the following (#1)-dimensional 2 _ E - E 2 4+ 2 [— k_
N . . qs= pt=k| t——| u+ . (7
gravitational theory described by the action - 3 9 343 3
S= LJ d*x—g R5+1_2_FMNFMN> Note that always)> >0 andg? <0. The two horizons cor-
167G Jwm €2 respond to the two positive solutions of a cubic equation,
1 namely
= 4y JZ
+87TGLMd xv— K, 1) _w
P S - ml3) ®)
. . Yout=—3 —+—| coq¢—m
whereR5 denotes the scalar curvature of the 5-dimensional a3 3 9
spacetime{ is the AdS curvature length related to thelk
cosmological constarthroughAs= —6/¢2, andF,;y stands 2\ 12
for the field strength of a bulk gauge field. The bulk spkte Yin=— §+2 3 +§ sin(/6— ¢), 9

consists in general of two different regions separated by the
hypersurfacedM signifying the brane, the simplest choice
being two regions related by& symmetry X is the trace of
the extrinsic curvatureon dM defined asCyn=Vunn N
terms of the unit normal on it. Finallyy,, is the induced L _ _ _ ) ) o
metric on the boundary an@ the five-dimensional Newton The charge is associated with an Abelian gauge field defined in
constant. the bulk and has nothing to do with the usual electric charge carried

In addition to the above, we assume a teﬁ’[ﬁ‘x\/—_yﬁ by brane matter. All standard model fields are assumed to be strictly

. . - localized on the brane. The two black-hole bulk spacetimes, whose
from which a conserved four-dimensional energy-momentum

t T . tisfving thesrael i diti common boundary is the 3-brane, are characterized by charges of
ensorf,, arnses, sa isfying rael junction conditions equal value but opposite signs, an assumption which is consistent

1 with the Z,-symmetry. In this way, the lines of the Abelian bulk
T~ —Tb’ V)_ (2)  field start from the positive charge and end at the negative one,

k3 a extending continuously over the brane, and the Abelian flux is con-
. . . . o served without having to introduce additional charges on the brane.
Einstein's equations in the bulk are satisfied by A&#S gy ysing the AdS/CFT correspondence, one can derive the form of

where we have introduced

AK,,=K()-K()=-8nG

charged black holéackground metric the potential at the location of the brafte7,27,30,31 which reads
_ d={¢/r, where ¢ is the 5-dimensional potential given by
dst=—f(r)dt?+f 1(r)dr2+r2dQ3, @ 30,008
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In the above, we have defined thsmur-dimensional cosmo-

1 2 :
b= gtarrl . (10 logical constantas’
9°-q* 95 -9’
S > 8nG, , _[4mGo 21 0 16
q+_q q — Y- 3 4= 3 F/ . ( )

For values of the charge larger than the limiting charge,
namely forq?>q? , two of the roots of the horizon equation The generic case is that of a de Sitter brane. The dase
are complex and there is only one horizon. Thus, in this case 0 of acritical braneis achieved through the well-known
we have arextremal black holeThe stability status of ex- fine-tuning between bulk&, ¢) and brane ¢) parameters

tremal black holes is still an open questj@i] and, perhaps, ©f the Randall-Sundrum model.
they should be avoided as a background. The above Friedmann equation of the brane features a

dark energyterm u/R* that has the same scale dependence

as the standard radiation tefnhe term arising from the

presence of the bulk charge corresponds tetiffi energy

equation of statewy=1) characterized by an exotic negative
Following the steps of Ref12] and introducing a spheri- energy density.

cally symmetric 3-brane at the positian=R, we obtain

Ill. BRANE WORLD IN A CHARGED
BLACK HOLE BACKGROUND

from t.he Israel junctioln conditions the followirlgriedmann IV. REVIEW OE THE EVOLUTION
equationon the brane: OF AN EMPTY BRANE
[f(R)+R?]Y?  4nG It is instructive to review, and complete, the solutions of
R -3 (pto), (1) the Friedmann equation in the case of an empty brane

[14,15,17,18 before proceeding to study more realistic
where the overdot denotes the derivative with respect to theases. Fop=0, Eq.(15) takes the form
proper timer on the brane. In additiory is the matter en- s
ergy density on the brane anrdthe brane tension. The last (R) k u o° 87G,

R

-—+
RZ R* RS 3

two arise from the brane energy-momentum tenf@tt = Ay (17)

—(p+0), Tj=4}p, conserved through the equation

& We will now consider separately the cases of a critical
VMT5:0=>b+3§(p+P)=0- (12) (A4=0) and non-critical A ,#0) brane.

