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Abstract 

Using free world-sheet fermions, we construct and classify all the N = 2, Z2 x Z2 four- 
dimensional orbifolds of the type IIA/B strings for which the orbifold projections act symmet- 
rically on the left- and right-movers. We study the deformations of these models out of the 
fermionic point, deriving the partition functions at a generic point in the moduli of the internal 
torus T 6 = T 2 x T 2 × T 2. We investigate some of their perturbative and non-perturbative dualities 
and construct new dual pairs of type IIA/type II asymmetric orbifolds, which are related non- 
perturbatively and allow us to gain insight into some of the non-perturbative properties of the 
type IIA/B strings in four dimensions. In particular, we consider some of the (non-)perturbative 
gravitational corrections. (~) 1999 Elsevier Science B.V. All rights reserved. 

PACS: 11.25.-w; 11.25.Mj; 11.30.Pb; 12.60.Jv 
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1. Introduct ion  

Dur ing  the recent  years, dual i ty has played a fundamenta l  role in the progress of  

string theory. However,  despite the huge amoun t  of  work done in this field, in most  o f  

the cases dual i ty has r emained  a conjecture,  based more  on field theory and supersym-  

met ry / supergrav i ty  considera t ions  than on tests made  directly at the string level [ 1]. 
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75231 Pads Cedex 05, France. 
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Actually, in order to perform string-loop computations, it is necessary to go to special 

points of the moduli space, in which it is possible to solve the two-dimensional confor- 

mal field theory. In this paper, we study a class of four-dimensional compactifications 
of type II strings, with two space-time supersymmetries, for which this is possible. Our 
main interest is in what we call Z2 × Z2 symmetric orbifolds, namely orbifold construc- 
tions in which the N = 8 supersymmetry is reduced to N = 2 by two Z2 projections 
that act symmetrically on the left- and right-movers. These orbifolds are of particular 
interest because they can be easily realized through a free fermion construction [2-5].  

In this framework, the various constraints and requirements of a consistent string theory 
construction are collected in a set of rules, which can be easily handled. In particular, 

we show that it is possible to write a general formula for the GSO projections, which 

allows us to give a complete classification of such orbifolds. 

All of these constructions can be seen as compactifications on singular limits of CY 
manifolds. For all the models, the scalar manifolds are coset spaces: 

SU(1, 1) SO(2,2+Nv)  SO(4,4+Ntt)  
- -  × , ( l . 1 )  

U(1) S0(2)  × S O ( 2 + N v )  and S0(4)  ×SO(4+NH) 

describing respectively the space of the Nv + 3 moduli in the vector multiplets and that 

of the NH + 4 in the hypermultiplets. For each pair (Nv, N~I) there always exists a 
construction for which Nv and NH are exchanged, corresponding to a compactification 

on the mirror manifold. Some of them, namely the models with Nv = NH = 16, 8, 0, cor- 
respond to compactifications on CY manifolds already investigated, although in slightly 

different contexts [6,7,9,10]. 
For each model, we write the (one-loop) partition function, which encodes all the 

information about its perturbative physics. We then establish the exact equivalence, for 
this class of orbifolds, of the fermionic construction and a geometric construction based 
on bosons compactified at special radii. In this way, we show that, once these orbifolds 

are constructed at the fermionic point, it is possible to switch on some moduli, namely 
the moduli T i, U i, i = 1,2, 3, which on type IIA are associated respectively with the 

K~ihler class moduli and the complex structure moduli of the three tori into which the 

compact space is factorized by the orbifold projections. The derivation of the partition 
functions, for any such construction, at a generic point in the space of these moduli, 

constitutes one of the main results of this paper. This allows us to investigate some 

deformations of the models. In particular, from the analysis of certain helicity super- 
traces [ 11-15], which distinguish between various BPS and non-BPS states, we read off 
the presence of perturbative Higgs and super-Higgs phenomena. The first account for the 

appearance of new massless states in particular corners of the moduli space, while the 
second, besides that, determine the restoration of a certain number of supersymmetries. 
Such properties play a key role in the search for dual constructions. In particular, it is 
possible to recognize which models correspond to compactifications on orbifold limits 
of K3 fibrations [16,17]. In these cases, the heterotic dual constructions can be easily 
identified [18,20]. In this paper, we focus our attention on the duality between type 
I IA/B and type II "asymmetric" constructions, in which all the supersymmetries come 
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from the left-movers only, the supersymmetries of the other chirality being projected 
out by (-)FR, the right fermion number operator. In these constructions, as in the het- 
erotic N = 2 compactifications, the dilaton-axion field belongs to a vector multiplet, 
and the type IIA/type II asymmetric dual pairs are related by a U-duality similar to the 
duality of the type IIA/heterotic strings (examples of such dual pairs were previously 
considered in [ 10,20] ). This implies that a perturbative computation performed on one 
side gives information on the non-perturbative physics of the dual. In this paper we 
present in detail the construction of such type II asymmetric duals. Then, as in [ 19,20], 
we consider R 2 corrections, which serve both as a test of duality and as the actual 
computation of a quantity that is non-perturbative in the type II asymmetric duals. 

The paper is organized as follows. In Section 2 we present the fermionic construction 
of the N = 2, type IIA/B Z2 × Z2 symmetric orbifolds and we discuss the analysis of the 
massless spectrum. The reader can find a short reminder of the rules of the fermionic 
construction in Appendix A, while more details on the massless spectrum are given in 
Appendix B. At the end of the section we explain our method of classification of such 
constructions, quoting in Appendix C the general formulae for the GSO projections. 

In Section 3 we derive the partition functions of the various models. We establish the 
equivalence of world-sheet fermions and bosons, thereby deriving the partition functions 
at a generic point in the toroidal moduli T i, U i. The classification of the partition 
functions is given in Appendix D. 

In Section 4 we compute the helicity supertraces and interpret the various orbifold 
operations in terms of stringy Higgs and super-Higgs phenomena. 

In Section 5 we discuss the mirror symmetry, in the context of these symmetric 
orbifolds, and the non-perturbative dualities relating some of these models to heterotic 
duals and/or to type II asymmetric constructions. The type IIA/type II asymmetric 
dual pairs are discussed in detail in Sections 5.2 and 5.3, where we quote also the 
partition function for the type II asymmetric orbifolds. We discuss the corrections to 
the R 2 term. The dual pairs are then compared in Section 5.4. A detailed discussion of 
shifted lattice sums and their integrals over the fundamental domain is in Appendix E, 
while in Appendix F we discuss the computation of helicity supertraces for the type II 
asymmetric orbifolds. 

Our comments and conclusions are given in Section 6. 

