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Abstract

The first particle physics observable whose origin may be sought in string theory is the
replication of the matter generations. The class ofZ2×Z2 orbifolds of six-dimensional compactifie
tori, that have been most widely studied in the free fermionic formulation, correlate the f
triplication with the existence of three twisted sectors in this class. In this work we se
improved understanding of the geometrical origin of the three generation free fermionic m
Using fermionic and orbifold techniques we classify theZ2 × Z2 orbifold with symmetric shifts
on six-dimensional compactified internal manifolds. We show that perturbative three gene
models are not obtained in the case ofZ2 × Z2 orbifolds with symmetric shifts on complex tor
and that the perturbative three generation models in this class necessarily employ an asy
shift. We present a class of three generation models in which theSO(10) gauge symmetry cannot b
broken perturbatively, while preserving the Standard Model matter content. We discuss the p
implications of the asymmetric shift for strong–weak coupling duality and moduli stabilization. W
show that the freedom in the modular invariant phases in theN = 1 vacua that control the chira
content, can be interpreted as vacuum expectation values of background fields of the und
N = 4 theory, whose dynamical components are projected out by theZ2-fermionic projections. In
this class of vacua the chiral content of the models is determined by the underlyingN = 4 mother
theory.
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1. Introduction

String theory is in a precarious state of affairs. On the one hand the theory sho
great promise in its ability to provide a consistent framework for perturbative qua
gravity, while at the same time giving rise to the gauge and matter structures th
observed experimentally. However, the existence of a multitude of possible string
has led some authors to lose all hope and to advocate resorting to anthropic pri
as the possible resolution for the contrived set of parameters that seem to gove
universe[1].

Our point of view is different. Ultimately the search for the principles that unde
string theory and the vacuum selection will entail the conceptual resolution of the qu
gravity synthesis, and the fundamental understanding of quantum mechanics w
probabilistic interpretation when applied to the space–time arena.

A more pragmatic view of string theory suggests that the basic properties of th
energy data, as well as the basic properties of string theories should be utilized in tr
isolate vacua, or classes of vacua, that look most promising. From the low energy dat
of view we may hypothesize that the viable string theory vacua should accommodate t
pivotal ingredients: the existence ofthree generationsand theirembedding inan underlying
SO(10), orE6 grand unified group structure. From the string theory point of view the b
properties that may serve as guides are the various T- and S-duality symmetries.
respect it is also plausible that the self-dual points under these dualities may play a role
the vacuum selection principle.

A given set of string vacua that exhibits compelling properties must then be invest
in depth. In the least these can be viewed as case examples providing the c
laboratories to study how the properties of the observed data may arise from qu
gravity, and to develop the tools to relate between the theory and experiment. Ho
there also exist the possibility that certain case examples capture some prope
the true string vacuum that may eventually prove relevant for the understanding
low energy data. In any case, it is clear that different approaches must be pursu
for better understanding of string theory and its possible connection with experim
data.

The first sector among the low energy experimental observables whose orig
may seek in a theory of quantum gravity is the flavor sector. In the context o
quantum field theories underlying the Standard Model of particle physics, this g
of parameters does not arise from any physical principle, like the gauge princip
is then encouraging that already from the early days of superstring phenomenol
was observed that the flavor replication is related a topological property of the
compactifications, namely the Euler characteristic[2]. However, this observation does n
yet explain the existence of three generations. The first particle physics observable
origin we may seek to relate to string theory is therefore the replication of the three m
generations.

Among the most advanced string models to date are the three generation heteroti
models[3–8], constructed in the free-fermion formulation[9]. These models have bee

the subject of detailed studies, showing that they can, at least in principle, account for
desirable physical features including the observed fermion mass spectrum, the longevity of
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the proton, small neutrino masses, the consistency of gauge-coupling unification w
experimental data from LEP and elsewhere, and the universality of the soft supersym
breaking parameters[10]. An important property of the fermionic construction is t
standardSO(10) embedding of the Standard Model spectrum, which ensures na
consistency with the experimental values forαs(MZ) and sin2 θW (MZ). Furthermore
this class of models yielded the only known string model that reproduces in the
energy effective field theory solely the spectrum of the minimal supersymmetric sta
model[11].

A vital property of the realistic fermionic models is their underlyingZ2 × Z2 orbifold
structure. Many of the encouraging phenomenological characteristics of these mod
rooted in this structure. In particular, the emergence of the three chiral generations in
class of fermionic constructions is correlated with the existence of three twisted sec
theZ2×Z2 orbifold of the six-dimensional internal manifold. Each twisted sector prod
exactly one of the light chiral generations and there is no additional chiral matter. Thu
the fermionic construction offers a plausible and compelling explanation to the exis
of three generations in nature.

To see more precisely the orbifold correspondence of the fermionic constructio
recall that the free-fermion models are generated by a set of basis vectors which define
transformation properties of the world-sheet fermions as they are transported aroun
contractible loops of the string world sheet. A set of realistic fermionic models con
a subset of boundary conditions, the so-called extended NAHE-set, which can be se
to correspond toZ2 × Z2 orbifold compactification with the standard embedding of
gauge connection[12]. The fermionic model constructed just with the basis vectors o
extended NAHE-set gives rise to 24 generations from the twisted sectors, as well a
additional generation/antigeneration pairs from the untwisted sector. At theN = 4 level
the fermionic point in the moduli space corresponds to anSO(12) enhancement of th
internal lattice. The inducedZ2 ×Z2 action gives rise to a model with(h11, h21) = (27,3),
matching the data of the free-fermion model.We note that the data of this model diffe
from theZ2 × Z2 orbifold at a generic point in the moduli space, which has(h11, h21) =
(51,3). Alternatively, we can start with theZ2×Z2 orbifold at a generic point and produ
the one at the free fermionic point by adding a freely acting shift on the internal la
[13,14].

The above remarks make apparent the need tounderstand better the general struct
of the realistic free fermionic models, and, in particular, the geometrical structure
underlies the three generation models.

In the framework of the fermionic construction the three generations are obtain
adding three, or four, additional boundary condition basis vectors beyond the m
NAHE-set. The basis vectors reduce the number of generations to three generatio
from each of the twisted sectors of theZ2 × Z2 orbifold.

In this paper we observe in some of the concrete quasi-realistic three gene
models[6] that the action of two of the additional boundary condition basis vecto
correspond to symmetric shifts on the internal coordinates, whereas the third corre
to a fully asymmetric shift. We thenproceed to classify all possibleZ2 × Z2 orbifolds

with symmetric shifts, and demonstrate that three generations cannot be obtained solely
with symmetric shifts on complex tori. This is one of the main results of the analysis and it
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reveals, at least in the context of the three generation models, that the geometrical structu
that underly these models may not be simple Calabi–Yau manifolds, but it correspo
geometries that are yet to be defined. This observation may eventually prove import
the issue of moduli stabilization.

Additionally, we will demonstrate the existence of three generation models w
perturbatively unbrokenSO(10)/E6 gauge group, in which the internal manifold is reduc
to a product of six circles. This again demonstrates the possibilitythat the geometrie
relating to the viable vacua may not correspond to the complex geometries that hav
more prevalent in the literature. Some of phenomenological difficulties that have
associated with symmetric compactifications, like supersymmetry breaking and m
stabilization, may therefore be cured in the viable geometries. This class of models
not viable with respect to perturbative phenomenology, produces one generation from
single fixed point in each twisted sector. Hence, realizing theZ2 × Z2 geometric picture
of the three chiral generations. Our classification demonstrates additionally that in a
class ofN = 1 models the freedom in the phases appearing in theN = 1 partition function
can be understood as the vacuum expectation value (VEV) of background fields
N = 4 underlying theory, whose dynamical components are projected out by the
Z2 × Z2 projections. Thus, the information on the chiral content of theN = 1 models is
already contained at theN = 4 level. Examples of this phenomenon are already n
in the case of theZ2 × Z2 orbifold on SO(12) versusSO(4)3 lattices, as discusse
above.

Our paper is organized as follows: inSection 2we discuss the general structure
the models based on the fermionic construction. In a concrete model we show that t
additional boundary vectors beyond the NAHE-set can be regarded as two symmetri
plus one fully asymmetric shift. The main aim of this section is to establish the conne
of the analysis to follow with the phenomenological three generation models.

In Section 3we present the setup of our analysis. We present the most genera
fermionic model describing the heterotic string on aZ2 × Z2 orbifold. In Section 4we
present our method to classify all possible symmetric shifts and proceed to perform th
complete classification for gauge groups that descend from theN = 4 mother theory
We find that down to six generations the perturbative models can be describ
terms of symmetric shifts and hence possess a geometrical interpretation in te
Z2 × Z2 symmetric orbifolds. However, the three generation perturbative model
not admitted in this classification and entail an additional shift which is neces
asymmetric between the left and the right-movers. We demonstrate the existenc
class of three twisted generation models in which the GUT symmetry group cann
broken perturbatively, while preserving complete twisted matter multiplets. Addition
in this class of models the six-dimensional internal lattice is reduced to a prod
of six circles. Hence, one of the main conclusions of the analysis is that in
framework ofZ2 × Z2 orbifolds, three generations models are not obtained solely
symmetric shifts on complex tori, and suggests that the geometrical objects unde
the quasi-realistic free fermionic models are more esoteric than ordinaryZ2 × Z2
Calabi–Yau manifolds. InSection 5we present our results andSection 6concludes our
paper.
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2. General structure of realistic free fermionic models

In this section we recapitulatethe main structure of the realistic free fermionic mode
The notation and details of the construction of these models are given elsewhere[3–6,11,
15,16]. In the free fermionic formulation of the heterotic string in four dimensions all
world-sheet degrees of freedom required to cancel the conformal anomaly are repre
in terms of free world-sheet fermions[9]. In the light-cone gauge the world-sheet fie
content consists of two transverse left- and right-moving space–time coordinate boso
X

µ
1,2 andX̄

µ
1,2, and their left-moving fermionic superpartnersψ

µ
1,2, and additional 62 purel

internal Majorana–Weyl fermions, of which 18 are left-moving, and 44 are right-mo
In the supersymmetric sector the world-sheet supersymmetry is realized non-linea
the world-sheet supercurrent[17] is given by

(2.1)TF = ψµ∂Xµ + iχIyIωI (I = 1, . . . ,6).