Note that this equation is derived only in the caseZgf A. Empty, critical brane

symmetry? In an asymmetric situation, we have the more By assuming an empty and critical brana =0) and

general equation introducing a new time variablel7=R(7%)d»n, Eqg. (17)
leads to the solutions shown in Table I, foe=0,=1. The
[f.(R)+R?Y2 [f_(R)+R¥Y?2 8#7G parametek is defined ag?=4q%/ u2. All three solutions are
R R ~73 (pto). characterized by a minimum radius of contraction beyond

(13) which the universe bounces to an expanding phase. Thus,
there is no primordial or future singularity associated with
The metric functiond .. (r) can differ in the vacuum param- these cosmologies. Note that the radius at which the bounc-

etersu~ and €. . ing occurs is always outside of the outer horizon of the black
The four-dimensional metric on the brane corresponds tdole, sinceH?=—f(R)/R?*+ (87G/3)o*=0 implies f(R)
a FRW universeR(7) being the scale factor. It is =(87G/3)0’R?>0.
The solution fork=1 is periodic and is characterized by
dsj=—d7?+R%(7)dQj,. (14 an infinite number of bounces at the two poig,, and

_ _ ) Rmax- This solution does not possess either a big bang or big
Taking the square of the Friedmann equatiph), we obtain  crunch singularity, and it is possible only fef<1. This

the more conventional form restriction on the black hole charge®< 1%/4) is always
12 ) satisfied if the black hole of the background has two hori-

H2= E) - £+ﬁ_ 9 87TG4A4 zons. Indeed, recalling the corresponding constrajft

R RZ R* R® 3
+ ﬁ) 2(p2+ 20p) (15) 3The four-dimensional Newton constant can be read off from the
3 ' linear energy-density term to ber® ,/3=20(4wG/3)2.
“The equation of statp=wp, through the conservation equation
plp=—3(1+W)R/R, in the case of radiationw= —1/3), corre-
°The radiusr is decreasing on both sides of the brane. sponds tgpxR™4,
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TABLE I. Charged Q?#0), critical (A,=0) brane.

2 Mo g2 Bouncin
k=1 2 M s Riin=7 (1=V1=€) h
R=—=(1—\1—€“cos
5 ( Z) RE Z a2 <1 cyclic
Bouncing
_ u 2 _ .2 2 _

k=0 R*=7(e+47%) Rinin= 14, Ringy=2 expanding

2 _M i
- u R2. :_(W— 1) Bouncing
k=-1 R?=% (~ 1+ 1+ ’cosh 2) e éz . expanding

<q? , we see that)? is always smaller thap?/4. A simple ~empty brane with a non-vanishing cosmological constant

. . — 1,77, 2y —  possesses a bouncing point at early times and can have a
numerical analysis shows thaf’/4-+ 3 (u+$)—(2/3\3)(u generic expanding behavior at late times. This can be a plau-

+3)%%is always positive for any value<Ou<=. By using  sible scenario for an early inflationary era in which the cos-
dimensionful parameters, we may write the allowed range ofnological constant stands for, or includes, an almost constant
values of the added black hole charge, for the existence afnergy density of a scaléinflaton) field. The bounce at early
physically acceptable bouncing universes in a two-horizonimes guarantees the absence of a big bang singuldaty
black hole background, as all values ofk as long as the bounds on the charge parameter
Q presented in the previous subsection are respected. At late

0<Q2<1_6 _€_2( 2¢2 +ﬁ( M+€—2)3/2 times, an additional constraint arises, for=+1, for the
302 3 @4 9/ 33 @4 3 ' validity of the solutions, namely?<1. This constraint leads
to an upper bound on the Hubble parameter of the
(18) asymptotic expansion on the brane in terms of bulk param-
eters, namely
for a given ADM black hole mas#1 and AdS curvature 2 3
length €. Alternatively, for fixedM and Q?, the above con- H2= 4, 1 37Ms (20)
straint may be interpreted as a lower bound on the AdS cur- * 374 T 4oM T 32M

vature € or, through the relatiorr=3/47G¢{ for a critical

brane, as an upper bound on the tengioof such a brane whereMj is the fundamental scale of gravity in five dimen-

which is introduced in the aforementioned background. S'I(;nz' ﬂl]fe t:]ollse %?r;?:nggrgsiﬁ?ggzc tﬁgﬁ()tﬂgn\tféuiﬁaennsel(rm
For k=0,—1, the solutions are characterized by a singlep Y ' 9y

. — 6 4 .
bounce that demands again a non-vanishing value of thgfgsr'ti’ of g:]einb:ﬁne r?:lSttbri Ofnﬁr%m“' f((ljolnc-i-teV) :? rba-
black hole charge. The constraint for the existence of tw praer to obta € correct magnitude ot density perturba

horizons still needs to be satisfied and reduces to tions. This, in conjunction to Eq20), leads to

Ms)?
32M2%¢ (—M ) >10"H
P

2 19

<—1
Q 9\3w,M

for k=0, and to Eq(18) with the sign of the first term on the
right-hand side reversed, fér=—1.