2. Type II N = 2 symmetric orbifolds in the fermionic construction 

The use of free world-sheet fermions turns out to be convenient for the analysis of 
the massless spectrum and the general classification of the Z× × Z2 type II symmetric 
orbifolds. In order to construct them, we start from the N = 8 type II string, which 
is described, in the light-cone gauge, by eight world-sheet left/right-moving bosonic 
and fermionic coordinates, X/L'R and ~,/L,R (i = 1 . . . . .  8). In our notation, the coordi- 

L,R nates tp~ 'R and X~ (/x = 1,2) represent the space-time transverse degrees of freedom, 
whereas the remaining ones correspond to the internal degrees of freedom. The N = 8 
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string has therefore four space-time supersymmetries originating from the left-moving 

sector and four from the right-moving sector. We then introduce Z2 projections, which act 
symmetrically on left/right-moving coordinates, reducing the number of supersymme- 
tries to N = 2, one coming from the left- and one from the right-movers. In the fermionic 
construction [2-4] ,  the Xf 'e, (i = 3 . . . . .  8) are replaced by the pairs of Majorana-Weyl 
spinors O31L'R and YlL'R . . . . .  ( I  = 1 ,6) .  To follow the standard notation of the fermionic 

construction [5], we rename the internal components of the fields O/L,R as X~ 'R. The 
construction of string models then amounts to a choice of boundary conditions for the 
fermions, which satisfies local and global consistency requirements. A model is defined 
by a basis of sets a i ( i  = 1 . . . . .  n) of fermions and by a modular-invariant choice 
of n ( n -  1 ) / 2 +  1 phases (modular coefficients) C(,~,I~j ), which determine the GSO 
projections (we refer the reader to Appendix A for more details). In this language, the 
N = 8 model is constructed by introducing three basis sets, namely F, which contains 
all the left- and right-moving fermions: 

~O~, XI ,  Yf, o3//̀  
F =  --R R R R ' ( /~=1 ,2 ;  1= 1 . . . . .  6), (2.1) 

qJ U, X t  , Yt , o3t 

and the sets S and S, which contain only eight left- or right-moving fermions, and distin- 
guish the boundary conditions of the left- and right-moving world-sheet superpartners: 

S= { *~ ,  X~ . . . . .  X~} ,  S= { *R,xR . . . . .  X~} .  (2.2) 

In order to obtain a Z2 × Z2 symmetric orbifold, we add to the basis the two sets bl 

bI={~L'xIL'2'y3L'"'6 I ~ p R ,  X1,2,R yR3,...,6 ' (2.3) 

3,4' Yl,2 5,6 (2.4) 
R • 

.)(3,4, Yl,2, Y5,6 

These sets assign Z2 boundary conditions, thereby introducing new projections, which 
break the N = 8 supersymmetry. 

The definition of the model is completed by the choice of the modular coefficients 
shown in Table 1, which fix the GSO projections and determine the chirality of the 
spinors. This choice corresponds to a type IIA compactification. 2 Six of the eight 
gravitinos are projected out and we are left with only two supersymmetries, whose 
generators can be read off from the - 1 / 2  picture vertex operator representation of the 
surviving gravitinos, given in (B.2). 

It is easy to check that the massless spectrum fits into representations of the N = 2 
supersymmetry. This is done by constructing the vertex operator representation of the 

2 The type IIA+--*B exchange is realized by changing the chirality of, say, the right-moving spinors. In 
Appendix B we explain how this is implemented in the fermionic construction. 

and b2: 
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Table 1 
The coefficient C(,~il,~j) is given by the ( i , j )  entry of the matrix 

F S S bl b2 

F 1 - 1  - 1  1 1 
S - 1  1 1 - 1  - 1  

- 1  1 1 - 1  - 1  
bl 1 1 1 1 1 
b2 1 1 1 1 1 

states, which we quote in Appendix B. The N = 2 spectrum is in fact characterized by 
the SU(2) symmetry under which the two supercharges form a doublet. In Appendix B 

we discuss in detail the construction of the generators of this SU(2) symmetry. By 
looking at the SU(2) charge of the scalars, we identify the ones belonging to the vector 

multiplets and the ones belonging to the hypermultiplets: the scalars of a hypermultiplet 
do transform under the SU(2) symmetry of N = 2 [21]. In particular, it is easy to see 

that the pair dilaton-pseudoscalar is charged and therefore belongs to a hypermultiplet. 
Furthermore, it is also easy to see that all the scalars belonging to hypermultiplets are 

charged also under a second SU(2).  This allows us to conclude that the quaternionic 

manifold has an SO(4) symmetry, and is given by the coset 

SO(4, 4 + NH) (2.5) 
SO(4) × S0(4 + NH) ' 

where NH is the number of hypermultiplets that originate from the twisted sectors (in 

this case, these are the sectors bl, b2 and FSSbl b2, which, for the choice of projections 
specified in Table 1, provide the scalars of NH = 12 hypermultiplets. 3 A similar analysis, 

on the scalars uncharged under the SU(2) of the N = 2 supersymmetry, allows us to 

conclude that the scalars belonging to vector multiplets span the coset 

SU(1, 1) S O ( 2 , 2 + N v )  
- -  × ( 2 . 6 )  

U ( I )  SO(2) × S0(2 + Nv) '  

with Nv = 12 in this particular case. 
We can construct other Z2 × Z2 symmetric orbifolds, with a higher or lower number 

of massless states originating from the twisted sectors, by varying the sets bl and b2 

and/or adding more sets to the basis. However, it is easy to see that, once required that 
the breaking of the N = 8 supersymmetry to N = 2 be symmetric in the left- and right- 

movers, the untwisted sector is automatically fixed to be the same as for the orbifold 
considered above. By constructing then, for this class of orbifolds, the vertex operator 
representation of the massless states of the twisted sectors, it is easy to check that there 
is always an SO(4) = SU(2) × SU(2) symmetry common to all the scalars of the 
hypermultiplets. On the other hand, the complex scalars of the vector multiplets possess 

3 The scalars of the SS (Ramond-Ramond)  sector are charged also under two other SU(2) ' s .  They therefore 
have an SO(4)  × SO(4) symmetry. The four SU(2) ' s  are the remnant of the SU(8) symmetry of the massless 
spectrum of the N = 8 theory, which is broken to SU(2)  n by the orbifold projections. 
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the SO(2) ~ U ( I )  symmetry of complex conjugation, as the scalars of (2.6). As a 

consequence, the scalar manifolds are uniquely specified by the numbers NH and Nv of 

hyper and vector multiplets provided by the twisted sectors, and are always expressed 

by (2.5) and (2.6). 
In order to give an exhaustive classification of such orbifolds, we notice that, instead 

of varying the sets bl, b2, we can equivalently keep them fixed and add to the fermion 

basis the sets el, 

ei = {y~,wiL l YiR, wi R} ( i =  1 . . . . .  5), (2.7) 

which factorize the six circles of the compact space (e6 is generated by the product FSS 
el e2 e3 e4 e5) by introducing independent Z2 boundary conditions for all of them. 

With such a basis, we can construct any Z2 × Z2 orbifold, provided we properly choose 
the modular coefficients. In fact, with these fermion sets, we can construct 48 massless 
twisted sectors, 4 that is as many twisted sectors as the maximal number of fixed points 

a Z2 x Z2 symmetric orbifold can have. Each such fixed point gives rise either to a 
vector- or to a hypermultiplet. Any specific choice of the modular coefficients amounts 

to a choice of GSO projections, which act by excluding some sectors and determining 
whether the states of the remaining sectors fit into vector- or hypermultiplets. 