The {χI , yI ,ωI } (I = 1, . . . ,6) are 18 real free fermions transforming as the adj
representation ofSU(2)6. Under parallel transport around a non-contractible loop
the toroidal world-sheet the fermionic fields pick up a phase,f → −eiπα(f )f , α(f ) ∈
(−1,+1]. Each set of specified phases for all world-sheet fermions, around all the
contractible loops is called the spin structure of the model. Such spin structures are
given in the form of 64-dimensional boundary condition vectors, with each element of
vector specifying the phase of the corresponding world-sheet fermion. The basis v
are constrained by string consistency requirements and completely determine the v
structure of the model. The physical spectrum is obtained by applying the generalize
projections[9].

The boundary condition basis defining a typicalrealistic free fermionic heterotic strin
model is constructed in two stages. The first stage consists of the NAHE set, whic
set of five boundary condition basis vectors,{1, S, b1, b2, b3} [15,18]. The gauge group
induced by the NAHE set isSO(10) × SO(6)3 × E8 with N = 1 supersymmetry. Th
space–time vector bosons that generate the gauge group arise from the Neveu–S
sector and from the sectorξ2 ≡ 1 + b1 + b2 + b3. The Neveu–Schwarz sector produc
the generators ofSO(10) × SO(6)3 × SO(16). The ξ2-sector produces the spinorial 12
of SO(16) and completes the hidden gauge group toE8. The NAHE set divides the
internal world-sheet fermions in the following way:φ̄1,...,8 generate the hiddenE8 gauge
group, ψ̄1,...,5 generate theSO(10) gauge group, and{ȳ3,...,6, η̄1}, {ȳ1, ȳ2, ω̄5, ω̄6, η̄2},
{ω̄1,...,4, η̄3} generate the three horizontalSO(6) symmetries. The left-moving{y,ω} states
are divided into{y3,...,6}, {y1, y2,ω5,ω6}, {ω1,...,4} andχ12, χ34, χ56 generate the left
movingN = 2 world-sheet supersymmetry. At the level of the NAHE set the sectorb1,
b2 andb3 produce 48 multiplets, 16 from each, in the 16 representation ofSO(10). The
states from the sectorsbj are singlets of the hiddenE8 gauge group and transform und
the horizontalSO(6)j (j = 1,2,3) symmetries. This structure is common to all kno
realistic free fermionic models.

The second stage of the construction consists of adding to the NAHE set thr
four) additional basis vectors. These additional vectors reduce the number of gene

to three, one from each of the sectorsb1, b2 andb3, and simultaneously break the four-
dimensional gauge group. The assignment of boundary conditions to{ψ̄1,...,5} breaks
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SO(10) to one of its subgroupsSU(5) × U(1) [3], SO(6) × SO(4) [5], SU(3) × SU(2) ×
U(1)2 [4,6,11], SU(3)×SU(2)2×U(1) [16] or SU(4)×SU(2)×U(1) [20]. Similarly, the
hiddenE8 symmetry is broken to one of its subgroups, and the flavorSO(6)3 symmetries
are broken toU(1)n, with 3 � n � 9. For details and phenomenological studies of th
three generation string models we refer interested readers to the original literatu
review articles[10].

The correspondence of the free fermionic models with the orbifold constructi
illustrated by extending the NAHE set,{1, S, b1, b2, b3}, by at least one additiona
boundary condition basis vector[12]

(2.2)ξ1 = (0, . . . ,0| 1, . . . ,1︸ ︷︷ ︸
ψ̄1,...,5,η̄1,2,3

,0, . . . ,0).

With a suitable choice of the GSO projection coefficients the model possesses anSO(4)3 ×
E6 × U(1)2 × E8 gauge group andN = 1 space–time supersymmetry. The matter fie
include 24 generations in the 27 representation ofE6, eight from each of the secto
b1 ⊕ b1 + ξ1, b2 ⊕ b2 + ξ1 andb3 ⊕ b3 + ξ1. Three additional 27 and27 pairs are obtaine
from the Neveu–Schwarz⊕ξ1 sector.

To construct the model in the orbifold formulation one starts with the compactific
on a torus with nontrivial background fields[19]. The subset of basis vectors

(2.3){1, S, ξ1, ξ2}
generates a toroidally-compactified model withN = 4 space–time supersymmetry a
SO(12) × E8 × E8 gauge group. The same model is obtained in the geometric (bos
language by tuning the background fields to the values corresponding to theSO(12) lattice.
The metric of the six-dimensional compactified manifold is then the Cartan matr
SO(12), while the antisymmetric tensor is given by

(2.4)Bij =



Gij , i > j,

0, i = j,

−Gij , i < j.

When all the radii of the six-dimensional compactified manifold are fixed atRI = √
2,

it is seen that the left- and right-moving momentaPI
R,L = [mi − 1

2(Bij±Gij )nj ]eI
i

∗

reproduce the massless root vectors in the lattice ofSO(12). Hereei = {eI
i } are six linearly-

independent vielbeins normalized so that(ei)
2 = 2. The eI

i

∗
are dual to theei , with

e∗
i · ej = δij .

Adding the two basis vectorsb1 andb2 to the set(2.3) corresponds to theZ2 × Z2
orbifold model with standard embedding. Starting from theN = 4 model withSO(12) ×
E8 × E8 symmetry[19], and applying theZ2 × Z2 twist on the internal coordinate
reproduces the spectrum of the free-fermion model with the six-dimensional bas
{1, S, ξ1, ξ2, b1, b2}. The Euler characteristic of this model is 48 withh11 = 27 andh21 = 3.

It is noted that the effect of the additional basis vectorξ1 of Eq. (2.2), is to separate

the gauge degrees of freedom, spanned by the world-sheet fermions{ψ̄1,...,5, η̄1, η̄2, η̄3,

φ̄1,...,8}, from the internal compactified degrees of freedom{y,ω|ȳ, ω̄}1,...,6. In the realistic
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free fermionic models this is achieved by the vector 2γ [12], with

(2.5)2γ = (0, . . . ,0| 1, . . . ,1︸ ︷︷ ︸
ψ̄1,...,5,η̄1,2,3φ̄1,...,4

,0, . . . ,0),

which breaks theE8 × E8 symmetry toSO(16) × SO(16). The Z2 × Z2 twist induced
by b1 andb2 breaks the gauge symmetry toSO(4)3 × SO(10) × U(1)3 × SO(16). The
orbifold still yields a model with 24 generations, eight from each twisted sector, but
the generations are in the chiral 16 representation ofSO(10), rather than in the 27 ofE6.
The same model can be realized with the set{1, S, ξ1, ξ2, b1, b2}, by projecting out the
16⊕ 16 from theξ1-sector taking

(2.6)c

[
ξ1
ξ2

]
→ −c

[
ξ1
ξ2

]
.

This choice also projects out the massless vector bosons in the 128 ofSO(16) in the
hidden-sectorE8 gauge group, thereby breaking theE6 × E8 symmetry toSO(10) ×
U(1) × SO(16). We can define twoN = 4 models generated by the set(2.3), Z+ and
Z−, depending on the sign inEq. (2.6). The first, sayZ+, produces theE8 × E8 model,
whereas the second, sayZ−, produces theSO(16)× SO(16) model. However, theZ2 ×Z2
twist acts identically in the two models, and their physical characteristics differ only
to the discrete torsionEq. (2.6).

This analysis confirms that theZ2 × Z2 orbifold on theSO(12) lattice is at the core o
the realistic free fermionic models. To illustrate how the chiral generations are gen
in the free fermionic models we consider theE6 model which is produced by the extend
NAHE-set{1, S, ξ1, ξ2, b1, b2}.

The chirality of the states from a twisted sectorbj is determined by the free phasec
[ bj

bi

]
.

Since we have a freedom in the choice of the sign of this free phase, we can get fr
sector(bi) either the 27 or the27. Which of those we obtain in the physical spectr
depends on the sign of the free phase. The free phasesc

[ bj

bi

]
also fix the total numbe

of chiral generations. Since there are twobi projections for each sectorbj , i �= j we can
use one projections to project out the states with one chirality and the other projec
project out the states with the other chirality. Thus, the total number of generation
this set of basis vectors is given by

8

(
c
[

b1
b2

]+ c
[

b1
b3

]
2

)
+ 8

(
c
[

b2
b1

]+ c
[

b2
b3

]
2

)
+ 8

(
c
[

b3
b1

]+ c
[

b3
b1

]
2

)
.

Since the modular invariance rules fixc
[ bj

bi

] = c
[ bi

bj

]
we get that the total number o

generations is either 24 or 8. Thus, to reduce the number of generation further it
necessary to introduce additional basis vectors.

To illustrate the reduction to three generations in the realistic free fermionic mode
consider the model inTable 1.

Here the vectorξ1 (2.2)is replaced by the vector 2γ (2.5). At the level of the NAHE se

we have 48 generations. One half of the generations is projected by the vector 2γ . Each of
the three vectors inTable 1acts non-trivially on the degenerate vacuum of the sectorsb1,
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Table 1

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1 1 1

2
1
2

1
2 0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 0 0 1 0 1
γ 0 1 0 1 0 1 0 1 1 0 0 0

Table 2

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α + β 1 0 1 1 1 0 1 1 0 1 1 0
β + γ 0 1 1 0 1 1 0 1 1 1 0 1
α + β + γ 1 1 1 0 1 1 1 0 1 1 1 0

b2 andb3 and reduces the number of generationsin each step by a half. Thus, we obta
one generation from each sectorb1, b2 andb3.

The geometrical interpretation of the basis vectors beyond the NAHE set is facilitat
by taking combinations of the basis vectors inTable 1, which entails choosing another s
to generate the same vacuum. The combinationsα + β , α + γ , α + β + γ produce the
following boundary conditions under theset of internal real fermions.

It is noted that the two combinationsα + β andβ + γ are fully symmetric betwee
the left and right movers, whereas the third,α + β + γ , is asymmetric. The action o
the first two combinations on the compactified bosonic coordinates translates there
symmetric shifts. Thus, we see that reduction of the number of generations is obtai
further action of symmetric shifts.

