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Abstract. We present an exact analytic solution for the trajectory of a charged particle moving in the ideal potential
V(r) = -k/r -f c inside a hemispherical deflector analyser (HDA). Our treatment extends the known solutions to also
include paracentric entry for which R0 ^ R = ±(Ri + #2) and V(Ro) is not necessarily zero, where #0 is the centre of
the HDA entry aperture. We also account for particle refraction at the potential boundary that cannot be neglected when
V(Ro) / 0. A general 3-D vector treatment for calculating trajectories in a fixed frame is also described based on the
conservation of the angular momentum and eccentricity vectors. These results find applications in modern hemispherical
spectrographs incorporating large diameter position sensitive detectors (PSD) as for example in ESCA.

INTRODUCTION

Recently, we have reported on the use of a. paracentric
HDA with 2-D PSD (1) for high-resolution zero-degree
Auger projectile electron spectroscopy. (2) A paracen-
tric HDA has an elliptical central trajectory with particle
entry at R0 < R = \(Rl + R2) and VQ = V(R0) ^ 0,
(1) unlike a conventional HDA having a circular central
trajectory with RQ — R and VQ — 0. A typical paracen-
tric HDA geometry is shown in Fig. 1.

The paracentric HDA has been shown (1) using
charged particle optics program SIMION3D (3) to have
superior energy resolution and larger acceptance energy
window than that of a conventional HDA without the use
of fringing field correctors. (4) The reason for this is not
yet clear. By computing the 3-D trajectories of particles
in an ideal and a real (simulated by SIMION) paracentric
analyser we expect to get a better understanding of the
specific ways by which fringing field effects modify the
behavior of such analysers.

Paracentric HDAs have never been treated in the
literature. However, very recently, a high-resolution
tandem energy analyser incorporating an exit paracentric
HDA (i.e. RQ — R but Rn < R) as the second stage
has been briefly described.(5) We expect our general
approach to be of particular interest to investigators
using modern HDAs (for a recent review see (6)) with
substantial interradial distances needed to accommodate

large area PSDs (7) or second stages (8, 9) in which
fringing fields (4, 10) and refraction at field boundaries

e~ orbit central
r orbit
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FIGURE 1. Schematic of paracentric HDA geometry. The
charged particle initially enters the lens assembly with kinetic
energy T and is then focused and decelerated by the lens and
plate at potential Vp down to an energy t just prior to entering
the interior region of the analyser (shaded area) with angle a*.
Upon entering at ro at potential V (ro), it is refracted to an angle
a, follows the trajectory specified by r(0) and exits at r^ after
being deflected through an anglejTr. The centre of the entrance
aperture is paracentric at RQ < R. Fixing the central trajectory
(a = 0) such that for t = w and ro = Ro, rn = R^ fixes the
analyser voltages.
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(8, 9) are important and may be used to ad vantage. (11)
This is a work in progress and here we briefly present
some of our first analytic results.

TRAJECTORY EQUATIONS

The classical, non-relativistic equations of motion for
a particle of mass m and charge q in the potential V(r)
are given by:

=Q (1)

For the solution of r inside an ideal HDA we use V(r) —
— --he. The eccentricity vector e is given by:(12)

€ =
r x L

qk
r
r (2)

It is seen to be proportional to the Runge-Lenz vector
A = qke (13) known to be conserved for motion in
a 1/r potential. Clearly, € lies in the orbital plane since
from Eq. 2 it is seen to be perpendicular to the angular
momentum L.

Taking the dot product of rar with Eq. 2 yields the
scalar equation of motion for r:

r(0) =re=r = P P
e ecos((9 - 0C) (3)

Eq. 3 is seen to be the equation of a conic section in polar
coordinates with the origin of the coordinate frame at the
focus of the conic section. For 0 < e < 1, the orbit
is an ellipse with eccentricity e = \e\ and lotus rectum
p — L2/(mqk) (13) with L = mr^VQ cos a. The angle
6 — #e is just the angle between the two vectors r and e.
At entry, we have 6 = OQ and r0 = r(0 — 9$). When
9 — 0e, it is seen that r is a minimum and thus e has the
useful property that it always points to periapse.

Using Eq. 3 and specifying the central trajectory such
that a particle with kinetic energy t = w just prior to entry
with a = 0 and r0 = RO, exits at r^ = R^, necessarily
sets the values for V(r) constants k and c:

(4)

where we have also defined qVo = (1 — 7) u> with 7 a
control parameter used to set the voltages of the HDA.

i. 9f = 0 vector form of the orbit
Clearly, the conserved vectors e and L X e are mutu-

ally perpendicular to L and therefore lie in the plane of
the orbit. They can be used as a natural coordinate sys-
tem of axes to describe the motion. Choosing to align the
x-axis along the semi-major axis (9€ = 0) we may set:
(14)

(5)

with the focus of the ellipse (see Fig. 2) at r = 0 and (13)

x(t) = a(cos£ — e) (6)

(7)

(C-esinC) (8)

with the particle being at periapse at time t = 0 and £ =
# = 0. The semi-major axis of the ellipse has length
a = (r0 + r7r)/2 — p/(l — e2) obtained directly from
Eq3.

The new angle £ introduced above is known as the Ke-
pler (14) or eccentric anomaly (12) and is related to the
angle 0 by: ___

ta4 = Vrr!tan^ (9)
Eq. 9 is particularly useful as it avoids quadrant ambigu-
ity since £/2 is always in the same quadrant as 0/2 (12).
Using Eq. 5 it is straightforward to describe the 3-D tra-

FIGURE 2. Elliptical particle orbit in the xy coordinate system
showing the true anomaly 0 and the eccentric anomaly f and
lotus rectum p. O is the center of attraction and focus of the
ellipse. The eccentricity vector e is seen to start from O and
point to periapse. It thus always lies along the semimajor axis
of the ellipse.

jectory in any fixed coordinate system XYZ in which the
initial components of L and e are known. In Fig. 3 we
show such a 3-D plot made with the help of the software
program Mathematica.