We therefore proceed by expressing Nv and Nu, for each twisted sector, as functions 

of the modular coefficients (we quote the general formula of the GSO projections on 
the 48 twisted sectors in Appendix C). Then we fix the coefficients that determine the 

GSO projections onto the untwisted sector (RR sector included), because they amount 
to an arbitrary choice of the chirality of the spinors; we then vary all the other GSO 

projections, by allowing a change in the coefficients C<b, le~, C~b, le2), C(bzle3), C(bzle4), 

C(elle2), C(e~le3), C(elle4), C(elles), C(e2le3), C(e2le4), C(e2les), C(e3le4), C(e3les), C(e41es), 
C(bllFe3e4), C(b21Fe~e2) and C(bjbzle5 ). In this way we obtain all the possible (Nv, Nn) 
pairs. The coefficient C<b~lb2) determines, instead, the general projection onto the chirality 

of the bispinors of the twisted sectors. Under a change of sign of this coefficient, Nv 
and NH get exchanged. As a consequence, each pair (Nv, Nr4) appears accompanied by 

its mirror (NH, Nv). We list the pairs (Nv, Nu) in Table D.1. Indeed, what we obtain 

is much more than a simple classification of the possible massless spectra: having 
performed such an analysis on the single twisted sectors, we actually obtain a complete 

classification of the possible orbifold projections, something that, as we will see in the 
following, allows us to reconstruct the one-loop partition function of each orbifold, even 
away from the fermionic point. 

3. The partition functions 

In the type II Z2 × Z2 symmetric constructions, the degrees of freedom of the compact 
space can be equivalently described by compactified bosons. The conditions of existence 

4 They are quoted in Appendix C. 
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of the two world-sheet supercurrents (A.1) allow in fact different Z2 boundary condi- 
tions to be assigned not to single fermions but only to sets of bilinears of fermions. 
The symmetry between left- and right-movers implies that such bilinears must always 
appear paired in such a way as to form compact bosons. Indeed, we want to show in 
the following that all the above models can be constructed as orbifolds by using the 
symmetries of the conformal theory of six bosons compactified on a torus T 6 at the 
point of moduli for which it is described by a product of circles T 6 = S 1 X . . , X S 1. 5 
In this approach, the dependence on the geometrical moduli of T 6 is explicit. 6 In order 
to see what is the partition function at a generic point in T 6, we use identities satisfied 
by the modular forms and recast the partition function of free fermions as a sum over 
lattice momenta and windings, as in the case of a single boson. By substituting generic 
values of moduli in the lattice sums, we then get the partition function of the model at 
any value in the orbifold moduli space. 

The partition function, at the fermionic point (see Appendix A), is given by the 
integral over the modular parameter r, with modular-invariant measure ( Im r ) - 2 d r  de, 
of 

zson  ' Imr l r / ( r )  [ 4 4 Z Z C[~/'ei'Hj]'TF'TFz 
(H1,G1,H2,G2) (y,ei,&di) [a, di, G j] "'L /"R 6,6, ( 3 . 1 )  

L,R L,n (the sets S and where ZFL,n contain the contribution of the world-sheet fields ~ , Xa 
$); Z6,6 encodes the contribution of the c = (6, 6) internal space, i.e. of the fields ~o L'g, 
yL,n (the fields of the sets F =- FS$, el, i = 1,. ,5 and their products) and C [~,e,,hj] 

" " k S , d i , g j  J 

is a modular covariant phase (discrete torsion). We have 

with 

zF_~ 21 ~ e iTr~°L(a'b'H'G)T] 4 1 9 I ; l ~ q [ ; - / -  n l l / ~ [ a A f - n 2  ] o I ; - n l  -n21 , ( 3 . 2 )  

(a,b) + G1 L b + G2J G1 G2 

z2 V" o ~ 0 , (3.3) ,7 b+G, [b+G  b - o ,  
(a,b) 

1 ( I - C ( s l s ) ) a b +  1(1--C(slS~bl) ) (aG1 + b i l l )  q~L (a,b,H, G) =a + b + 

(1 - C(SrS~b2) ) (aG2 + bH2) (3.4) +½ 

and an analogous expression for ~OR (& b, H, G), obtained from ~OL through the substi- 
tutions (a, b) ---, (~, b) and S ~ S. The contribution of the compact bosons is 

5 In some cases, the factorization T 6 = T 2 × T 2 × T 2 is sufficient. 
6 In the fermionic construction the moduli dependence was not manifest, because compactified bosons can 

be fermionized only for some particular values of  moduli. For instance, in the case of a single boson, the 
fermionic partition function corresponds to the bosonic one when the radius of compactification R is 1. The 
fermionic construction must, however, be considered as describing a model at a particular point in moduli 
space. 
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]r/] 41 [ ~ + e l ]  I y + e l + H 2 ] o [ y + e 2 ]  [ ' y + e 2 + H 2 ]  
' +d l  6 + d l + G 2 ]  [fi+d2 S + d z + G z ]  

1 ,0[y + e3] O [y + e3 q- H1] O [y + e4] O [y + e4 q- Hi 1 
× ~  16+d3J [6+d3+G11 L~+d4J 16+d4+G1 

E I I ][:1 1 0 y+e5  0 y + e s + H l + H 2  0 . (3.5) 
x ~ - ~  f i+d5  8 + d s + G l + G 2  [ 8 + G 1  +G2 

In this notation, the pairs (a ,b )  and (~,b) specify the boundary conditions, in the 
directions 1 and r of the world-sheet toms, of the sets S and S, while (3/, 6), (ei, di) 
refer respectively to the sets F and ei; (H1,G1) and (H2,G2) refer to the sets bl, 
b2. When a field belongs to the intersection of many sets, its boundary conditions are 
specified by the sum of the boundary conditions of the sets it belongs to. The modular 
coefficients appear in the phases ~pL, ~oR in Z~R and in 

I y'ei 'hj] =exp i e r 6 , d i , g j . ]  C ~)-~(1--C(xklx~))akfle,  (3.6) 
k,g 

where 

Xk, Xe E {F, bl,b2,ei} (3.7) 

and (cek,/3~) indicate the corresponding boundary conditions in the two directions of 
the world-sheet torus. For the specific choice of Table 1 (type IIA), we have 

~oL = a + b + ab, (3.8) 

~PR = ~ + b + ~b. (3.9) 

For the type IIB choice specified in Appendix B.2, ~PR is, instead, 

~PR = ~ + b. (3.10) 

The partition function is the sum of five terms: 
(1) the N = 8 sector, specified by (HI,GI) = (H2, Gz) = (0 ,0) ;  
(2) the N =4  sector specified by (H1,G1) 4: (0 ,0) ,  (H2,Gz) = (0 ,0) ;  
(3) the N = 4  sector with (Hz, G2) 4: (0 ,0) ,  (Hi,Gl) = (0 ,0) ;  
(4) the N = 4  sector with (H1,GI)  = (H2, G2) 4: (0 ,0 )  and (Hi +H2, GI +G2) = 

(0,0); 
(5) the N = 2 sector, which contains all the terms for which (H1,G1) 4: (0 ,0) ,  