—) . (21

Assuming that the black hole mass is at Iddst 10M g, the
above constraint puts a lower bound on the value of the
five-dimensional Planck scale, i.M5>10 °Mp, in agree-
ment with similar bounds found in the literature for the oc-
currence of brane inflation in higher-dimensional models
[32]. Alternatively, pushing the scale of gravity down to the
In the case of non-vanishing four-dimensional cosmologi-TeV scale leads to a black hole mass which is many orders of
cal constant\ ,, the Friedmann equation is modified only for magnitude below the fundamental scale, a result that invali-
very large values of the scale factBr The short distance dates the classical field theory approach used in our analysis.
behavior is dominated by the mass and charge terms. Thus,
the A,#0 solutions at short distances are very close to the V. RADIATION DOMINATED BRANE

previously discussed set, while for large distances they are | ot s now consider the realistic case of a brane with a

very close to the solutions of the Friedmann equation with &,51_-ero energy density that obeys a radiation equation of

vanishing charge, since at those distances the charge tergp,;o (v=1/3) and has a scale factor dependence of the form

becomes irrelevant. The latter set are given in Table I, where
we have defined a new parametethrough the relatiore?

=415 A 4/3, with K5=87G,. Note, however, that the periodic behavior of the critikat 1
Joining together the two sets of solutions presented icase that describes a cyclic universe is not retained in the presence
these two subsections, we see that the cosmology of asf a cosmological constant.

B. Empty, non-critical brane

024014-4
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TABLE II. Neutral (Q?=0), non-critical (A ,#0) brane.

1+ 1?005)‘(2;( \/E(T* T ))
2K£21A4 4 3 0
- S Aq 2 o @2ka(Kal3) 7 i
k=0 Re= sinh 2k, \/ =(7— 70) RZxce?ralVha asymptotic dS
K2A 4 3

= [A
—14+1— 62005|‘(2K4 ?4( ) ) } Rio{ezfﬂl( JAR)T asymptotic dS

k=1 Re=

R2 oc @2%4(VRal3)7 asymptotic dS

k=-1 Re=

2KiA4

p=p/R*. Going back to the Friedmann equati¢ts) and - q°
substituting the energy density, we obtain R=5, T VAcosti2\b7), (26)
, [R)? 887G, Kk 87G,.\ 1 @2 where A= —a/b+ (q%2b)2>0. The time variables are re-
H*=\R] =3 s T\ M TP T e lated through
~ q’— \/K
477G . s
n 4P_. 22) T 2b7'+ 4bsmr(2\/br). (27
30 R®

Itis clear that there is a non-zero minimum value of the scale
In what follows, we solve the above equation both for earlyfactor
and late times and proceed to check the validity of the de- )
rived bouncing solution. q

’ Rin=op + VB, 9
A. Derivation of the solution
o ) . ) where the bounce occufan arbitrary integration constant in
There are two distinct scale regimes at which dn‘ferentEq_ (26) has been chosen such that the pEiﬁtO coincides
terms dominate. For small scale factors, we may neglect thg;in the time of the bouncirlg
. 2 .

cosmological constant, and the curvature terik/R". This For large scale factors, the charge term, and the quadratic
is the early regimethat should be responsible for the exis- gnergy-density term, due to their scale factor dependence, are
tence of a bounce and the avoidance of the 2pr|m0rd|al SINsuppressed and thus can be neglected. The resulting Fried-
gularity. Introducing the new variableg=R“ and dr mann equation for thitate regimeis
=R?dr, the approximate Friedmann equation can take the

form , 8mGy k b
H = 3 A4—¥+g,

(29

E(x’)zszz—q2x+a, (23
4 and coincides in form with the one for a non-critical empty

) brane. The corresponding solutions therefore can be obtained
where we have defined from Table 1l of Sec. IV with the replacement—b and

ez—>4bK§A4/3. They all describe an asymptotically de Sitter

expanding universe. Combining the derived early and late

time solutions, we can successfully model an early,
(24 singularity-free, radiation-dominated epoch that passes
smoothly to an inflationary period for the universe. In this

case, the constraint’<1 puts an upper bound on the
asymptotic Hubble parameter during inflation, i.e.