Due to the presence of the third combination the situation, however, is
complicated. The third combination inTable 2is asymmetric between the left and rig
movers and therefore does not have an obvious geometrical interpretation. Bel
perform a complete classification of all the possible NAHE-basedZ2×Z2 orbifold models
with symmetric shifts on the complex tori, which reveals that three generations a
obtained in this manner. Three generationsare obtained in the free fermionic models
the inclusion of the asymmetric shift inTable 2. This outcome has profound implicatio
on the type of geometries that may be related tothe realistic string vacua, as well as on t
issue of moduli stabilization.

3. N = 1 heterotic orbifold constructions

In this section we revise theZ2 × Z2 heterotic orbifold construction and relate th

to the free fermionic construction. We isolate the individual conformal blocks that will
facilitate the classification of the models and set up a procedure to analyse all possible
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N = 1 heteroticZ2 × Z2 models. We start by describing the procedure to descend
N = 4 toN = 1 supersymmetric heterotic vacua.

3.1. TheN = 4 models

The partition function for any heterotic model via the fermionic construction is

(3.1)Z = 1

τ2

1

η12η̄24

∑
a,b∈Ξ

c

[
a

b

]
1

2M

20∏
i=1

θ

[
ai

bi

] 1
2

44∏
j=1

θ̄

[
aj

bj

] 1
2

.

In the above equationM is the number of basis vectors and the parameters in thθ -
functions represent the action of the vectors. In order to obtain a supersymmetric
we need at least two basis vectors{1, S}.

(3.2)1 = {ψ1,2, χ1,...,6, y1,...,6,ω1,...,6ȳ1,...,6, ω̄1,...,6,
∣∣ψ̄1,...,6, η̄1,2,3, φ̄1,...,8},

(3.3)S = {ψ1,2, χ1,...,6}.
The supersymmetric GSO projection is induced by the setS for any choice of the GSO
coefficient

(3.4)c

[
S

1

]
= ±1.

The corresponding partition function has a factorized left-moving contribution coming
from the sectorS,

(3.5)Z1,S = 1

τ2|η|4
1

2

1∑
a,b=0

(−1)a+b+µab
θ
[

a
b

]4
η4

Γ6,6+16[SO(44)]
η6η̄22

where

(3.6)Γ6,6+16
[
SO(44)

]= 1

2

∑
c,d

θ
[

c
d

]6
θ̄
[

c
d

]22

η6η̄22 ,

and

µ = 1

2

(
1− c

[
S

1

])

defines the chirality ofN = 4 supersymmetry. Therefore, the role of the boundary cond
vectorS is to factorize the left-moving contribution,

(3.7)ZL
N=4 = 1

2

1∑
a,b=0

(−1)a+b+µabθ

[
a

b

]
(v)θ

[
a

b

]3

(0) ∼ v4

which is zero with the multiplicity ofN = 4 supersymmetry.
The above partition function gives rise to anSO(44) right-moving gauge group an
is the maximally symmetric point in the moduli space of the NarainΓ6,6+16 lattice. The
generalΓ6,6+16 lattice depends on 6× 22 moduli, the metricGij and the antisymmetric
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tensorBij of the six-dimensional internal space, as well as the Wilson linesY I
i that appear

in the 2d-world-sheet.

S = 1

4π

∫
d2σ

√
ggabGij ∂aX

i∂bX
j + 1

4π

∫
d2σ εabBij ∂aX

i∂bX
j

(3.8)+ 1

4π

∫
d2σ

√
g
∑
I

ψI
[∇̄ + Y I

i ∇̄Xi
]
ψ̄I .

Herei runs over the internal coordinates andI runs over the extra 16 right-moving degre
of freedom described bȳψI .

The compactified sector of the partition function is given byΓ6,6+16

Γ6,6+16 = (detG)3

τ3
2

∑
m,n

exp

{
−π

Tij

τ2

[
mi + niτ

][
mj + nj τ̄

]}

× 1

2

∑
γ,δ

16∏
I=1

exp
[−iπni

(
mj + nj τ̄

)
Y I

i Y I
j

]

(3.9)× θ̄

[
γ

δ

](
Y I

i

(
mi + ni τ̄

)|τ ),
whereTij = Gij + Bij .

Eq. (3.9)is the winding mode representation of the partition function. Using a Poi
resummation we can put it in the momentum representation form:

(3.10)Γ6,22 =
∑

P,P̄ ,Q

exp

{
iπτ

2
PiG

ijPj − iπτ̄

2
P̄iG

ij P̄j − iπτ̄ Q̂I Q̂I

}
,

with

(3.11)Pi = mi + Bij n
j + 1

2
Y I

i Y I
j nj + Y I

i QI + Gijn
j ,

(3.12)P̄i = mi + Bij n
j + 1

2
Y I

i Y I
j nj + Y I

i QI − Gijn
j ,

(3.13)Q̂I = QI + Y I
i ni .

The charge momentaQI are induced by the right-moving fermions̄ψI which appear
explicitly in theθ -functions

(3.14)θ

[
aI

bI

]
=
∑
n∈Z

q
(QI )2

2 e2πi(v− bI

2 )QI

,

where the charge momentumQI = (n − aI

2 ).
For genericGij ,Bij and for vanishing values for Wilson lines,Y I

i = 0 one obtains an
N = 4 model with a gauge groupU(1)6 × SO(32). TheU(1)6 can be extended toSO(12)
by fixing the moduli of the internal manifold[12].
TheN = 4 fermionic construction based on{1, S} (3.5)has an extended gauge group,
SO(44). From the lattice construction point of view, anN = 4 model with a gauge group



f the
s
t

ee

ing
a

al

tes
oving

ard the
ctors
A.E. Faraggi et al. / Nuclear Physics B 695 (2004) 41–72 51

G ⊂ SO(44) can be generated by switching on Wilson lines and fine tune the moduli o
internal manifold. Moving from theSO(44) to U(1)6 × SO(32) heterotic point as well a
to theU(1)6 × E8 × E8 point can be realized continuously[23]. The partition function a
theU(1)6 × E8 × E8 point takes a simple factorized form

Γ6,6+16 = (detG)3

τ3
2

∑
m,n

exp

{
−π

Tij

τ2

[
mi + niτ

][
mj + nj τ̄

]}

(3.15)× 1

2

∑
γ,δ

θ̄

[
γ

δ

]8 1

2

∑
γ,δ

θ̄

[
γ + h

δ + g

]8

.

3.2. TheN = 1 models

To break the number of supersymmetries down fromN = 4 to N = 1 in the fermionic
formulation we need to introduce the vectorsb1 andb2.

(3.16)b1 = {χ3,4, χ5,6, y3,4, y5,6| . . .},
(3.17)b2 = {χ1,2, χ5,6, y1,2, y5,6| . . .}.

The b1 twists the second and third complex planes(3,4) and (5,6) while b2 twists the
first and third(1,2) and(5,6) ones. Thus,b1, b2 separate the internal lattice into the thr
complex planes:(1,2), (3,4) and(5,6).

The action of thebi -twists fully determines the fermionic content for the left-mov
sector. The dots. . . in b1, b2 stand for then1, n2 right-moving fermions. To generate
modular invariant model we can distinguish four options.ni are either 8, 16, 24 or 32 re
right-moving fermions in the basis vectorbi .

Defining the basis vectors with 8 real right-moving fermions leads to massless sta
in the spectrum in vectorial representations of the gauge groups; 16 real right-m
fermions give rise to spinorial representations on each plane. Addingeither 24 or 32 right-
moving fermions would produce massive states in the spectrum. We therefore disc
last two options. We thus need to introduce 16 real fermions (8 complex) in the ve
b1, b2 for the existence of spinorial representations on the first and second plane.

A suitable choice is for instance,

(3.18)b1 = {χ3,4, χ5,6, y3,4, y5,6|ȳ3,4, ȳ5,6, η̄1, ψ̄1,...,5},
(3.19)b2 = {χ1,2, χ5,6, y1,2, y5,6|ȳ1,2, ȳ5,6, η̄2, ψ̄1,...,5}.
We define the vectorsx = {0, . . . |ψ̄1,...,5, η̄1,2,3}, andb̃1,2 = b1,2 + x. TheN = 1 partition
function based on{1, S, b̃1, b̃2} takes the following form:
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(3.20)

ZN=1 = 1

τ2|η|4
1

2

∑
α,β

eiπ(a+b+µab)

× 1

4

∑
h1,h2,g1,g2

θ
[

a
b

]
η

θ
[ a+h2

b+g2

]
η

θ
[ a+h1

b+g1

]
η

θ
[ a−h1−h2

b−g1−g2

]
η

× 1

2

∑
γ,δ

Γ6,6
[ γ,h1,h2

δ,g1,g2

]
η6η̄6

Zη

[ γ,h1,h2
δ,g1,g2

]
η̄3

Z26
[ γ

δ

]
η̄

13

eiπϕL,

(3.21)

Γ6,6

[
γ,h1, h2
δ, g1, g2

]
=
∣∣∣∣θ
[

γ

δ

]
θ

[
γ + h2
δ + g2

]∣∣∣∣
2∣∣∣∣θ
[

γ

δ

]
θ

[
γ + h1
δ + g1

]∣∣∣∣
2

×
∣∣∣∣θ
[

γ

δ

]
θ

[
γ − h1 − h2
δ − g1 − g2

]∣∣∣∣
2

,

(3.22)Zη

[
γ,h1, h2
δ, g1, g2

]
= θ̄

[
γ + h2
δ + g2

]
θ̄

[
γ + h1
δ + h2

]
θ̄

[
γ − h1 − h2
δ − g1 − g2

]
,

(3.23)Z26

[
γ

δ

]
= θ̄

[
γ

δ

]13

.