(H2, G2) 4: (0 ,0) ,  (H1 + H2, G1 +G2) 4: (0 ,0) .  
The N = 8 sector is universal: it is the same for any orbifold, since it is proportional 
to the unprojected partition function of the N = 8 string. In the N = 2 = (1,1)  sector 
all the bosons of the compact space are twisted and/or projected: this implies that the 
part of the partition function that corresponds to this sector is the same at any point in 
the moduli space of the orbifold. The only non-trivial moduli dependence is contained 
in the N = 4 sectors: in the following, we will therefore concentrate on these. 
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In each N = 4 sector the moduli dependence is contained in the untwisted c = (2, 2) 

conformal block. The latter corresponds to the complex planes (1,2) (for the first N = 4 

sector), (3,4) in the second sector and (5,6) in the third sector. We want to rewrite 

such blocks in terms of  sums over lattice windings and momenta. To this purpose, we 

make use of  the identity 

[hi, h 2 1 ( T ( w ) , U ( w ) )  /'2w'2 [.gl, g2 

= ~ ei~r(a'g'+b'h'+h~g')e i~r(a2g2+b2h:+h2g2) "tglb:] ' tg[~:]  2 , (3 .11)  

al ,bl ,as ,b2 

which generalizes the equivalence of  the partition functions of  two Weyl-Majorana 

fermions and one boson at radius 1 to the case of  two bosons toroidally compactified, 

with generic lattice shifts (h l ,hz ,g l ,g2)  in the momenta and windings in the two 

circles. Here w -- (wl,  we) stays for a pair of  lattice vectors wl, w2, which specify 

the directions of  the shifts (see Appendix E).  We do not need to specify the particular 

value, which depends on the shift vectors, of  the toroidal K~ihler and complex structure 

moduli T and U for which the equivalence (3.11) is valid. This, however, can be easily 

computed, and we refer to Appendix E for this detail. In our case, the pairs (a l ,  bl ), 

(a2, b2) are substituted by (y  + el, 6 + d l ) ,  (3 / + e2, 6 + d2) in the first N = 4 sector, 

( y + e3, 6 + d3 ) , ( y + e4, ~ + d4 ) in the second, and ( y + es, ~ + ds ) , ( y + e6, 6 + d6 ) 
in the third. 

The shifts (h l , g l ) ,  (h2,g2), for any specific case, are read-off from (3.1) and (3.6). 
Owing to the fact that in a twisted/shifted lattice character F Fhlh'] when (h ,g)  -~ Lg]g'J' 
(0 ,0 )  the twist (h ,g)  imposes a constraint on the shift (h~,g I) ( (h ' ,g ' )  = (0 ,0 )  or 

(h l ,g  ~) = (h ,g ) ) ,  it turns out that in the N = 4 sectors all the shifts can be expressed 

in terms of  the two Z2 supersymmetry-breaking projections introduced by the sets bl 

and b2 ( these  may or may not act freely, by translating some of  the coordinates of  the 

compact space), and in terms of  the projections associated to the symmetries of  each 

c = (1, 1), S 1/Z2 orbifold, generated by the two elements [22] 

D : (o'+, Oe--, Vnm ) ----+ (o '_,  or+, ( - )mVnm),  (3.12) 

/3 : (o'+, ~r_, V,,,) ~ ( - o ' + ,  o-_, ( - ) " V , , , ) .  (3.13) 

Here o-+, o-_ are the two twist fields of  S 1/Zz, and Vnm are the untwisted vacua labelled 
by the momentum m and the winding number n. The orbifolds we are considering 

indeed possess such symmetries. In fact, the presence, in the fermionic basis, of  the sets 

el, i = 1 . . . . .  5 corresponds to a choice of  coordinates for which the compact space is 
described by a product of  circles: T 6 = S 1 × . . .  × S 1. Any one of  the Z2 (bi) projections 

(i = 1 ,2 ,3  = 1 + 2), then creates a c = (4 ,4 )  twisted block that corresponds to an 
orbifold (s l )  4 /%2 (bi). (The construction with complex planes corresponds instead to 
the separation IT 2 × T 2] /Z2  (bi).  At this point in the moduli space, it is possible to 
remove some of  the fixed points, by using such symmetries. To simplify the discussion, 
we will consider in the following only the first generator, D (the action o f / 3  can be 
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obtained by T-duality). Modding out by the group generated by D amounts to cutting 

half of the states in the twisted sector and to a modification of the lattice of momenta 

and windings: the momenta are restricted to even values and the windings are shifted 
to half-integer values. In order to realize this projection, we must pair the D-projection 
on the twisted c = (4, 4) block with a translation in one direction of the untwisted 
c = (2, 2) block. From (3.12), we see that this translation can itself be considered as 

a D-projection. The operation therefore amounts to the insertion of a D-projection into 
two circles belonging to two different complex planes. There are then always two N = 4 

sectors for which the pair of D-operations acts by reducing the number of fixed points. 
In order to account for the various possibilities, we extend the definition of twisted/ 

shifted c -- (2, 2) conformal blocks to account also for the D-operations. We therefore 

define 

F(i) [G I hi, h 2 ; H  1, H 2] 
2,2 I g l ,  g2; GI ,  G2 ' i =  1,2,3,  (3.14) 

where the index i indicates the planes (1,2), (3,4) and (5,6) respectively. The pair 

(H, G) specifies the ordinary twist, the pairs (hi,  gl) ,  (h2, g2) specify the lattice shifts 
in the two circles of T 2, while the pairs ( H  l, G 1), ( H  2, G 2) refer to the D-operations. 

When (H,G) -~ (0 ,0 ) ,  the block is non-zero only if ( H l , G l ) ,  (H2 ,G 2) equal (0 ,0)  

or (H, G). In this case, also the shifts (h l , g l ) ,  (h2, g2) are constrained in the same 

way: (hi ,  gl) ,  (h2,g2) = (0 ,0)  or (H, G) and we set, by definition, 

[ h i ,  h2; H 1, 4 [/716 
_-- (3.15) 

' I+H I--H ' / '22 I gl, g2; G ' ,  G 2 (r/.G)*(0,0) O[,+G]O[,_6 ] 

(hi,gi), ( H J , G  j )  = ( 0 , 0 )  or = ( H , G ) .  

When (H, G) = (0, 0), the D-action amounts to a shift, which adds to the shifts (hi,  gl ), 
(h2,g2). In this case, (3.14) is a doubly shifted lattice sum; the lattice shifts in the two 
circles are specified by (hi + Hl,gl  + G 1) and (h2 + HZ,g2 ÷ G2): 

I hj, h2; H l, 
F2,2 I gl, g2; G l, G 2 =F2 '2[gI÷G~,g2+G2J  " 

(3.16) 

There is, however, a subtlety: the pair of D-operations was defined as a projection, 

which mods out states by using a symmetry of the twisted sector. It makes sense only 

when the Z2 (b) projections do not act freely. The recipe is that one first projects with 

at least one Z2 (b),  to reduce supersymmetry to N = 4 or N = 2, then the D-projection 

can be inserted in the Z2 (b)-twisted sectors and related to a shift in the untwisted 
coordinates. If the Z2 (b) acts freely, i.e. has no fixed points, such an operation cannot 
be performed. This means that the D-operation is not independent of the shifts (hi ,  gi) ,  

i = 1,2, which in turn depend on the two projections introduced by bl and b2. We 
can however extend the definition of the D-projection to include also the case of freely 
acting orbifolds, by specifying that, in the absence of fixed points, it acts simply as a 
shift, i.e. as the natural restriction of (3.12), with the constraint that it must always act 
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in a direction independent of that of (h, g) = {(hi,  gl ), (h2, g2)}- Its interference with 
the shift (h,g) then produces the following shifted lattice sum: 

'rw, r,-,1 ! rw2 _._ 7 2.2 LcJ + 2 2,2 LcJ ' (w,  = (w2) 2 w, .w2 = o .  (3 .17)  

Once this is pointed out, we can unambiguously express, in full generality, the c = (6, 6) 
conformal block Z r'v of the orbifold partition function at a generic point in the space of 6,6 
the K/ihler and the complex structure moduli, T -- (T 1 , T 2, T 3) and U =- (U 1 , U 2, U3), 

as a product of the above defined twisted/shifted characters: 