8w ;))1

_ 47mGyp? 87G,. 87G,.
a=—5 b=p+ 3 p=(1+N\) 3 P

and the prime denotes differentiation with respect torte
time 7. We have also introduced, for later use, a new dimen
sionless parametem defined through the relationu
=\[(87G,4/3)p]. By settingx’ =0 and demanding the ex- , Ki
istence of a bounce, the following condition on théimum H= 3 A4<Z
value of the charge parameter emerges:

w4M+?M—%

(30

in terms of the black hole mass as well as the energy density

2p 87Gy. |2 iation- i iewi
q*=4ab= —p(1+)\) 4p . (25) of the precedt_anted radiation _domlnated e_poch. Viewing the
o 3 above inequality as a constraint on the ratio between the five
and four-dimensional Planck scales, we obtain a bound
On the other hand, the solution of E@3) has the form which is even stricter than the one derived in the case of an
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empty, non-critical brane. For negligible values of the paramvalue required for the occurrence of the bounce corresponds
eterp, we recover Eq(21) and the constraint for intermedi- to an extremal black hole background.

ate gravity scale, while for large values pf Ms is pushed An alternative to the two-horizon constraint, which also
further towardsM’p Te puts an upper bound on the value of the charge parameter,

In the case of a vanishing four-dimensional cosmologicaf:an be ol_)tained from the requirem_ent that the energy density
constant(or sub-dominant compared to the linear energy-Of the universe at the bouncing point must be larger than the

density term, we recover at late times a standard, radiationOne at the time of nucleosynthesis, i.ea/Ry,,

type Friedmann equation that describes a radiation>(0.2 MeV)". This constraint was mentioned [17] but
dominated epoch well after the end of inflation. Thewas not properly addressed as the authors lacked the exact
solutions in thatate regime for all values ofk, can be ob- solution for the scale factor. The value Bf,;, varies as a
tained from the ones presented in Table | of Sec. IV byfunction of the parameterg?, x and p according to Eq.
settingQ?=0 andu—b. These solutions should duplicate (28). The strongest constraint arises by considering the maxi-
exactly the successful cosmological predictions for nucleomal possible value oR,,;,, and thus the minimal possible
synthesis. As has been noted in the literature bef8B-  value of p, which corresponds to large values @f and is
35,17, this puts a strong bound on any non-standard contrigiven by R?; =q?/b. Substituting this value in the expres-

bution to the energy density, and thus on the black hole mas§on of the energy density, we obtain the constraint
parameter, that has the same scaling as the linear radiation

term. The dark radiation term generated by it should not (1+N\)?%p [87wG,.\?
exceed the effect that an additional neutrino species would 4 i\ T3 P
have on the value of thR™* coefficient. This amounts to (0.2 MeV)

(39

u<1.1354p or, equivalently, tox<0.14. The above upper bound on the value of charge parameter
replaces Eq(33) and is necessary for the validity of the
B. Validity of the Bouncing Solution bouncing solution in an extremal black hole, five-
The occurrence of a bounce in a radiation-dominatedlimensional background. The requirement, finally, that the
brane requires, as we saw, a bulk charge larger than a minfluadratic energy-density term be subdominant compared to
mum value that depends on the radiation energy densityl® linéar one, at the time of nucleosynthesis, leads to
namely -
1p 4
87G,. 2 O'>§ §2(017 MeV)*®, (36)
3 p) . (31

q4> %J( 1+\)
a value which is smaller than the one derived in R&7).

Nevertheless, as we discussed in Sec. Il, the charge of the
bulk background metric cannot increase further than a limit- V1. MATTER DOMINATED BRANE
ing valueg? determined by the mass of the black hole, since _ _
beyond that charge the two horizons merge giving us an Concluding our study of the evolution of a four-
extremal black hole the stability of which is questionable.dimensional brane embedded in a symmetric, AdS charged
Since neither the curvatutenor the cosmological constant black-hole, bulk spacetime, we will now study the case of a
are of importance in the regime where the bounce occurs, [atter equation of state for the energy density on the brane.
is sufficient to consider this bound in the critical and flatIn that case, we have=p/R® and the Friedmann equation

case. Itis (15) takes the form
2 2 R\
20q2 = ¢4 32— g 32 32) sz(_>
a°<aq% 3\/§M 3\/§,U« ( R
Setting =\ (87G,/3)p and ¢ 2= (47wG,/3)c, we get :8”G4A _£+ﬁ+ 87G4 p.
4
3 R R* 3 R
~\ 3
4 3 87Gyp
4_- 3
9 <27(477G40'))\ ( 3 ) ' (33 + 41TG4”‘)2_qZ i (37)
30 =CH

The two constraints are compatible if

Given the relevance of this particular equation of state at late
times in the history of the universe, it would not be mean-
ingful to talk about the existence or not of an initial singu-
larity. For large values oR, the charge as well as the qua-
This inequality holds only foh >3 and cannot be satisfied dratic energy-density term is subdominant and can be safely
for values as low a3 ~0.14, which follows from the nu- dropped. Theu term remains and the relevant question is
cleosynthesis constraint. Thus, unfortunately, the chargaow this term, remnant of the structure of the 5-dimensional

3 2
>\+§) (A—3)>0. (34)

3 27
A —Z(l‘f')\):
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TABLE IlI. Neutral (Q?=0), critical (A,=0), matter-dominated brane.