In Eq. (3.21)the internal manifold is twisted and thereby separated explicitly into t
planes. The above model is the minimalZ2 ×Z2 with N = 1 supersymmetry and massle
spinorial representations in the sameSO(10) group coming from the first and/or from
the second plane. The number of families depends on the choice of the phaseϕL. The
freedom of this phase arises from the different possible choices of the modular inva
coefficientsc

[ vi
vj

]
. The maximal number of the families for this model is 32. Introduc

internal shifts, associated toϕL, can reduce this number as we will discuss below.
We could have chosen the boundary conditionsfor different right-moving fermions

This would lead to spinorial representations on each plane, but the group to which th
would belong would differ in each plane.As we require spinors in the same group
have discarded this option. Choosing an overlap with more than 6 complex fermions
right-moving sector between the vectorsb1 andb2 leads to aSO(14) gauge group, which
does not have chiral fermions.

In order to have spinors in the spectrum onall three planes we need to separate at le
an SO(16) (or E8) from theΓ6,22 lattice. We therefore need to introduce the additio
vector

(3.24)z = {φ̄1,...,8}
to the set. With this vector the partition function for the gauge sector(3.23)modifies to

(3.25)Z26

[
γ,hz

δ, gz

]
= 1

2

∑
hz,gz

θ̄

[
γ

δ

]5

θ̄

[
γ + hz

δ + gz

]8

.

We can further separate out the internalΓ6,6 lattice by introducing the additional vector,
(3.26)e = {y1,...,6,ω1,...,6|ȳ1,...,6, ω̄1,...,6},
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which modifies theΓ6,6 in (3.21)by

Γ6,6

[
γ,h1, h2
δ, g1, g2

]
= 1

2

∑
he,ge

∣∣∣∣θ
[

γ + he

δ + ge

]
θ

[
γ + he + h2
δ + ge + g2

]∣∣∣∣
2

×
∣∣∣∣θ
[

γ + he

δ + ge

]
θ

[
γ + he + h1
δ + ge + g1

]∣∣∣∣
2

(3.27)×
∣∣∣∣θ
[

γ + he

δ + ge

]
θ

[
γ + he − h1 − h2
δ + ge − g1 − g2

]∣∣∣∣
2

.

In the above{1, S, b1, b2, e} construction the gauge group of the observable sector bec
eitherSO(10) × U(1)3 or E6 × U(1)2 and the hidden sector necessarily isSO(16) or E8

depending on the generalized GSO coefficients, (the choice of the phaseϕL), while the
gauge group from theΓ6,6 lattice becomesGL = SO(6) × U(1)3.

So far the construction of theN = 1 models is generic. The only requireme
we are imposing is the presence ofspinors on all three planes. We call this theS3

subclass of models. In a generalN = 1 model the spinors could be replaced by vecto
representations of the observable gaugegroup. This replacement gives rise to thr
additional classes of models which we denote byS2V , SV 2 and V 3. In this work we
will focus on theS3 class and we will deal with the other classes in a future work. Th
condition of spinorial representations arising from each one of theZ2 ×Z2 orbifold planes
together with the complete separation of the internal manifold is synonymous to ha
well-defined hidden gauge group.

3.3. The generalS3 N = 1 model

In the class ofZ2 × Z2 orbifold models, the internal manifold is broken into thr
planes. The hidden gauge group is necessarilyE8 or SO(16) broken to any subgroup b
Wilson lines (at theN = 4 level). In order to classify all possibleS3 models, it is necessar
to consider all possible basis vectors consistent with modular invariance. Namely:

(3.28)z1 = {φ̄1,...,4},
(3.29)z2 = {φ̄5,...,8},
(3.30)ei = {yi,ωi |ȳi , ω̄i}, i ∈ {1,2,3,4,5,6}.

The z1, z2 vectors allow for a breaking of hiddenE8 or SO(16) to SO(8) × SO(8)

depending on the modular coefficients. As wediscuss below this splitting of the hidde
gauge group has important consequences in the classification of theS3 class of models by
the number of generations. The introduction ofei vectors is necessary in order to obta

all possible internal shifts which also induces all possible modification to the number of
generations.
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The generalN = 1, S3 model based on{1, S, ei, z1, z2, b̃1, b̃2} is

(3.31)

ZN=1 = 1

τ2|η|4
1

2

∑
α,β

eiπ(a+b+µab)

× 1

4

∑
h1,h2,g1,g2

θ
[

a
b

]
η

θ
[ a+h1

b+g1

]
η

θ
[ a+h2

b+g2

]
η

θ
[ a−h1−h2

b−g1−g2

]
η

× 1

26

∑
pi,qi

Γ2,2
[ h1|p1,p2

g1|q1,q2

]
η2η̄2

Γ2,2
[ h2|p3,p4

g2|q3,q4

]
η2η̄2

Γ2,2
[−h1−h2|p5,p6−g1−g2|q5,q6

]
η2η̄2

× 1

8

∑
γ,γ ′,ξ,δ,δ′,ζ

Zη

[ γ,h1,h2
δ,g1,g2

]
η̄3

Z10
[ γ

δ

]
η̄5

Z16
[ γ ′,ξ

δ′,ζ
]

η̄8 eiπϕL,

(3.32)Zη

[
γ,h1, h2
δ, g1, g2

]
= θ̄

[
γ + h2
δ + g2

]
θ̄

[
γ + h1
δ + h2

]
θ̄

[
γ − h1 − h2
δ − g1 − g2

]
,

(3.33)Z10

[
γ

δ

]
= θ̄

[
γ

δ

]5

,

(3.34)Z16

[
γ ′, ξ
δ′, ζ

]
= θ̄

[
γ ′
δ′
]4

θ̄

[
γ ′ + ξ

δ′ + ζ

]4

.

TheΓ6,6 lattice ofN = 4 is twisted byhi, gi , thus in theN = 1 case separated into thr
(2,2) planes. The contribution of each of these planes inN = 1 partition function is written
in terms of twisted byhi, gi and shifted bypi, qi Γ2,2 lattice. The expressions of tho
lattices at the self-dual point (fermionic construction point) is

Γ2,2

[
h|pi,pj

g|qi, qj

]∣∣∣∣
f.p

(3.35)= 1

4

∑
ai ,bi,aj ,bj

eiπφ1+iπφ2

∣∣∣∣θ
[

ai

bi

]
θ

[
ai + h

bi + g

]
θ

[
aj

bj

]
θ

[
aj + h

bj + g

]∣∣∣∣,
where the phases

φi = aiqi + bipi + qipi, φj = ajqj + bjpj + qjpj

define the two shifts of theΓ2,2 lattice. At the generic point of the moduli space t
shifted Γ2,2 lattice depends on the moduli(T ,U), keeping however identical modul
transformation properties as those of the fermionic point.

For non-zero twist,(h, g) �= (0,0), Γ2,2 is independent of the moduliT ,U and thus it
is identical to that of(3.35)constructed at the fermionic point[21,22]. Thus for non-zero
twist, (h, g) �= (0,0),

[ ] ∣ [ ]∣

(3.36)Γ2,2

h|pi,pj

g|qi, qj (T ,U)

∣∣∣
(h,g) �=(0,0)

= Γ2,2
h|pi,pj

g|qi, qj

∣∣∣
f.p

.
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For zero twist,(h, g) = (0,0), the momentum and winding modes are moduli depen
and are shifted byqi, qj andpi,pj ,

Γ2,2

[
0|pi,pj

0|qi, qj

]
(T ,U)

=
∑

−→m,−→n∈Z

eiπ{m1qi+m2qj } exp

{
2πiτ̄

[
m1

(
n1 + pi

2

)
+ m2

(
n2 + pj

2

)]

(3.37)− πτ2

T2U2

∣∣∣∣m1U − m2 + T

(
n1 + pi

2

)
+ T U

(
n2 + pj

2

)∣∣∣∣
2}

.

The phaseϕL is determined by the chirality of the supersymmetry as well as by the o
modular coefficients

(3.38)ϕL(a, b) = 1

2

∑
i,j

(
1− c

[
vi

vj

])
αiβj ,

whereαi andβj are the upper- and lower-arguments inθ -functions corresponding to th
boundary conditions in the two directions of the world sheet torus and which are associa
to the basis vectorsvi and vj of the fermionic construction. The only freedom whi
remains in the generalS3 N = 1 model is therefore the choice of the generalized G
projection coefficientsc

[ vi
vj

] = ±1. The space of models is classified according to
choice which determines at the end the phaseϕL. We have in total 55 independent choic
for c

[ vi
vj

]
that can take the values±1. Thus, the total number of models in this restric

class ofN = 1 models is 255. Latter, we will classify all these models according to
values of the GSO coefficients.

The so-called NAHE models is a small subclass of the generalS3, N = 1 deformed
fermionic N = 1 model. More precisely we can write the NAHE set basis vectors
linear combination of basis vectors{1, S, ei, z1, z2, b1, b2} which define the generalS3

N = 1 model:

(3.39)bNAHE
1 = S + b1,

(3.40)bNAHE
2 = S + b2 + e5 + e6,

(3.41)bNAHE
3 = 1+ b1 + b2 + e5 + e6 + z1 + z2.

We see that the NAHE set is included in these models as mentioned inSection 3.2.

3.4. TheN = 4 gauge group

We describe the gauge configuration of the models defined by the basis v
{1, S, ei, z1, z2, b1, b2}. For this purpose we start with a simplification and separate
the internal manifold usingEq. (3.26). As the twisting vectorsb1 andb2 are used to brea
the SO(16) → SO(10) × U(1)3 we will firstly describe the configuration without the
vectors. The gauge group induced by the vectors{1, S, e, z1, z2} without enhancements i
(3.42)G = SO(16) × SO(8)1 × SO(8)2 × SO(12),
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Table 3
The configuration of the gauge group of theN = 4 theory. We have separated a priori the internal and the hidde
and observable gauge group using the vectorse and zi . Introducing the other vectorsei and bi only induce
breaking of these groups

c
[ z1
z2

]
c
[ e
z1

]
c
[ e
z2

]
Gauge groupG

+ + + E8 × SO(28)
+ − + SO(24) × SO(20)
+ + − SO(24) × SO(20)
+ − − SO(32) × SO(12)
− + + SO(16) × SO(16) × SO(12)
− − + SO(16) × SO(16) × SO(12)
− + − SO(16) × SO(16) × SO(12)
− − − E8 × E8 × SO(12)

where the internal manifold is described bySO(12) and the hidden sector bySO(8)×SO(8)

and the observable bySO(16). By choosing the GSO coefficients theSO(16) can enhance
either toE8 or mix with the other sectors producing eitherSO(24) or SO(32). Similarly
the SO(8) × SO(8) can enhance either toSO(16) or E8 or mix with the observable o
internal manifold gauge group. This leads to enhancements of the formSO(20) or SO(24).
The exact form depends only on the three GSO coefficientsc

[
e
z1

]
, c
[

e
z2

]
, c
[

z1
z2

]
. We have

shown the results inTable 3.
Proceeding to the complete model{1, S, ei, z1, z2, b1, b2} we break these gauge grou

to their subgroups. Imposing the shiftsei we can break the internal gauge group down
its Cartan generators by a suitable choice of the coefficients. By a suitable choice w
breakSO(20) → SO(8) × U(1)6.