Z/',v 6,6 = ~ 6,6 [Gl,  G2 [g; 

where 

[Hi' H2 i h; HJ-F(1)[ H2 ' h(l); Hi' H2] [ ] 
/"6,6 G1, G21 g; - 2,2 G2i g(l); Gi, G2 X /"(2) H1 I h~2~; n 3, H 4 2,2 G l l  g~2>; G3, G4 

x / " (3 ) [Hi+H2 [ h(3); Hs, H6] 
2.2 G1 + 621 g(3); G5, G6 " (3.19) 

In the above expression, the shifts (h,  g) depend on the projections Z2 (bi), and can al- 
ways be expressed in terms of the twists (H1, GI ), (//2, G2), while H - (H  l . . . . .  H6), 
G = (G 1 . . . . .  G 6) refer to the D-projections. At a generic point in the moduli space, 

the partition function (3.1) becomes 

zstring(T'U)- im.rir/(.r) 14 4 Z 
(HI ,GI ,H2,G2 ) 

rill, H2, H i, H j] zFzFzT,U 
X Z C [ G I ,  G2, G i, G j L R 6,6 " (3.20) 

(H,G) 

Z~, R are defined as in (3.2), (3.3); nD indicates the number of D-projections. Notice 
that even though nD can be greater than 2, in each N = 4 sector the maximal number of 
projections that effectively act is 2, because there are only two independent directions in 
which it is possible to pick a modular-invariant shift (see Appendix C of [ 13] ). Further 

projections superpose and their effect vanish. What remains of the coefficient C [~:~i:~] 
of expression (3.1) is 

//2, H i , HJ c[H"  e~(l-C'b'ib2~)~H'c2+N~a~)~-~C?Lc, i, GJ ' (3.21) 
L G1, G2, G i, GJ ij 

where Cij can be either ÷1 or ( - )  H'Ca+t4,G'; (H i, Gi), (H./' Gj ) refer to the D-operations 
in the circles i, j .  These coefficients are always + 1 in the N = 4 sectors; however they 
can play a role in the N = 2 sector. 

As is clear from the definition of twisted/shifted lattice given in (3.14) and its 
properties, an N = 4 sector can provide 16, 8, 4 or 0 supermultiplets, depending on 
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the shift (h,  g) and on the D-projections. Thanks to the interpretation of the different 

choices of modular coefficients in terms of such operations, we understand why it is not 

possible to obtain models with any number Nv + Nt4 of supermultiplets between 48 and 
0, modulo 4 (with the obvious exception of 44, which would require one N = 4 sector 
with twelve supermultiplets). We saw that, in order to effectively reduce the number of 
states, the D-operation must always be inserted in at least two circles belonging to two 

different complex planes, which implies that there are always at least two N = 4 sectors 

in which eight supermultiplets become massive. As a consequence, the maximal number 

Nv + Nu of supermultiplets originating from the twisted sectors, below the 48, which 

is reached only when all the shifts h,g and the D-projections are turned off (all the 
modular coefficients are +1) ,  is 32, and is obtained when no = 1 and the D-projection 

involves only two different complex planes. This explains why, in the classification of 

Table D.I,  there are no models with Nv ÷ NH between 48 and 32. For an analogous 

reason, also Nv + NH = 28 is forbidden: this would require one more D-projection, 

reducing further the number of states in only one N = 4 sector, but it is easy to realize 

that in order to reduce the number of supermultiplets to four, the two D-projections 
must be inserted in at least four different circles, two per projection. There are therefore 

always at least two N = 4 sectors with 4 supermultiplets, so that, below 32, the maximal 
number of supermultiplets is 24. Below this, all the numbers modulo 4 are allowed: it 

is possible to construct models with Nv + NH = 20, 16, 12, 8, 4, 0. One can check that 

these are precisely the numbers that appear in the list of Table D.1. In Section 4.2 we 

will also see how the operations described above can be interpreted in terms of stringy 

(super-)Higgs mechanisms. 

4. Helicity supertraces and (super-)Higgs phenomena 

When specified for a certain model, formula (3.20) encodes, in principle, all the 

perturbative information about it. It can be used to investigate the BPS spectrum and 

to compute one-loop threshold corrections. In each model, all the non-trivial moduli 

dependence is contained in the three N = 4 sectors, so that essentially the classification 
of Z2 x Z2 symmetric orbifolds amounts to assigning the three N = 4 sectors for each one 

of the massless spectra appearing in Table D. 1. According to the analysis of Section 3, 
F'(i) for each one of the this is equivalent to specifying the form of the lattice sum, -2,2, 

three untwisted tori. The set (Nv, NH, F~,2, F 2 F232) then fixes unambiguously the 2 , 2 '  , 

entire partition function. Actually, as far as we are interested only in the N = 4 sectors, 
the notation (3.14) is highly redundant, because the shifts and the D-projections are 
constrained, in each (H, G)-twisted sector, to be either (0, 0) or equal to (H, G). It is 
therefore sufficient to specify the direction and the nature of the translations through 
a pair of lattice vectors, wl and w2 (see Appendix E). We can then account for the 
various situations by introducing the following notation for the (H, G)-shifted lattice 
sums: 
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O=F2,2  [~] , (4.1) 

F - F2, 2 , 

F D  = ~ 2,2 -]- 2/ '2,2 ' (4.3) 

D = ~F2,2 + ~ 2,2 , (4.4) 

D D  = ~/"2,2 ÷ 4 2,2 ÷ ~ 2,2 + ~ 2,2 • (4.5) 

The shift vectors satisfy: 

(wl )  2 = (w2) 2 = wl .w2 = 0 (4.6) 

and we indicated by/ '2 ,2  [o] the ordinary unshifted lattice sum. The result of  our analysis, 

which accounts for all the possible "partition functions", is quoted in Appendix C. 

4.1. Hel ic i ty  super traces  

We are interested in the second and fourth helicity supertraces, B2 and B4, through 
which we control the behaviour of  a model under a motion in moduli space. The helicity 
supertraces are defined, for a given representation R of supersymmetry, as 

B2n (R)  = Str A 2" = TrR [ ( -- ) 2aA2n ], (4.7) 

where ,~ stands for the physical four-dimensional helicity. In the framework of string 

theory, ,t = ,tL + ,tR, where ,tL,R are the contributions to the helicity from the left- and 
right-movers. The quantities Bzn are computed by taking appropriate derivatives of  the 

generating function 

Z string ( u, u)  = Tr 'q  Lo- ~ 0 L°-  ~4 e2~i(vaL - ; a ,  ) , (4.8) 

by defining 

1 O 1 0 
IlL = Q - 2 ~ i  Or' ,tR = Q - 2¢ri 0~ '  (4.9) 

We then have 

Bstring 2. = ( Q  + O-)2nZsmng(v, g:)I(v=O=0). (4.10) 

An explicit expression for zstring(u, u) ,  in the case of  7~ 2 X •2 symmetric orbifolds, is 

given by an expression that is similar to the v = ~ = 0 case presented in (3.20): 
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zstring (o ,  ~) - 
Im rlr/(r)12 

1 

(HI ,GI ,H2,G2 ) (H,G) 

(4.11) 

where 

oo ( 1 -  qn)2 _ sinTrv O,l (0) 