_ A [ 4 2Ry—A Expanding-
k=1 R= 2 [l+ 1+ ESIH[ n—1no+ arctar(m) ] contracting
k=0 A ) Power-law
B R=Ro+ 7 (7= 10)"+ Ve + ARo(7= 7o) expanding
k=-1 R= A “1+[1- 4“(:05 e in VA*—4p Exponentially
2 pz | T o+ ARy RE+A+ 2R, expanding
bulk, affects the evolution of the brane at tlae time re- For k=0 and —1, the four-dimensional brane expands

gime For simplicity, we will consider again a critical brane forever and no future singularity is encountered, as expected.
with A,=0 and solve for the scale factor, far=0,=1. By  In the case of a flat universe, the term adds a positive
using the conformal time coordinater=R(#7)d#», we ob-  contribution to the value of the scale factor and thus in-
tain the solutions listed in Table Il1. creases the rate of expansion. For an open universe, however,

In the above, we have defings= (877G,/3)p and have and for a given timep, we may easily see that the value of
denoted withR, the value of the scale factor at the beginningthe scale factor is smaller compared to the ongufer0, and
of the matter-dominated era, gt 7,. therefore the bulk parameter delays the expansion of the uni-
For k=1, the matter-dominated brane first expands and/erse in this case. The derived solution is valid as long as
then contracts, in agreement with the standard cosmological 1/87G, 2
model. At the point whereH, or equivalentlydR/d#, be- wM <_( 4}3) ,
comes zero, the universe stops expanding and then recol- 4\ 3

lapses. This occurs at
4
1+/1+ -2
A2
In this section, we shall consider the possibility of an

and it clearly corresponds to a larger value of the scale factd®Symmetric bulk space consisting of two distinct regions ter-
compared to the case where=0. The main implication, rr_nnatlng on the br_ane. To keep things simple, we shall con-
therefore, of the bulk parameters on the evolution of theSider for both regions a charged AdS black hole geometry
closed, matter-dominated brane, at large scales, is the igharacterized by the same AdS lengtrand charggQ| but
crease of the proper volume of the universe. As the bran®ith different black hole masseld ... We shall denote the
contracts, we will eventually reach small values of the scaldwo metric functions as
factor for which the charge term will become dominant

(41
which puts an upper bound on the black hole méss

A
R= —

> (38 VIl. BOUNCING IN AN ASYMMETRIC BACKGROUND

. . : RZ N 2
again. In that case,_the evolution of the brane would be gov fo(R)= — +k— &+q_. (42)
erned by the equation £2 R2 R4

R*R?= uR?—02, (390  The Friedmann equation takes the fo(@8) which can be
squared twice to give

where we have definegf=q?— (47G,/30)p? and ignored 5 ) ) )
the curvature and linear energy-density terms which are nowg2 , | # _ q 21(3)( i) ¢ (Aw)
subdominant. Clearly, the above equation is characterized by RZ R* ¢2\o 20 16R® 14 p\?’
the vanishing oR at a finite value of the scale factor, namely o
at R2. =q%u, as long asg®>>0, a constraint that puts a (43

Iov_ver bound on the charge parameter. If the c_onstrair_n for th‘Y?\/here we have assumed a critical brane by making the same
existence of two horizon&33) had not been violated in the fine-tuning as in the symmetric case, namely

precedented radiation-dominated era, one could have shown

that the two constraints og would have been indeed com- 47Go\2 1 4nG
patible, in the matter-dominated era, ifo ( 3 ) =_2=T40, (44)
>(47wG,)3p*4uB. If the alternative upper boun(B5) is ¢
used instead, we derive the constraint .
and have also defined
(0.2 MeV)? p? 1
R TE S YRS (40 p=g(petps), Bp?=(pa-p)’ (45
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It is straightforward to see that, in the cage =u_, the 32 min{,ui}
Friedmann equatiofil5) for a symmetric bulk is recovered. (,u+—,u7)2<2—77_).

In the case of an empty, critical branp=€0) the above (st
evolution equation simplifies to

(52

Therefore, a bounce occurs with the black hole background

R K u q? €%(Ap)? possesslmg two distinct horizons provided the asymmetry is

= = (46)  not too large. o '

Rl R R R 16R What about a radiation-dominated brane? In that case, the
Friedmann equation is of the form

As a result of the asymmetry, there is a positive term present
that opposes the effects of the charge at small values of the

~ 2 A 2

scale factor. In the sanearly regime the curvature term can 2 k= |yt i(ﬂ) _ q_+ i(ﬂ) i
be dropped. Then, the above equation has exactly the same R2 ® 2\ o R4 ¢2\o) RS
form as the Friedmann equation in the case of a critical,
radiation-dominated universe with a symmetric bulk, with 2(Ap)? R?