When we also include the twists we breakSO(16) → SO(10) × U(1)3 and E8 →
E6 × U(1)2. Similarly we can breakSO(24) → SO(10) × U(1)3 × SO(8) andSO(32) →
SO(10) × U(1)3 × SO(8) × SO(8). Enhancements can subsequently occur of the f
SO(8) × U(1) ⊂ SO(32) → SO(10) or SO(8) × SO(8) × U(1) ⊂ SO(32) → SO(18). We
find possible enhancements of the formSO(10) × SO(8) ⊂ SO(32) → SO(18).

In Table 3we notice that the coefficientc
[

z1
z2

]
distinguishes between theSO(32) models

and theE8 × E8 models. Since we require complete separation of the gauge group
well-defined observable and hidden gauge group, we set the coefficientc

[
z1
z2

]= −1 in the
classification.

4. Generic Z2 × Z2 model in the free fermionic formulation

4.1. General formalism

In the free fermionic formulation of the heterotic superstring, a model is determ
by a set of basis vectors, associated with the phases picked up by the fermions
parallelly transported along non-trivial loops and a set of coefficients associated
GSO projections. The free fermions in the light-cone gauge in the traditional notation a

ψµ,χi, yi,ωi , i = 1, . . . ,6 (left movers) and̄yi, ω̄i , i = 1, . . . ,6, ψA, A = 1, . . . ,5, φ̄α ,
α = 1,8 (right movers). The class of models under consideration is generated by a set of
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12 basis vectors

B = {v1, v2, . . . , v12},
where

v1 = 1= {ψµ,χ1,...,6, y1,...,6,ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},
v2 = S = {ψµ,χ1,...,6},
v2+i = ei = {yi,ωi |ȳi , ω̄i

}
, i = 1, . . . ,6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v10 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},
v11 = z1 = {φ̄1,...,4},

(4.1)v12 = z2 = {φ̄5,...,8}.
The vectors 1, S generate anN = 4 supersymmetric model. The vectorsei, i = 1, . . . ,6
give rise to all possible symmetric shifts of internal fermions (yi,ωi, ȳi , ω̄i ) while b1 and
b2 stand for theZ2 ×Z2 orbifold twists. The remaining fermions not affected by the ac
of the previous vectors areφi , i = 1, . . . ,8 which normally give rise to the hidden sect
gauge group. The vectorsz1, z2 divide these eight fermions in two sets of four which in t
Z2 × Z2 case is the maximum consistent partition function[9]. This is the most genera
basis, with symmetric shifts for the internal fermions, that is compatible with Kac–M
level oneSO(10) embedding.

The associated projection coefficients are denoted byc
[ vi

vj

]
, i, j = 1, . . . ,12 and can

take the values±1. They are related by modular invariancec
[ vi

vj

]= exp{i π
2 vi · vj }c

[ vj
vi

]
andc

[
vi
vi

] = exp{i π
4 vi · vi}c

[ vj

1

]
leaving 266 independent coefficients. Out of them, t

requirement ofN = 1 supersymmetric spectrum fixes (up to a phase convection) allc
[

S
vi

]
,

i = 1, . . . ,12. Moreover, without loss of generality we can setc
[

1
1

]= −1, and leave the
rest 55 coefficients free. Therefore, a simple counting gives 255 (that is approximately
1016.6) distinct models in the class under consideration. In the following we study
class of models by deriving analytic formulas for the gauge group and the spectru
then using these formulas for the classification.

4.2. The gauge group

Gauge bosons arise from the following four sectors:

G = {0, z1, z2, z1 + z2, x},
where

(4.2)x = 1+ S +
6∑

i=1

ei +
2∑

k=1

zk = {η̄123, ψ̄12345}.
The 0 sector gauge bosons give rise to the gauge group
SO(10) × U(1)3 × SO(8)2.
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Table 4
Typical enhanced gauge groups and associated projection coefficients for a generic model generated by the b
(4.1) (coefficients not included equal to+1 except those fixed by space–time supersymmetry and conventio

c
[ z1
z2

]
c
[ b1

z1

]
c
[ b2

z1

]
c
[ b1

z2

]
c
[ b2
z2

]
c
[ e1
z1

]
c
[ e2
z2

]
c
[ e1
e2

]
Gauge group

+ + + + + + + + SO(10) × SO(18) × U(1)2

+ + + + + − − + SO(10) × SO(9)2 × U(1)3

+ + + + + − + + SO(10)2 × SO(9) × U(1)2

+ + + + − + + + SO(10)3 × U(1)

+ − − − − + + + SO(26) × U(1)3

− + + + + + + + E6 × U(1)2 × E8
− − + − + + + + E6 × U(1)2 × SO(16)
− − + + − + + + E6 × U(1)2 × SO(8) × SO(8)

− + + + + + + − SO(10) × U(1)3 × E8
− + + + + − − − SO(10) × U(1)3 × SO(16)

The x gauge bosons when present lead to enhancements of the traditionally
observable sector (the sector that includesSO(10)) while thez1+z2 sector can enhance th
hidden sector (SO(8)2). However, thez1, z2 sectors accept oscillators that can also give
to mixed type gauge bosons and completely reorganize the gauge group. The app
of mixed states is in general controlled by the phasec

[
z1
z2

]
. The choicec

[
z1
z2

]= +1 allows
for mixed gauge bosons and leads to the gauge groups presented inTable 4.

The choicec
[

z1
z2

]= −1 eliminates all mixed gauge bosons and there are a few pos
enhancements:SO(10) × U(1) → E6 and/orSO(8)2 → {SO(16),E8}. Thex sector gauge
bosons survive only when

(4.3)
6∑

j=1,i �=j

(ei |ej ) +
2∑

k=1

(ei |zk) = 0 mod 2, i = 1, . . . ,6,

(4.4)
6∑

j=1

(ej |zk) = 0 mod 2, k = 1,2,

where we have introduced the notation

(4.5)c

[
vi

vj

]
= eiπ(vi |vj ), (vi |vj ) = 0,1

and one of the constraints in(4.3), (4.4) can be dropped because is linearly independ
with the rest.

As far as theSO(8)2 is concerned we have the following possibilities:

(4.6)(i) (ei |z1) = (ba|z1) = 0 ∀i = 1, . . . ,6, a = 1,2,

(4.7)(ii) (ei |z2) = (ba|z2) = 0 ∀i = 1, . . . ,6, a = 1,2,

(4.8)(iii) (ei |z1 + z2) = (ba|z1 + z2) = 0 ∀i = 1, . . . ,6, a = 1,2.

Depending on which of the above equations are true the enhancement is
(4.9)both (i) and (ii)⇒ E8,
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(4.10)one of (i) or (ii) or (iii) ⇒ SO(16),

(4.11)none of (i) or (ii) or (iii)⇒ SO(8) × SO(8).

In the sequel we will restrict to the casec
[

z1
z2

] = −1 as this is the more promisin
phenomenologically, we intent to examinec

[
z1
z2

]= +1 in detail in a future publication.

4.3. Observable matter spectrum

The untwisted sector matter is common to all models and consists of six vect
of SO(10) and 12 non-Abelian gauge group singlets. In models where the gauge
enhances toE6 extra matter comes from thex sector giving rise to sixE6 fundamenta
reps (27).

Chiral twisted matter arise from the following sectors

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6 + (x),

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6 + (x),

(4.12)B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4 + (x),

whereb3 = b1+b2+x. These are 48 sectors (16 sectors per orbifold plane) and we c
to label them using the plane numberi (upper index) and the integerspi, qi, ri , si = {0,1}
(lower index) corresponding to the coefficients of the appropriate shift vectors. Not
for a particular orbifold planei only four shift vectors can be added to the twist vectobi

(the ones that have non empty intersection) the other two give rise to massive state
of the above sectors(4.12)can produce a single spinorial ofSO(10) (or fundamental ofE6
in the case of enhancement). Since theE6 model spectrum is in one to one corresponde
with theSO(10) spectrum in the following we use the name spinorial meaning the16 of
SO(10) and in the case of enhancement the27 of E6.

One of the advantages of our formulation is that it allows to extract generic form
regarding the number and the chirality of each spinorial. This is important because it
an algebraic treatment of the entire class ofmodels without deriving each model explicitl
The number of surviving spinorials per sector(4.12)is given by

(4.13)P (1)
pqrs = 1

16

∏
i=1,2

(
1− c

[
ei

B
(1)
pqrs

]) ∏
m=1,2

(
1− c

[
zm

B
(1)
pqrs

])
,

(4.14)P (2)
pqrs = 1

16

∏
i=3,4

(
1− c

[
ei

B
(2)
pqrs

]) ∏
m=1,2

(
1− c

[
zm

B
(2)
pqrs

])
,

(4.15)P (3)
pqrs = 1

16

∏
i=5,6

(
1− c

[
ei

B
(3)
pqrs

]) ∏
m=1,2

(
1− c

[
zm

B
(3)
pqrs

])
,

whereP i
pqrs is a projector that takes values{0,1}. The chirality of the surviving spinorial

is given by [ ]

(4.16)X(1)

pqrs = c
b2 + (1− r)e5 + (1− s)e6

B
(1)
pqrs

,
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(4.17)X(2)
pqrs = c

[
b1 + (1− r)e5 + (1− s)e6

B
(2)
pqrs

]
,

(4.18)X(3)
pqrs = c

[
b1 + (1− r)e3 + (1− s)e4

B
(3)
pqrs

]
,

whereXi
pqrs = + corresponds to a16 of SO(10) (or 27 in the case ofE6) andXi

pqrs = −
corresponds to a16 (or 27) and we have chosen the space–time chiralityC(ψµ) = +1.
The net number of spinorials and thus the net number of families is given by

(4.19)NF =
3∑

i=1

1∑
p,q,r,s=0

X(i)
pqrsP

(i)
pqrs .