( ( v )  = H ( 1 - q " e  £'r7~ Y(i~-~qne--2~iv) T OI(U ~ 
n=l 

(4.12) 

is an even function of v ( ( ( v )  = ( ( - v ) )  that counts the helicity contributions of  the 
space-time bosonic oscillators and ZF(v), zF(~) are the contributions of  the world- 

sheet fields ~£ ,  X~, ~P~, X~, (3.2) and (3.3),  modified by a change in the argument of  

the theta functions: 

1 z((~,)-- ~ 
(a,b) 

1 

(a,b) 

T .t9 (u) 0 + G l J  [ b + G 2  [b-G1 G2 

~,~ [~] [;~+ ]oro+,-,~ [~-,,,-,, 1 - Hi  0 , ( 4 . 1 4 )  
0 (~)O +G, Lb+G2J -G1 G2 

In order to compute the quantities B2n, we observe that, by using the Riemann identity, 

these two terms can be cast in the form 

'0 " ,~t] (2)~[',-'-" ,;"2 2] (2) 
-- '~ '-'~ ~":] (2) 

(4.15) 

Then, to evaluate the various derivative terms, we use the properties that o[ll] and its 

even derivatives with respect to v are odd under v ~ - v  and vanish at v = 0. 
Taking this into account, it is easy to see that the only non-zero contribution to the 

second helicity supertrace, B2, 

B2 = ( Q + 0 )  2 Z~"g(v,O)l,,=~--o, (4.16) 

comes from the N = 2 sector. This is easily computed to be a constant: 

B 2 -  21~71, 2 Re ~ S C [ G,, G2, G i, GJ 6,6 
HI ,Gt ,H2,G2 H,G 

= 8 3-'.___. ~ _ ~  c = N v -  N . ,  
Ht ,G~ ,H2 ,G2 H,G 

(4.17) 

in agreement  with the supergravity computation, for which the gravity multiplet, as well 
as a vector multiplet, contribute + 1, while a hypermultiplet and a hypertensor muttiplet 
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(the multiplet that contains the dilaton) contribute - 1 .  In this way the contribution 

of  the untwisted sector cancels, leaving precisely the difference between the number 

of  vector and hypermultiplets coming from the twisted sectors. The result (4.17) also 

shows that, for the symmetric constructions we are considering, the contribution of  the 

massive short multiplets sums up to zero. 7 

It is also easy to see that B4, which counts the number of  short multiplets, 

B4 = (Q + 0 )  4 zstring(u, 0)1,,=~=0 , (4.18) 

receives contributions from both the N = 2 and the N = 4 sectors. The contribution of  

the N = 2 sector is due to the term 4(Q3Q + Q 0 3 )  ZStfing(u, u)IL,=/7=0 in the expansion 

of  (4.18),  and in the models we are considering it turns out to be equal to B2, while 

the contribution of  the N = 4 sectors is due to the term 6Q20 z Zs~ng(v, o)Iv=~--o- The 

contribution of  each N = 4 sector is easily computed: 

B(4i)= 6,r/I 4 ~ ~ '  Zz(,~ ( X ) [ G ] '  (4.19) 
(H,G) 

where the prime on the summation means that the value (H, G) = (0, 0) is excluded 

and Zz(,'~ (X) [~]  is the conformal block that encodes the contribution of  the ith unshifted 

plane: 

z(i) [G] X (4.20) 2,2 (X) = lr/i 4 , 

where X stands for one of  the expressions (4 .1 ) - (4 .5 ) .  The massless limit of  (4.20) is 

3 (N(vi) + N ~ ) )  ' (4.21) B(4 i) imr_~oc 6 + 

where N(v i) and N~ ) are respectively the number of  vector multiplets and hypermultiplets 

originating from the ith twisted sector. Summing over the three sectors and adding the 

contribution of  the N = 2 sector, we obtain the expected massless contribution, in 

agreement with supergravity: 

7Nv - NH 
Balmassless = 18 + 4 (4.22) 

Since the threshold corrections in general are expressed in terms of  integrals over the 
fundamental domain of  torus partition functions, for later convenience we quote in 

Appendix E also the integrals of  the various Z2,2(X). 

4.2. Higgs and super-Higgs phenomena 

It is a general property of  shifted lattices, F w I4 2,2 [c] '  that there is always at least one 
corner in moduli space in which, for (H, G) = (1 ,0 )  or ( 1, 1), the lattice sum vanishes 

7 The contribution of a short massive multiplet sJ of spin j is B2(S j) = (_)2j+l (2j + 1), so that (4.17) 
puts constraints on the ratios of the numbers of massive short multiplets of integer and half-integer spin. 
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(for a detailed account, see for instance Ref. [23] ). The particular limit(s) at which 

this happens depends on the shift vector w, and, once specified the modular properties 

of the lattice sum, the various situations, which differ in the choice of w, are mapped 
into one another by SL(2 ,  Z) transformations performed on the toroidal moduli T and U 
(see for instance Ref. [ 23 ] ). The vanishing of the lattice sum at a particular limit means 

that the states originating from the (H, G)-twisted sector become infinitely massive and 
decouple from the spectrum. In this limit the unprojected theory is recovered. 

This phenomenon is reflected in the behaviour of B4, as it appears from Eq. (4.19). 
The contribution of a given N = 4 sector vanishes completely in an appropriate limit 

in the (T, U) space when X is given by expression (4.2) or (4.3), namely when the 
Z2 projection which breaks supersymmetry acts freely in that sector. In the cases (4.4) 

and (4.5), instead, there is a decoupling of respectively one-half and three-quarters of 

the states of the twisted sector. In some cases, in the limit in which the states with shifted 

mass decouple from the spectrum, there is also an associated effective restoration of a 
certain number of supersymmetries [ 12,24]. In this case, the decoupling of some states 

is accompanied by the appearance of new massless states, which fit into multiptets 

of the enlarged supersymmetry. This happens in the limits in which one or both of 
the Z2(b) projections effectively vanish. We can therefore restore four or even eight 

supersymmetries. A necessary condition for the existence of a limit of restoration of 

N = 4 supersymmetry is the vanishing of B2. In this limit, B4 receives a non-zero 

contribution only from one N = 4 sector of the orbifold. When there is a restoration of 
N = 8, also the massless contribution to B4 must vanish. As is clear from our formulae, 

however, this implies the full vanishing of this helicity supertrace. 

5. Perturbative and non-perturbative dualities 

Knowledge of the partition function allows us to analyse many properties of the string 

constructions. In this section we consider perturbative and non-perturbative string-string 
dualities. 

5.1. Mirror symmetry f rom the partition function 

In Appendix B.2 we illustrate how to pass from type IIA to type liB in the framework 
of the fermionic construction. Here we want to show how mirror symmetry, namely 

the statement that the type IIA string compactified on the Calabi-Yau manifold M is 
equivalent to the type liB string compactified on the mirror manifold AT/, 8 can be easily 

read off at the orbifold points we are considering. In order to see this, we start by 
going to the fermionic point of the moduli space of the orbifolds. At such a point, 
as we saw, the operation of passing from a space M to the mirror A/ is implemented 

by a change in the modular coefficient C(bllb2), which is responsible for the sign of 

s See for instance Ref. [251. 
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B2 = N v  - NH = - X / 2 .  On the other hand, passing from IIA to IIB requires the 

changes quoted in Appendix B.2, which involve also a change of sign of B2. When 

combined, the two operations of exchanging IIA with IIB and M with hT/ leave B2 

invariant and exchange T i with U i in B4. However, at the level of the partition function, 

such an exchange simply amounts to a different choice of the vectors w, which specify, 

for each plane, the lattice shifts. The initial choice of w is arbitrary. In particular, we 

can choose w in such a way that the quantities ( 4 .1 ) - (4 .5 ) ,  which encode all the non- 

trivial moduli dependence of the models, are invariant under the exchange of T with 

U: all the other choices are related to that by SL(2, Z) transformations in T and/or  

U. We therefore see that, modulo SL(2, Z) transformations, B2 and B4 are invariant 

under mirror symmetry. To conclude that this is a perturbative symmetry of the theory, 

it is then sufficient to observe that the pair (B2, B4) is in a one-to-one correspondence 

with the partition function. This means that this pair uniquely determines the model, 

encoding all the perturbative physics at any order of perturbation. 