2 ; ; . ; + - , (53
(A w)“ playing the role of the quadratic energy-density term, o 2
and thus possesses a bouncing solution for large enough 16(3 1+ = |R?
charge. Introducing agaim=R? and dr=R?dr, we can p

bring Eq.(46) in the form
where we have introducgs=pR™“. For small values of the

1 ¢ Z(A“)z scale factor, we can approximate this equation with
Z7(X)P= = gPx et —¢ “0 | " !
4
. ) -
from which we obtain the solution R2~ 1 ut 3(& - q_+ i(ﬁ 1 (54)
R2 ¢2\o)| RY ¢2\o] RO

,_ o | ulP(Aw)? e
R _ﬂ +yi- 4q* cosi2ur) (. (49 Note that the asymmetry, in contrast to the empty-brane case,

contributes only with a sub-leading term

for large enough values of the charge, namely [€2(Aw)20?116p%]R?, which can be dropped to a first ap-
’ ) proximation in our considerations concerning the occurrence
4>'“€ (Ap) (49) of a bounce. The remaining equation is identical to the one in
4 ' the symmetric case and yields essentially the séetieal
condition

This solution is characterized by a minimum value of the
scale factor

1 4
1+ 5()\++)\_)<2—7m|n{)\t}, (55

2 2 2
R2 q|1+ 1—M] (50)

minzﬂ 4q4 "
with the \'s being defined asu.=\.(87G4p/3). The

quantity \ . +\_)/2 is still constrained by nucleosynthesis

éo be smaller than 0.14, a result which is in contradiction

with the above inequality: setting.(. +\ _)/2=0.13, we are

led to the constraint m{ia.}>1.9, which cannot be true

given the constraint on their sum and the positive-
> definiteness of .. .

< =——=min{u>}. (51) In the case, finally, of a matter-dominated universe with

V3 p=p/R3, the Friedmann equatio@3) becomes

obtained at 7= r=0 where the bouncing occurs.

The above lower limit on the charge should be compare
with the upper limit required by the non-extremality of the
background namely,

We are, thus, eventually led to the condition ~
p 2

€252

1 2p1 (Ap)?

1,21, COw7

R* (20 R 16R3+plo)?
(56)

R2+ k=&
R2
5The two times are related through

62 A 2\ 12
1%) sinh(2y/u 1)

= : At large scales, theXu)? term has anR™® dependence
which makes this term negligible compared to the remaining
ones. In the same way, at small scales, this term has the same
’Since the curvature term is always subdominant in the regim&caling as the curvature term and is again subdominant.
where the bounce occurs, for simplicity we considerkked con-  Therefore, an asymmetric bulk has no effect on the evolution

dition. of a matter-dominated universe.

¢
4#3/2{ 2\Npr+
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VIll. EFFECTS OF AN INTRINSIC CURVATURE TERM such an addition is mostly expected to modify the “late,” or
large-scale, evolution of the brane and not the small-scale

Ithas been pointed oi86] that the divergence arising for behavior responsible for the bounce. The resulting evolution
the energy-momentum tensor at the boundary of the

Schwarzschild-AdS space requires the introduction oiinan équation on the brane, for#-symmetric bulk spacetime, is
trinsic curvaturescalar counterterm. Such a term, arising in
other frameworks as welB7], is certainly not forbidden. We

shall, thus, assume the presence in the action of the[@8mn 2VR%+f(R)= ?R(PJF o) _%(Rq k), (598
as=L [ ay=r (57)
327G yiva

with our standard metric functiof(R) =k— u/R?*+q?/R*
wherep is a dimensionless constant that controls the “turn-+ R?/¢2. Taking the square of the above equation, we obtain
ing on” and “off” of the boundary curvature termA priori,  a quadratic algebraic equation with solution

|
. 8R2 [ pe(4nG \/ B2 47G BO* [ w9
2 — - _ = - _ - = _ 1
Re+k= (Ig(f)z[l—’_ 5 ( 3 )(p+0’) 1+ 7 +,8€( 3 )(p-i—a) 7 v i E (59
|
In what follows, we will perform the same fine-tuning that, I N 2
in the casep=0 andB=0, leads to a critical brane, namely H2:4(B f)[ - \/4('6 1; f(f) g
¢ 1=(47GI3)0. (B0) (B+2)* R \B*2
Considering first the case of an empty brape=Q), we (63)
obtain the equation o
Positivity of H?> demands
.. AB+2) \/ B\
2 — 2 _ _ [N
T e (1 {7l (el (B TR AL (64
(60) (B+2)2 R? \B+2]°

For small values of the parametgr, this equation can be

which turns out to be3 independent, namel
replaced with @ P y

2
_ o2R? [ u @ f(R) 1 L, ad°
2 N | H T — < —=RZ>—=R2_ . (65)
Re+k B2\ rd R8J’ (61) R2 2 i min
which has the solutions displayed in Table | of Sec. IV, with Thus, the minimal value of the scale factor, obtained in this
the parameter rescaling way, turns out to bg3-independent.