Similar formulas can be easily derived for the number of vectorials and the numb
singlets and can be extended to theU(1) charges but in this work we will restrict to th
spinorial calculation.

Formulas(4.13)–(4.15)allow us to identify the mechanism of spinorial reduction, o
other words the fixed point reduction, in the fermionic language. For a particular s
(B(i)

pqrs) of the orbifold planei there exist two shift vectors (e2i−1, e2i ) and the two zeta

vectors (z1, z2) that have no common elements withB
(i)
pqrs . Setting the relative projectio

coefficients(4.15) to −1 each of the above four vectors acts as a projector that cut
number of fixed points in the associated sector by a factor of two. Since four such pro
are available for each sector the number of fixed points can be reduced from 16 to 1 p
plane.

The projector action(4.13)–(4.15)can be expanded and written in a simpler form

(4.20)∆(i)W(i) = Y (i),

where

∆(1) =



(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)


 , Y (1) =




(e1|b1)

(e2|b1)

(z1|b1)

(z2|b1)


 ,

∆(2) =



(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)


 , Y (2) =




(e3|b2)

(e4|b2)

(z1|b2)

(z2|b2)


 ,

(4.21)∆(3) =



(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)


 , Y (3) =




(e5|b3)

(e6|b3)

(z1|b3)

(z2|b3)




and

i


pi

qi



 (4.22)W =

ri
si

 .
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They form three systems of equations of the form∆iWi = Y i (one for each orbifolds
plane). Each system contains 4 unknownspi, qi, ri, si which correspond to the labels
surviving spinorials in the planei. We call the set of solutions of each systemΞi . The net
number of families(4.19)can be written as

(4.23)NF =
3∑

i=1

∑
p,q,r,s∈Ξi

X(i)
pqrs.

The chiralities(4.16)–(4.18)can be further expanded in the exponential formX
(i)
pqrs =

exp(iπχ
(i)
pqrs)

χ(1)
pqrs = 1+ (b1|b2) + (1− r)(e5|b1) + (1− s)(e6|b1) + p(e3|b2) + q(e4|b2)

+ r(e5|b2) + s(e6|b2) + p(1 − r)(e3|e5) + p(1 − s)(e3|e6)

(4.24)+ q(1− r)(e4|e5) + q(1− s)(e4|e6) + (r + s)(e5|e6) mod 2,

χ(2)
pqrs = 1+ (b1|b2) + (1− r)(e5|b2) + (1− s)(e6|b2) + p(e1|b1) + q(e2|b1)

+ r(e5|b1) + s(e6|b1) + p(1 − r2)(e1|e5) + q(1− r)(e2|e5)

(4.25)+ p(1− s)(e1|e6) + q(1− s)(e2|e6) + (r + s)(e5|e6) mod 2,

χ(3)
pqrs = 1+ (b1|b2) + (1− p)(e1|b1) + (1− q)(e2|b1) + (e5 + e6|b1)

+ (1− r)(e3|b2) + (1− s)(e4|b2) + (1− r)(1− p)(e3|e1)

+ (1− r)(1− q)(e3|e2) + (1− r)(e3|e5) + (1− r)(e3|e6)

+ (1− s)(e4|e6) + (1− r)(e3|z1 + z2) + (1− s)(e4|z1 + z2)

(4.26)+ (b1|z1 + z2) mod 2.

We remark here that the projection coefficientc
[

b1
b2

]
simply fixes the overall chirality an

that our equations depend only on

(ei |ej ), (ei |bA), (ei |zn), (zn|bA),

(4.27)i = 1, . . . ,6, A = 1,2, n = 1,2.

However, the following six parameters do not appear in the expressions(e1|e2), (e3|e4),

(e3|b1), (e4|b1), (e1|b2), (e2|b2) and thus a generic model depends on 37 discrete par
ters.

5. Results

5.1. Models
We apply here the formalism developed above in order to derive sample models in the
free fermionic formulation.
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5.1.1. TheZ2 × Z2 symmetric orbifold
The simplest example is the symmetricZ2 × Z2 orbifold. Here we set all the free GS

phases(4.27)to zero. The full GSO phase matrix takes the form (c
[ vi

vj

]= exp[iπ(vi |vj )])

(vi |vj ) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 0 0 0 0 0 0 0 0

e2 1 1 0 0 0 0 0 0 0 0 0 0

e3 1 1 0 0 0 0 0 0 0 0 0 0

e4 1 1 0 0 0 0 0 0 0 0 0 0

e5 1 1 0 0 0 0 0 0 0 0 0 0

e6 1 1 0 0 0 0 0 0 0 0 0 0

b1 1 0 0 0 0 0 0 0 1 1 0 0

b2 1 0 0 0 0 0 0 0 1 1 0 0

z1 1 1 0 0 0 0 0 0 0 0 1 1

z2 1 1 0 0 0 0 0 0 0 0 1 1




.

With the above choice∆(i) = W(i) = 0 in Eq. (4.20). All projectors become inactive an
thus the number of surviving twisted sector spinorials takes its maximum value wh
48 with all chiralities positive according to(4.24)–(4.26). Moreover three spinorials an
three antispinorials arise from the untwisted sector. Following(4.3), (4.4)the gauge group
enhances toE6 × U(1)2 × E8 and the spinorials ofSO(10) combine with vectorials an
singlets to produce 48+ 3 = 51 families (27) and 3 antifamilies (27) of E6.

5.1.2. A three generationE6 model
We can obtain a three familyE6 model by choosing the following set of projectio

coefficients

(vi |vj ) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 1 0 0 1 0 0 0 0

e2 1 1 0 0 0 0 1 0 0 0 0 1

e3 1 1 1 0 0 0 1 0 0 0 0 0

e4 1 1 0 0 0 0 1 0 0 0 1 0

e5 1 1 0 1 1 1 0 1 0 0 0 0

e6 1 1 1 0 0 0 1 0 0 0 1 1

b1 1 0 0 0 0 0 0 0 1 0 0 0

b2 1 0 0 0 0 0 0 0 0 1 0 0




.

z1 1 1 0 0 0 1 0 1 0 0 1 1

z2 1 1 0 1 0 0 0 1 0 0 1 1
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The full gauge group is hereE6 × U(1)2 × SO(8)2. Three families(27), one from each
plane, arise from the sectorsS + bi + (x), i = 1,2,3. Another set of three families an
three antifamilies arise from the untwisted sector. The hidden sector consists of nine
under eachSO(8). In addition there exist a number of non-Abelian gauge group sing
The model could be phenomenologically acceptable provided one finds a way of breakin
E6. Since it is not possible to generate theE6 adjoint (not in Kac–Moody level one), w
need to realize the breaking by an additional Wilson-line like vector. However, a de
investigation of acceptable basis vectors, shows that theE6 breaking is accompanied b
truncation of the fermion families. Thus this kind of perturbativeE6 breaking is not
compatible with the presence of three generations. It would be interesting to utilize
dualities in order to study the non-perturbative aspects of such models.

5.1.3. A six generationE6 model
Similarly a six familyE6 × U(1)2 × E8 model can be obtained using the followi

projection coefficients

(vi |vj ) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 0 0 1 1 0 0 0 0

e2 1 1 0 0 1 0 0 1 0 0 0 0

e3 1 1 0 1 0 0 0 1 0 0 0 0

e4 1 1 0 0 0 0 1 0 0 0 0 1

e5 1 1 1 0 0 1 0 0 0 0 0 0

e6 1 1 1 1 1 0 0 0 0 0 0 1

b1 1 0 0 0 0 0 0 0 1 0 0 0

b2 1 0 0 0 0 0 0 0 0 1 0 0

z1 1 1 0 0 0 0 0 0 0 0 1 1

z2 1 1 0 0 0 1 0 1 0 0 1 1




.

In this model we have six families from the twisted sector, two from each plane tog
with three families and three antifamilies from the untwisted sector, accompanied
number of singlets and 8-plets of both hiddenSO(8)’s.

5.2. N = 4 liftable vacua

In the models considered above we have managed to separate the orbifold
action (represented here byb1, b2) from the shifts (represented byei ) and the Wilson
lines (z1, z2). However, these actions are further correlated through the GSO proje
coefficientsc

[ vi
vj

]
. Nevertheless, we remark that the twist action can be decoupled

the other two in the case[ ] [ ]

(5.1)c

bn

zk
= c

bm

ei
= +1, i = 1, . . . ,6, k = 1,2, m,n = 1,2,3.



g
ling

me
ns, are

hirality
.
.
s some
e, the

up

ries

cal

vable
auge

ilson
f the
of the
lines

l

t of
ith
ith
of the
ng the
vacua

ass of
th the

an
e free
64 A.E. Faraggi et al. / Nuclear Physics B 695 (2004) 41–72

The above relation defines a subclass ofN = 1 four-dimensional vacua with interestin
phenomenological properties and includes three generation models. Due to the decoup
of the orbifold twist action these vacua are direct descendants ofN = 4 vacua so we
will refer to these models asN = 4 liftable models. In this subclass of models so
important phenomenological properties of the vacuum, as the number of generatio
predetermined at theN = 4 level as it is related to the(ei |ej ) and (zi |ej ) phases. The
orbifold action reduces the supersymmetries and the gauge group and makes c
apparent, however the number of generations is selected by theN = 4 vacuum structure
At the N = 1 level this is understood as follows: theZ2 × Z2 orbifold has 48 fix points
Switching on some of the above phases correspond to a free action that remove
of the fixed points and thus reduces the number of spinorials. Moreover, in this cas
chirality of the surviving spinorials is again related as seen by(4.24)–(4.26)to the(ei |ej )

and(ei |zk) coefficients, which are all fixed at theN = 4 level. The observable gauge gro
of liftable models is alwaysE6 and this can be easily seen by applying(5.1)to (4.3), (4.4).