5.2. S t r i n g - s t r i n g  U-dual i t i e s  

The non-perturbative dualities we consider here are string-string U-dualities, which 

relate the type IIA orbifolds to heterotic or type II duals. The type II duals are constructed 

as asymmetric orbifolds in which the N = 2 supersymmetry is realized only among left- 

movers. As for the heterotic constructions, also in these type II orbifolds the di laton- 

axion field belongs to the vector manifold (see Appendix B.3); it is exchanged by 

U-duality with one of the moduli of the vector manifold of the type IIA duals. This kind 

of duality is therefore much similar to the duality between type IIA and heterotic strings. 

In the case of the heterotic/type IIA duality, a necessary condition for the identification 

of the moduli  is the compactification of the type IIA string on a K3 fibration [17].  

When the conformal field theory can be explicitly solved, as in our Z2 × Z2 orbifolds, 

this requirement translates into the property of spontaneous breaking of the N = 4 

supersymmetry, in the sense we described above. 9 

Therefore the models that are orbifold limits of K3 fibrations are the following: 

9 The connection relies on the fact that in the limit of large volume of the compact space, any K3 fibration 
looks locally like C × K3. This means that locally, an observer sitting on a point of the base sees 16 
supercharges, as in the T 2 × K3 compactification, instead of 8. The extra eight supercharges are projected out 
by global, not local, projection. In the case of Z2 x Z2 orbifolds, the K3 is described by the orbifold limit 
Tn/z2: the Z2 × Z2 orbifolds which correspond to K3 fibrations are those for which, in some corner of the 
moduli T, U, which always corresponds to the decompactification of some dimensions, one of the two Z2 
projections can be made to effectively vanish, thereby recovering a T 2 × T4/Z2, N = 4 orbifold. In all such 
models, the N = 2 and N = 4 phases are continuously related by a change of size, or shape, of the compact 
space. The N = 4 phase is reached when at least one dimension is decompactified. 
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(8,8) (O, F, F) 
(4 ,4)  (D, FD, F*) 
(2 ,2)  (DD, FD, F*) 
(0 ,0)  (F, E F)  

( FD , FD, F* ) 

(here F* stands for F as well as for FD). The heterotic 

33 

(5.1) 

duals of the first three 
models were considered in [18,19,26]. The model (0 ,0)  is special, possessing also a 

spontaneously broken N = 8 supersymmetry. A detailed study of this last model has 

been considered in [20]. 

In the case of type IIA/type II asymmetric orbifold duality, on which we will con- 
centrate in the following, the recipe is not the compactification on a K3 fibration (or 

some of its orbifold limits). However, the type IIA/heterotic U-duality can be tested 
by looking at the renormalization of certain terms in the effective action. In [19], a 
particular linear combination of R e and F ~ F  ~ terms, smooth and analytic in the full 

space of moduli T and U, was shown to be appropriate for a comparison of type IIA and 
heterotic constructions. The same combination of gravitational and gauge field-strengths 

can be used here as a guideline in the search of type IIA/type II asymmetric dual pairs. 

Actually, since in the type II constructions all the gauge bosons are Ramond-Ramond 

states, the above amplitude turns out to coincide with the R 2 term alone. As it happens 

for the type IIA, also in the type II asymmetric orbifold constructions the genus zero 

contribution to this term vanishes. In the type II effective action there is therefore no 
bare coupling constant, and the dilaton contribution is only non-perturbative and expo- 
nentially suppressed. Such a behaviour is reproduced on type IIA by the moduli T i of the 

planes denoted, in our convention, by F or FD. Their contribution to the renormalization 
of the R 2 term is therefore 

log ImT]Oa(T)[  4 ~ log I m T ( ~  0) + O ( e  -iv) (IT I --+ ~ ) .  (5.2) 

The mild logarithmic divergence is an infrared artefact and can be lifted by switching on 
an appropriate cut-off (these planes behave in fact like the planes shifted by the projec- 

tion that spontaneously breaks the supersymmetry in the models of Refs. [ 13,19,20].) 

Once the plane whose K~ihler class modulus T is mapped into the dilaton field of the 
asymmetric orbitold has been identified, the contribution of the moduli of the remaining 

planes has to match the contribution of the perturbative vector multiplet moduli in the 
type II asymmetric orbifold. It turns out that the models that possess such an asymmetric 
dual construction are 

(16, 16) (F, O, O) 
(8 ,8)  ( F * , D , D )  
(4 ,4)  (F* ,DD,  DD) (5.3) 
(o,o) (F, F, F) 

(F*,FD,  FD) .  

Among these, a special role is still played by the model (0, 0), which therefore possesses 
both a heterotic and a type II asymmetric dual. In this model, one of the moduli T is 
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mapped in the dilaton of the asymmetric construction and in the inverse of the dilaton of 

the heterotic dual (in the limit T --+ 0, (5.2) shows up a linear behaviour in T _= - 1 / T ,  

which matches the tree level 1/g2 ~ Im S correction on the heterotic side [20] ). Since 

this modulus plays the role of a Higgs field for the spontaneous breaking of some 

of the supersymmetries in the type IIA orbifold, we learn through the duality map 

that there is, on the heterotic side, a non-perturbative spontaneous breaking of an N = 8 

supersymmetry [20]. Similar arguments can be applied to the first three models of (5.3), 
namely the constructions with ( N v ,  No) = (16, 16), (8, 8) and (4, 4), which we analyse 

here in detail. It is possible to show that also in such models there is a non-perturbative 
super-Higgs phenomenon. The dependence on the dilaton S n, in these cases, can be 

obtained by looking at the asymmetric duals. The dual of S u is in fact a perturbative 
modulus belonging to a hypermultiplet, whose dependence is explicit in the asymmetric 

constructions; it is not difficult to identify the latter with one of the super-Higgs fields 

responsible for the spontaneous breaking of some of the supersymmetries. Through the 

duality between symmetric and asymmetric orbifolds, we therefore learn that, in the 

strong coupling limit, these type IIA orbifolds have an approximate restoration of a 
N = 4 supersymmetry. 