In the case of non-zero energy density on the brane (
#0), our Friedmann equation is

B
,u—>,u/ (l+§

B
2 2 I
, q—>q/(l+2

, B H?+ — = 8 2‘1+E(1+£)
€-|1+3 €. (62 R? (B) 2 o
. - \/ B\, [p) (BO? u ¢
The smallness of3 required for the validity of the above - 1+ = +,3(—) SELL A ]
approximation is8?< u°/€2q*~q2/q°<1. 2 o 4 \rR* R®
For an appreciable value @, such as the counterterm (66)

valueB=1, the above equation cannot be integrated analyti-
cally but the expectation that the small-scale behavior is not |gnoring thek term, we can repeat the argument we used

going to be mod_ified can be clarified by some supportivep, the p=0 case and arrive again atgaindependent condi-
arguments. Ignoring the curvature term proportionat,twe  jon

can rewrite the expression under the square-root symbol in a

manifestly positive fashion in terms of the metric function 2 5
f(R), which is positive for all points outside the outer hori- Lo A o (ﬁ) >0, 67)
zon. Our equation is RY R® ¢2| o \o
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which, for example, forp corresponding to radiationp( tionary era: the solutions are free from the big bang singu-
=E)R*4) leads to our well-known constraintg® larity and they smoothly interpolate to a de Sitter expanding
>4(13/U€)2(M+25/U€). phase. The derived constraints on the various parameters of

At large scales, the curvature is, of course, expected t§1€ model put an upper bound on the Hubble parameter of
influence the evolution. For larg® but not necessarily small the asymptotic de Sitter phase which, when combined with
B, we derive again Eq61) for an empty brane. The solu- the demand that the magnitude of the density perturbations
tions are again obtained from Table | of Sec. IV by using theProduced in this period have the correct size, leads to an
rescaled parametef62). For the casek=0,—1, for which  intermediate-scale higher-dimensional gravitational theory,
Ris eternally expanding after the bounce, there is always &€. Ms>10""Mp.
value ofR large enough for the approximation to be trusted We might assume instead that the early time regime is
for any value ofB. In the cyclic universe, however, obtained dominated by a radiation-type equation of state. The deriva-
for k=1, there is a maximum value of the scale factor givention of the exact solution for the scale factor on the brane, at
by R2,,.= u/(B8+2). When substituted in the expression un-Small scales, confirms the existence of a bouncing and the
der the square root in the exact equati6), with the charge ~ @bsence of the big bang singularity. Assuming that this
term having been neglected as subdominant, a tgé)¥ .~ Singularity-free, radiation-dominated epoch lasts until the
arises, which needs to be small compared to unity for oufime of nucleosynthesis without interruption, we are forced
approximation to be valid. Even for values gfof O(1), to s_atl_sfy a stringent constraint on the maximum yalue of _the
this term is indeed negligible provided that the black holefadiation-type energy-density term that appears in the Fried-
mass-length paramete@fﬁ is much larger than the AdS mann equation. As our analysis revealed, the range of param-
length €. In that case, the cyclic behavior of the=1 solu-  €t€rs of the background, for which the bouncing is possible
tion is retained for any value g&; in the opposite case, only e_m(_j the nucleosynthesis constraint is satisfied, exceeds the
small values of3 are allowed. limit allowed by a non-extremal black hole and may I_ead to

an unstable background. This problem may be avoided by

assuming that the dominant equation of state does not remain
IX. CONCLUSIONS AND DISCUSSION the same for the whole range of values from the bouncing