Typical examples of such vacua are the three and six generationE6 × U(1)2 × SO(8)2

models presented inSection 5.1. A careful counting, taking into account some symmet
among the coefficients, shows that this class of models consists of 220 models, or 221

if we include(b1|b2). These vacua are interesting because they can admit a geometri
interpretation.

From the orbifold description we learn that all breakings of the hidden and obser
gauge group are induced using Wilson lines. From the 4D point of view the internal g
group is broken in a similar fashion using Wilson lines. The twisted planes inEq. (3.36)
describe the removal of the free moduli using twists. When a group is broken using W
lines the field corresponding to this Wilson line obtains a non-zero VEV. The fixing o
moduli using twists can be interpreted as the removal of the quantum fluctuations
fields identified with the Wilson lines. These Wilson lines become discrete Wilson
and the VEV becomes a fixed value.

5.3. Classification

As we discussed above, the free GSO phases of theN = 1 partition function contro
the number of chiral generations in a given model. InSection 3we have given analytic
formulas that enable the calculation of the number of generations for any given se
phases. To gain an insight into the structure of this class of vacua we can proceed w
a computer evaluation of these formulas and thus classify the space of these vacua w
respect to the number of generations. This also allows a detailed examination
structure of these vacua and in particular how the generations are distributed amo
three orbifold planes. The main obstacle to this approach is the huge number of
under consideration. As a first step in this direction we restrict ourselves to the cl
liftable vacua that is physically appealing and contains representative models wi
right number of generations. As stated above this class consists in principle of 221 models
and their complete classification takes a few minutes on a personal computer using
appropriate computer program. The program analyses all different options for th

GSO coefficients. The different configurations are then used to calculate the number of
generations using formulae(4.13)–(4.19). For the analysis of the gauge group we use
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Table 5
Inequivalent realistic liftable models with aE6 × U(1)2 × SO(8) × SO(8) gauge group. The chiral content
each model is listed per plane and numbered, ‘+’ lists all the positive chiral states per plane while ‘−’ lists all
the negative states per plane. The total sum of all the planes is then listed and subsequently the net tota
of chiral states. The list is ordered by the total net number of chiral states

No. 1 2 3 Total Net

+ − + − + − + −
1 16 0 8 0 8 0 32 0 32
2 8 0 8 0 8 0 24 0 24
3 8 0 8 0 4 0 20 0 20
4 8 0 6 2 4 0 18 2 16
5 8 0 4 0 4 0 16 0 16
6 12 4 4 0 4 0 20 4 16
7 8 0 8 0 4 4 20 4 16
8 6 2 4 0 4 0 14 2 12
9 4 0 4 0 4 0 12 0 12

10 8 0 2 0 2 0 12 0 12
11 4 0 4 0 2 0 10 0 10
12 4 0 4 0 3 1 11 1 10
13 6 2 4 0 2 0 12 2 10
14 4 4 4 0 4 0 12 4 8
15 4 0 4 0 2 2 10 2 8
16 4 0 3 1 2 0 9 1 8
17 4 0 2 0 2 0 8 0 8
18 6 2 3 1 2 0 11 3 8
19 6 2 2 0 2 0 10 2 8
20 10 6 2 0 2 0 14 6 8
21 6 2 4 0 2 2 12 4 8
22 3 1 3 1 2 0 8 2 6
23 3 1 2 0 2 0 7 1 6
24 2 0 2 0 2 0 6 0 6
25 4 0 2 2 2 0 8 2 6
26 4 0 2 0 1 1 7 1 6
27 4 0 1 0 1 0 6 0 6
28 6 2 1 0 1 0 8 2 6
29 3 1 3 1 1 0 7 2 5
30 2 0 2 0 1 0 5 0 5

No. 1 2 3 Total Net

+ − + − + − + −
31 3 1 2 0 1 0 6 1 5
32 3 1 2 0 2 2 7 3 4
33 2 2 2 0 2 0 6 2 4
34 4 4 2 0 2 0 8 4 4
35 4 0 2 2 2 2 8 4 4
36 3 1 2 0 1 1 6 2 4
37 2 0 2 0 1 1 5 1 4
38 2 0 1 0 1 0 4 0 4
39 3 1 1 0 1 0 5 1 4
40 1 1 3 1 3 1 7 3 4
41 2 0 1 0 1 1 4 1 3
42 3 1 1 1 1 0 5 2 3
43 1 0 1 0 1 0 3 0 3
44 2 0 1 1 1 1 4 2 2
45 2 0 2 0 1 3 5 3 2
46 2 2 2 0 1 1 5 3 2
47 1 1 1 0 1 0 3 1 2
48 2 2 1 0 1 0 4 2 2
49 4 4 1 0 1 0 6 4 2
50 1 1 1 1 3 1 5 3 2
51 1 1 1 0 1 1 3 2 1
52 1 1 0 1 3 1 4 3 1
53 2 2 2 2 2 2 6 6 0
54 2 0 2 2 1 3 5 5 0
55 2 2 1 1 1 1 4 4 0
56 4 4 2 2 2 2 8 8 0
57 4 4 1 1 1 1 6 6 0
58 1 1 1 1 1 1 3 3 0
59 2 2 2 2 1 1 5 5 0
60 1 3 1 0 1 0 3 3 0
61 4 4 4 4 4 4 12 12 0

formulae(4.3)–(4.8). The results are presented inTables 5–7. In these tables we list th
number of generations coming from the twisted sectors. They are listed per plane. T
number of positive chiral generations is separated from the number of negative chir
generations on each plane. The total number is then listed before listing the total net num
of generations. As the sign of the chirality is determined by the coefficient(b1|b2) (see
(4.24)–(4.26)) we have included models that have a positive net number of generatio
order to maintain a complete separation of the hidden gauge group we have set(z1|z2) = 1.
The tables are ordered by the total net number of chiral states.
We find that there are no liftable models with aSO(10) observable gauge group, which
is always extended toE6, and the states from the vectorx are not projected out. Since
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Table 6
Inequivalent realistic liftable models with aE6 ×U(1)2 ×SO(16) gauge group. The chiral content of each mo
is listed per plane and numbered, ‘+’ lists all the positive chiral states per plane while ‘−’ lists all the negative
states per plane. The total sum of all the planes is thenlisted and subsequently the net total number of ch
states. The list is ordered by the total net number of chiral states

No. 1 2 3 Total Net

+ − + − + − + −
1 16 0 8 0 8 0 32 0 32
2 8 0 8 0 8 0 24 0 24
3 8 0 6 2 4 0 18 2 16
4 8 0 4 0 4 0 16 0 16
5 12 4 4 0 4 0 20 4 16
6 8 0 8 0 4 4 20 4 16
7 6 2 4 0 4 0 14 2 12
8 4 0 4 0 4 0 12 0 12
9 4 4 4 0 4 0 12 4 8

10 4 0 4 0 2 2 10 2 8
11 4 0 3 1 2 0 9 1 8
12 4 0 2 0 2 0 8 0 8
13 6 2 3 1 2 0 11 3 8
14 6 2 2 0 2 0 10 2 8
15 10 6 2 0 2 0 14 6 8
16 6 2 4 0 2 2 12 4 8
17 3 1 3 1 2 0 8 2 6
18 3 1 2 0 2 0 7 1 6
19 2 0 2 0 2 0 6 0 6
20 3 1 2 0 2 2 7 3 4
21 2 2 2 0 2 0 6 2 4
22 4 4 2 0 2 0 8 4 4
23 4 0 2 2 2 2 8 4 4
24 3 1 2 0 1 1 6 2 4
25 2 0 2 0 1 1 5 1 4
26 1 1 3 1 3 1 7 3 4
27 2 0 1 1 1 1 4 2 2
28 1 1 1 1 3 1 5 3 2
29 2 2 2 2 2 2 6 6 0
30 2 0 2 2 1 3 5 5 0
31 2 2 1 1 1 1 4 4 0
32 4 4 2 2 2 2 8 8 0
33 4 4 1 1 1 1 6 6 0
34 1 1 1 1 1 1 3 3 0
35 4 4 4 4 4 4 12 12 0

the models admit a geometrical interpretation, it means that they must descend fr
ten-dimensionalE8 × E8 heterotic-string onZ2 × Z2 Calabi–Yau threefold.

In 3% of all the models the hidden gauge group is enhanced toSO(8) × SO(8) →
SO(16). We find that in total 1024 liftable models are enhanced toSO(8) × SO(8) → E8.
We find that the 24 generations NAHE model as explained inSection 2is present inTable 5.

The problem of a detailed investigation of thefull class of vacua will be considered further
in a future publication.



l is
s
The

and

wisted
isted

dels
ay be
ctorial
e
the
op
odels
.
lly

bclass
ations
e from
s not
m one
l

ternal
A.E. Faraggi et al. / Nuclear Physics B 695 (2004) 41–72 67

Table 7
Inequivalent realistic liftable models with aE6 × U(1)2 × E8 gauge group. The chiral content of each mode
listed per plane and numbered, ‘+’ lists all the positive chiral states per plane while ‘−’ lists all the negative state
per plane. The total sum of all the planes is then listed andsubsequently the net total number of chiral states.
list is ordered by the total net number of chiral states

No. 1 2 3 Total Net

+ − + − + − + −
1 16 0 16 0 16 0 48 0 48
2 12 4 8 0 8 0 28 4 24
3 8 0 8 0 8 0 24 0 24
4 10 6 4 0 4 0 18 6 12
5 6 2 6 2 4 0 16 4 12
6 6 2 4 0 4 0 14 2 12
7 4 0 4 0 4 0 12 0 12
8 3 1 3 1 3 1 9 3 6
9 4 4 2 2 2 2 8 8 0

10 4 4 4 4 4 4 12 12 0
11 2 2 2 2 2 2 6 6 0

5.4. General properties

In Section 3we discussed a direct translation between the bosonic formulation
the fermionic formulation of the heterotic string compactifications.Z2 × Z2 orbifold
compactifications are relevant for our class of models. These orbifolds contain three t
sectors, or three twisted planes. A priori we may have the possibility that all three tw
planes produce spinorialSO(10) representations. We refer to this subclass of mo
as S3 models. The alternatives are models in which spinorial representations m
obtained from only two, one, or none, twisted planes, and the others produce ve
representations. We refer to these cases asS2V , SV 2 andV 3 models, respectively. Th
focus of the analysis in this paper is on theS3 subclass of models, which also contains
NAHE-based three generation models. TheS3 subclass allows, depending on the one-lo
GSO projection coefficients, the possibility of spinorials on each plane. In specific m
in this subclass each Standard Model family isobtained from a distinct orbifold plane
Such models therefore produce three generation models and may be phenomenologica
interesting. The only other phenomenologically viable option can come from the su
S2V models as this class of models may contain a model with for example 2 gener
coming from the first plane and 1 generation coming form the second plane and non
the third. TheSV 2 class of models cannot produce a physical model because it i
possible to reduce the number of families to 3 as they would have to be coming fro
plane and 3 cannot be written as a power of 2. Similarly theV 3 subclass of models wil
not contain phenomenologically interesting models.