Eq. 8 is also very useful since it gives directly the time-
of-flight (TOF) as a function of the eccentric anomaly £.
Thus, for a particle entering the HDA at t = to with #o»
TO and VQ and exiting after a deflection by TT we have:

(10)
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FIGURE 3. 3-D orbit in HDA: Charged particle enters at P and
exits at M with a = -30°, j3 = -50°, 7 = 1.5, r = 1.16
and w = 1000 eV. XYZ is the fixed laboratory frame, while
xyz is the relative reference frame traditionally used to describe
the orbit in terms of angles a and /3. The entry velocity VQ,
eccentricity e and angular momentum L are also shown.

where Co = C(#o) and CTT = C(#o +TT). The orbit angle 00
is determined from Eq. 3 with r = TO, 0 — 0Q and 9e = 0.

ii. On — 0 scalar form of the orbit
Another useful form of the radial equation Eq. 3 is ob-

tained by orienting our xy coordinate system so that r0
lies along the positive x-axis (i.e. #0 — 0):

q k (1 — cos#)
re cos^a

cos# — tan a sin 9 (11)

where we have also used the initial condition
TO = VQsma — — ̂ ^esin#e obtained by evalu-
ating r directly from Eq. 3 at entry. Eq. 11 is the
well-known form introduced by Purcel (15) and dis-
cussed in more detail in Refs. (16, 17, 18, 7, 10). Eq. 11
also exhibits the well-known double focusing properties
of the HDA, since for 9 = TT it is clear that drg/da. = 0
at a = 0. However, it does not include corrections for
refraction discussed next.

REFRACTION CORRECTIONS

So far we have derived the trajectories in terms of ini-
tial conditions within the field of the analyser. However,
right outside the analyser (just before entry) the potential

is constant and thus changes discontinuously across the
boundary at #0 (at the border of the shaded area in Fig. 1).
This discontinuity can be represented mathematically by
defining the step potential V(r, 9) in the orbital plane as:

V(r,0)=V(r)u(0-0Q) (12)

where u(6 — #o) is the unit step function.
It can be easily shown that the energy is conserved in

going across the potential step and thus:

&K* = -mvl - -mvjj2 = -mvg - t = -qV(r0)
(13)

Furthermore, using the step potential V(r, 0) in the equa-
tion of motion for the 9 coordinate we can show that:

= -qV(r)6(6-8Q) (14)

where 5(6 - 00) = du(6 - Q0)/d0 is the Dirac delta-
function. After replacing d/dt with 9d/dO we obtain:

^(L2) = -2mr2qV(r)6(0-60) (15)

with L = mr2 0. Upon integrating across the boundary
9 = #o along a path of constant r = TO we obtain:

L2-L*2 = - (16)

where the * tags parameters on the side where the particle
is free. Thus, outside the analyser L* = m r$ VQ cos a*,
and inside the analyser L = mr^VQ cos a. where VQ, VQ
and a, a* are the velocities and entry angles inside and
outside the analyser, respectively. Using Eqs. 13 and 16
above it is straightforward to derive the law of refraction
for charged particles, analogous to Snell's law for light:

or

sin a —

From Eq. 17 it is seen that the radial velocity, vr = r, is
continuous across the potential boundary(7), as opposed
to the angular velocity, VQ = -^ which is not. The effect
of refraction is shown in Fig. 4. The discontinuity effects
across the sharp potential boundary at 9 — #o> have not
been given sufficient attention, especially in older publi-
cations, leading to some confusion in the literature. This
has been primarily due to the fact that in conventional
HDAs, the entry voltage VQ = 0 and the entry slits are
very narrow so that the approximation V^ro) ~ VQ = 0
is valid. Correct formuli for refraction can be found in
Refs. (15, 19,7,8,9).
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FIGURE 4. Relation between the entry angle a* prior to re-
fraction (angle of incidence) and angle a after refraction (angle
of refraction) for two cases: (a) Vb = 0 (7 = 1), RQ = R, (b)
Vb = 0.5w (7 = 1.5), RQ = 0.8125# (paracentric entry), w
is the energy of the central trajectory or "tuning" energy of the
HDA. In both cases, w = 1000 eV, r0 = Ro and R* = R.
Clearly, the effect of refraction is non-negligible for paracentric
entry and Vb / 0 (7 ̂  1).

Using Eqs. 13,16 and 18 we obtain the trajectory equa-
tion in terms of the entry angle a* and velocity VQ\

qk (1-COS0)

re

+ COS0-
tana* sin# (19)

where we have also introduced the reduced pass energy
r = t/w. Clearly, Eq. 19 also preserves the first-order
focusing in a* for 9 — TT. Thus, following deflection by
180° and using Eq. 4 to rewrite potential constants k and
c in terms of 7 and the tuning energy w, the exit radial
position r<x is given by the simple formula:

^TT = -rn H-
-r- (20)

Eq. 20 is thus seen to extend the well known results for
the exit point of a conventional HDA with RQ = Rn — R
and Vb = 0 (e.g. see (7)) to those of the more general
paracentric case, where #0 ^ RTT / R and where Vb
might also be different from zero. The optical properties
of the HDA (e.g. resolution, transmission, etc.) directly
follow from Eq. 20 and are presented elsewhere (20).
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