point to the time of nucleosynthesis. Since the universe must

As in the case of an AdS bulk spacetime, the generalizetbe radiation dominated at nucleosynthesis time, that leaves
Friedmann equation derived on a brane embedded in atwo options:(i) either the equation of state is dominated, at
AdS—Dblack-hole bulk spacetime allows for modifications inthe bouncing point, by the cosmological constant, which then
the evolution of the four-dimensional subspace at smalleads to an inflationary period and finally to a late radiation-
scales. This result allows us to study the early time regimegominated period, ofii) an early radiation-type equation of
as well as the late-time regime for closed universes, andtate gives way to an intermediate inflationary period, as
investigate whether the corresponding cosmological singumentioned in Sec. V, before coming back ttage radiation-
larities can be indeed avoided. The main attractive feature alominated period at the time of nucleosynthesis.
the brane-world model considered in the present article, in As the universe expands, the radiation-dominated energy
which the five-dimensional spacetime is described by an AdSlensity becomes subdominant and gives its place to the
charged black hole, is the fact that it realizes the bounce ideanatter-dominated one. In Sec. VI, we studied the modifica-
the existence of a non-zero minimum value of the scale factions that the generalized Friedmann equation brings to the
tor that smoothly connects a contracting with an expandingvolution of the brane at this large-scale regime. In the case
phase in the evolution of the four-dimensional subspace. Iof an open or flat brane, the charge-dependent term is always
all cases considered, this is indeed possible for a nonaegligible and it is only the black-hole-mass-dependent term
vanishing value of the charge parameter of the fivethat survives and affects the expansion rate of the brane
dimensional black hole. The bounce effect therefore prewhile preserving the eternal expansion predicted by the four-
dicted in the charged AdS black hole background provideslimensional cosmological model. In the case of a closed
support for a singularity-free cosmology in which the big brane, the latter term causes an increase in the proper volume
bang singularity is not present, as well as focyalic uni-  of the universe but it cannot prevent subsequent collapse.
verse[39] scenario in which neither the Big Bang nor a big Assuming that the equation of state remains matter domi-
crunch singularity is present. nated during this late small-scale regime, the charge term

Unfortunately, it is not possible to formulate a model thatbecomes dominant and ensures passage from the contracting
would allow us to study both the early and late time regimedo a subsequent expanding phase and, thus, avoidance of the
in the history of the universe, since different epochs arebig crunch.
dominated by different energy densities. It is therefore nec- However, cosmological observatiop#0—43 strongly in-
essary to distinguish between regions with smoothly condicate that the present universe is spatially flat and acceler-
nected but differing equations of state, an approach followedting due to some dominant dark-energy component. The
here in chronological order. By studying first, in Sec. 1V, the simplest possibility is that this dark energy of unknown ori-
case of an empty brane with either a zero or non-zero coggin is in the form of a small cosmological constant that puts
mological constant, embedded in a charged AdS—black-holthe universe in an indefinitely expanding de Sitter phase.
bulk spacetime, and joining together the two sets of soluThis scenario can be easily accommodated in the framework
tions, we were able to model a singularity-free, early infla-of the second set of solutions derived in Sec. 1V, which pre-
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dict an asymptotic de Sitter expansion for all valuek.ofhe  change of energj46], in a dynamical evolution of the equa-
same solutions could also model the alternative scenario ition of state on the brane that accounts for the present time
which the dark energy is generated by a slowly varying scaaccelerating phase as well as for a possible contracting one.
lar field [44], with aw=—1 equation of state and thus an  Let us finally note that, according to our analysis con-
almost constant energy density. In such a scenario, the delucted in Secs. VIl and VIII, variants of the above model, in
rived de Sitter expanding phase is only an intermediate onwhich the bulk spacetime is assumed to be asymmetric or a
that eventually will give way to an asymptotic Minkowski brane curvature term is added in the action, do not lead to
regime as the speed of expansion will start decreasing. lany radical changes in the type of behavior encountered near,
both cases, it is only the black-hole mass parameter that isr the existence itself of, the bouncing point. In the first
relevant to the present-time evolution, by restricting thevariant, it is only in the case of an empty brane and, for large
Hubble parameter for the, either eternal or temporary, dealues of the black-hole mass difference on the two sides of
Sitter expansion phase, while the charge parameter has abgbe brane, that the extra term in the Friedmann equation
lutely no effect. tends to prohibit the occurrence of the bouncing. In every
In addition to the uncertainty about the presently validother case, the effect of this term is irrelevant. In the second
equation of state, the very late evolution is also open tovariant, the brane curvature term has an effect only at large
speculation and conjecture, leaving open the possibility of &cales, as expected, and can be ignored at the time of the
contracting and, perhaps, cyclic, behavior. If, for examplebouncing, either at early or late times, without any loss of
the dark energy eventually becomes negative, the univerdgaformation.
will collapse [45]. In the cosmic contraction scenario, the
background charge will be essential in avoiding a big crunch
and bouncing back into an expanding state, just like in the
case of a matter-dominated phase. Nevertheless, the specific P.K. would like to thank the Theoretical Physics Group at
energy density required for a late-time contracting phase hathe Technical University of Munich, where parts of this work
to be inserted in the brane energy-momentum tensor in awere completed, for its hospitality and financial support. K.T.
arbitrary fashion. The fundamental physics associated withvould like to thank the CERN Theory Division for its hos-
its required form is still lacking. An interesting and perhapspitality and A. Petkou for useful discussions. He also ac-
fruitful approach would be to try to investigate ways of non- knowledges traveling support from the RTN program HPRN-
trivial bulk-brane interactions resulting, through the ex-CT-2000-00152.
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