5.4.1. 3 generations realized only with twisted and shifted real manifolds
Since the projectors are constructed using the complete separation of the in

manifold we see that three generation models are only possible when
(5.2)Γ6,6 = Γ 3
2,2 → Γ 6

1,1.
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TheseΓ1,1 internal parts do not describe a complex manifold. They describe int
real circles. If we use solely complex manifolds, of the typeΓ6,6 = Γ 3

2,2, and using only
symmetric shifts, we find that there are no 3 generation models. We therefore co
that the net number of generations can never be equal to three in the framework ofZ2 ×Z2
Calabi–Yau compactification. This implies the necessity of non-zero torsion in CYZ2×Z2
compactifications in order to obtain semi-realistic three generation models.

In the realistic free fermionic models the reduction of the number of families tog
with the breaking of the observableSO(10) is realized by isolating full multiplets at tw
fixed points on the internal manifold. In reducing the number of families down to
different component of each family are attachedto the two distinct fixed points. We remov
one full multiplet and simultaneously break theSO(10) symmetry. We therefore keep a fu
multiplet on each twisted plane. In theSO(10) models described here a whole 16 or16 of
SO(10) is attached to a fixed point. We aretherefore not able to break theSO(10), and
simultaneously preserve the full Standard Model multiplets. For this reason we fin
the observableSO(10) cannot be broken perturbatively in this class of three genera
models, and may only be broken non-perturbatively. It is therefore not possible to redu
both the number of families down to 3 and break the observable gauge groupSO(10) down
to its subgroups perturbatively.

We conclude that there is a method to reduce the number of generations from 4
Since we need 4 projectors we need to separate the hidden gauge group usingSO(8)

characters

(5.3)Γ0,8 → Γ0,4Γ0,4

and we need to break the internal complexmanifold to an internal real manifold

(5.4)Γ6,6 → [Γ1,1Γ1,1]3.
If we reduce the number of generations to 3 we cannot break theSO(10) observable group
to its subgroups, while maintaining a full multiplet. TheSO(10) observable gauge grou
cannot therefore be broken perturbatively. We can reduce the number of generation
48 to 6 using 3 projectors. This entails that we can choose either to separate the
gauge group usingSO(16) characters, or to leave the internal manifold complex.

We argued above that we cannot breakSO(10) down to a subgroup perturbative
while reducing the number of generations to 3. If we want to break theSO(10) symmetry
perturbatively, and keep a fullSO(10) multiplet from a given twisted plane, we can on
reduce the number of generations to 6. This can be achieved if we define three d
projectors like the ones defined inEqs. (4.13)–(4.15). We are therefore left with two
options.

• We can useSO(16) characters for the separation of the hidden gauge group. We
then constructed only one projector which leaves us no other option than to bre
complex structure using symmetric shifts

(5.5)Γ6,6 → Γ 6
1,1.
• We can useSO(8) characters for the separation of the hidden gauge group. In doing so
we have constructed two projectors. The third can be realized by the symmetric shifts



turba-
ctures
at
inders
some
ing the

f the
await
that at
erived
hould
rlying
vables.
ties of
en the

n its

cuum
nd

n
rvable
avor
gauge
he
Euler

their
nic
can be
uli
is still
nding

f the
A.E. Faraggi et al. / Nuclear Physics B 695 (2004) 41–72 69

that leave the complex structure of the internal manifold intact

(5.6)Γ6,6 → Γ 3
2,2.

6. Discussion and conclusions

String theory duly attracts wide interest. It provides a consistent approach to per
tive quantum gravity, while at the same time incorporating the gauge and matter stru
that are relevant for particle physics phenomenology. However, the multitude of vacua th
the theory admits and the lack of a dynamical principle to choose among them, h
the prospects that the theory will yield unique experimental predictions. This has led
authors to advocate the anthropic principle as a possible resolution for understand
contrived set of parameters that seem to govern our world.

The approach pursued in our work is different. In our view the understanding o
dynamical principles that underly quantum gravity and the vacuum selection must
the better conceptual understanding of the quantum gravity synthesis. It may well be
the end of the day the probabilistic nature of quantum mechanics will emerge as a d
property rather than a fundamental property of quantum gravity. In this respect we s
regard the string theories as merely providing a perturbative glimpse into the unde
properties of quantum gravity, and how it may relate to the gauge and matter obser
In this context we must utilize both the low energy data as well as the basic proper
string theory to isolate promising string vacua and develop the tools to discern betwe
experimental predictions of different classes. An example, is theSO(10) embedding of the
Standard Model spectrum, which is viable in the heterotic limit of M-theory, but not i
type I limit.

Given the Standard Model properties, we may hypothesize that the true string va
should accommodate two pivotal ingredients. One is the existence of three generations a
the second is their embedding in an underlyingSO(10) or E6 grand unified gauge group. I
this context, the replication of the matter generations is the first particle physics obse
whose origin may be sought in string theory. This follows from the fact that the fl
sector of the Standard Model does not arise from any physical principle, like the
principle, as well as from the fact that in certain classes of string compactifications t
number of generations is related to a topological number of compact manifolds, the
characteristic.

A class of string compactifications that admit three generations, as well as
embedding in an underlyingSO(10) group structure are the NAHE-based free fermio
models. A subset of the boundary condition basis vectors that span these models
seen to correspond toZ2 × Z2 orbifold compactifications at special points in the mod
space. However, the geometrical understanding of the full three generation models
lacking. The aim of the current work is therefore to advance the geometrical understa
of the NAHE-based free fermionic models. In this paper we showed that two o
boundary condition basis vectors beyond those that correspond to theZ2 × Z2 orbifold

correspond to symmetric shifts on the compact tori, whereas the third correspond to an
asymmetric shift. We then proceeded to classify all possible symmetric shifts on complex
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tori and demonstrated that three generation models do not arise in this manner. T
generation models that realize theZ2 × Z2 orbifold picture of the three chiral generatio
were found. In these cases theSO(10) gauge group cannot be broken perturbatively, w
preserving the full Standard Model matter content. Additionally in these cases the in
lattice is broken toΓ 6

1,1, i.e., to a product of six circles. In this class of models each of
chiral generations is attached to a single fixed point in each of the twisted orbifold plane
This should be contrasted with the case of the three generation free fermionic mo
which theSO(10) symmetry is broken perturbatively by Wilson lines. In those cases,
generation is obtained from a separate orbifold plane, but different components of ea
generation are attached to different fixed points of the corresponding twisted sector.

Additionally, we demonstrated in this paper that for a wide range of models, for w
a geometrical origin is understood, there exist an interpretation of the phases that ap
theN = 1 partition function, in terms of vacuum expectation values of background fi
of the N = 4 vacua. In these cases the dynamical components of the background
are projected out, but their vacuum expectation value is retained and takes the form of t
free GSO phases of theN = 1 partition function. These phases also control the chira
of the models. Thus, we have the situation in which the chirality of the models is al
determined by the VEVs of the background fields of theN = 4 vacuum. In effect, the chira
content of theN = 1 vacua in these cases is determined by the NarainN = 4 lattice. An
example of this phenomenon was already seen in the case ofZ2 × Z2 on SO(12) lattice
that yields 24 generations versus theZ2 × Z2 orbifold on SO(4)3 lattice that yields 48
generations. The interpretation of the chiral content of theN = 1 models in terms of the
N = 4 vacua will be especially instrumental when seeking the strong coupling duals
N = 1 models, due to the fact that theN = 4 duals can be obtained with relative ease. T
understanding of theN = 1 duals will then entail the understanding of the correspon
Z2 × Z2 operation on the dual side.

We discovered in this paper that the three generation free fermionic models nece
employ an asymmetric shift on the internal compactified space. This observation h
profound implications. In the first place, since the asymmetric shift can act on
enhanced symmetry points in the moduli space, it implies that some moduli are fixed
frozen. In fact in some cases it is seen that all the geometrical moduli are projecte
In those cases the geometrical moduli may be interchanged with twisted moduli
are much more difficult to identify, and hence their moduli spaces are more intrica
Additionally, the necessity of incorporating an asymmetric shift has important implica
in the context of non-perturbative dualities. In the case of the duals of the het
models, a geometric moduli is interchanged with the dilaton. Hence, the fact th
geometric moduli are fixed around their self-dual value on the heterotic side im
that on the dual side the dilaton has to be fixed around its self-dual point. This
fascinating possibility that we will return to in future work. However, we note that
low energy phenomenological data may point inthe direction of esoteric compactificatio
that would have otherwise been overlooked. The results show that, in the framew
Z2 × Z2 Calabi–Yau compactification, the net number of generation can never be eq
three. This implies the necessity of non-zero torsion in CY compactifications in ord

obtain semi-realistic three generation models. Additionally, the necessity to incorporate an
asymmetric shift in the reduction to three generations, has profound implications for the
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issues of moduli stabilization and vacuum selection. The reason being that it can on
be implemented at enhanced symmetry points in the moduli space. In this context w
envision that the self-dual point under T-duality plays a special role. In the context of no
perturbative dualities the dilaton and moduli are interchanged, with potentially importa
implications for the problem of dilaton stabilization. We will report on these aspec
future publications.
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