In order to see the above issues in detail, we start by discussing the type IIA orbifolds. 
In these specific cases, Eq. (3.20) reads 

1 1 FN v FH °, 
ZI~ 1'1)- im~.lr/12~ 4 ~ ~ 6,6EGo ' u - j  

HO,G o Hf,G f 

[;] qo[; 1 Z ( - - ) a + b + a b  19 1 9 [ a + H ° ] 1 9 [  a +  - - 
×2a,b Lb+ G°J L b + G f  G° 

, od or + _ . o _  
a , ~  Lb + G°J + " 

The characters Fuv F H°J-/r] 6,6 LGo,GrJ ~ iTI[12Z6, 6' are given by 

r,6 r"°,'~] =r,,, [ ~ ~]r<2~ [~ ] °1r<3, [H° + ~ ' ° ] 
6,6 LGO,G f 2,2 G ° G f 2,2 G f oJ 2,2 G ° + G f I ' (5.5) [,_,o ° °] ['-",'-'°'l 
6,6 LG°, G f 2 ~ re,) I He, ; r<2) = 2,2 GO [ Gf,. 2,2 Gf ] G o i j  

HDI ,GDI 

x r ' ~ '  r '-'° + m I '-'°'1 
2,2 [G ° + G f I GO' J ' (5.6) 

LGo, = ~ ~ ~ F ''~ , 2,2 G ° Gf ' ; 
HOl ,GOl Hr)2 ,GO2 

r(2)[~ I 0,; H ° ' ,  H°~lr(3)[~+/~ I 0,; ~*',, Ho~] 
× 2,2 G f [ 0, ; G Dl , G D2 J 2,2 [ GO q_ G e I 0, ; G °~, G °2 1 ' 

(5.7) 
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where (H °, G °) refer to the boundary conditions introduced by the projection 2~2(b2) 
(see Section 2) and (Hf, G f) refer to the projection Zz(bl),  which acts freely, as a 
rotation in the complex planes 2, 3 and a translation, e izrm2Gf, in the lattice of the first 
complex plane. In (5.6), (5.7) we used the generalized characters that include the 
action of the D-projections as they were defined in Eq. (3.14) and the following. The 
corresponding helicity supertraces B4 are 1o 

Nv=16 ! B 4 =6 S r")[Olh] --2.2 , 
(h,g) i=2,3 

r0.0] roth. hl) Bff~:8= 3 ~ \ 2,2 LOlg ' o/+ r~l~ 
,h,g) L01g' gJ / 

~,r,2) [OIh] ~,r,3) [OIh] 
+9r~2~ + 3 / ~  2,2 LOlgJ +9r~2~ + 3 / ~  2,2 LOlg/' 

(h,g) (h,g) 

Nv=4 (/-,(1, [0ih, 0] F( I ,  [0ih, h ] )  
n 4 = 3 Z '  \ 2.2 [0ig ,0j + 2,2 [01g ,gj 

(h,g) 

(5.8) 

(5.9) 

2 2.2 + ~ (h,g) ~' 2,2 [01g ,0j + 2,2 L0i0 ,gj + 2,2/0]g,g] 

9/.,3, 3 (F,3,  [01h, 0] FO ) [010, h] F(3)[01h, h] ) .  
2,2 + ~ ~-~'~' \ 2,2 LOlg ' oJ + 2,2 LOlO, gJ + 2,2 LOlg ' gj 

( h,g) 

(5.10) 

In order to obtain the gravitational corrections, we proceed as in [ 19,20]: the four 
derivative gravitational corrections we will consider are precisely those that were ana- 
lyzed in the framework of N = 4 ground states of Ref. [ 13] and the N = 2 ground states 
of Refs. [ 19,20]. There is no tree-level contribution to these operators, and the R 2 cor- 
rection is related to the insertion of the two-dimensional operator 2A2~. 2 in the one-loop 
partition function. In the models at hand, since supersymmetry is realized symmetrically 
and Nv = NH ,  the contribution of the N = 2 sector to B4 vanishes, and (2t2,~ 2) is 
identified with B4/3. The massless contributions of the latter give rise to an infrared 
logarithmic behaviour 2bn log[M (ua) 2//xOIA) 2] [27,29], where M (nA' = l / aX/~ i  A is 
the type IIA string scale and/x (IIA) is the type IIA infrared cut-off. Besides this running, 
the one-loop correction contains the thresholds AriA, which account for the infinite tower 
of string modes. 

The one-loop corrections of the R2-term are then related to the infrared-regularized 
genus-one integral of B4/3. In the type IIA string, these R 2 corrections depend on the 
K/ihler moduli (spanning the vector manifold), and are independent of the complex- 
structure moduli (spanning the scalar manifold): 

l°We recall that the prime summation over (h,g) stands for (h,g) = {(0, 1), (1,0), (1, 1)}. 
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1 f d 2 r  O B C~Ti AlIA = 3 Im----7 Ti 4 ,  03U IAIIA = O. (5.1 1 ) 
y: 

In the type IIB string, the roles of T i and U i are interchanged. We obtain the following 
one-loop correction to the coupling constant: 

16~ 2 

g2ra v (#(nA)) 
- -2 log  Imr' IO4 (Tl)l 4 +/1Nv (T2, T 3) 

( ~_v) ~4,1~A~ 
+ 6 + - -  log/z(nA) , (5.12) 

where the various "thresholds" /1Nv (T 2, T 3) 

/116 (T2, T 3) = - 6 l o g  ImT 2 IT/(T2)I 4 - 

d 8 (T2, T 3) = - 3  log ImT 2 IT/(T2)I 4 - 

- 3  log ImT3 IT/(T3) 14 - 

310g ImT 2 17/(T2)] 4 - / I  4 (Z2, Z 3) = - g  

_32 log Im T 3 IT/(T 3) 14 _ 

read 

6log I m r  3 17 (T3)14 , 

log Imr 2 IO, (7"2)14 

log 1mr 3 IO4 (r3)l 4 , 

310g ImT 2104 (T2)[ 4 

310g ImT 3 104 ( Z 3 ) ]  4 • 

(5.13) 

(5.14) 

(5.15) 

In the last model, Nv = NM = 4, if the semi-freely acting projection on the third complex 
plane is a product of /3-  instead of D-operations we obtain 

A4 (TZ,T 3) = 3 log ImT 2 ]r/(T2)t 4 - 3 log ImT 2 IO4 (T2)I 4 

- 3  log ImT 3 IT/(T 3) 14. (5.16) 

Notice that, except for the planes 2 and 3 of model Nv 16, the shifts on the /-,(i) ----" ~2,2 
lattices break the SL(2, Z)7-, duality groups. As in [ 19,20], the actual subgroup left 
unbroken depends on the kind of shifts performed (see Refs. [ 13,23,24]). All the 
above corrections diverge linearly, in both the large and small T 2 and T 3 limits. On 
the other hand, the contribution of T ~ diverges only logarithmically in the large-ImT 1 
limit, and linearly in the inverse modulus T = - l I T  1, for small T I. As we previously 
discussed, the logarithmic divergence is an infrared artefact and can be removed by 
switching on an appropriate cut-off. 

5.3. Type H asymmetric duals 

We now discuss the type II asymmetric dual orbifolds. The model Nv = NN = 16 is 
constructed starting from the N = 8 IIA superstring compactified on T 6 and applying 
two projections: Z~ F) and ~27z(°)- Z~ F~ acts freely, as (__)FR together with a translation on 
T 6, and projects out all the left-moving supersymmetries. Z~ °~, instead, acts as a rotation 
that reduces symmetrically the number of supersymmetries by 1/2. The properties of 
the N = 4 models obtained by applying only Z~ F~ were already analyzed in [ 13]. The 
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orbifold obtained by the further application of  Z~ °) has an N = 2 supersymmetry, which 

is realized only among left-movers.  The partition function of  the model  reads 

Z ( 2 , o )  _ _  
it 

1 1 [ H F , H  ° ] 
Imo-lr/1244 Z Z F66 

HF,G F HO,G o ' G F, G ° 

1 a+b+ab 2 

X 1 a+b+ab( )aGF+DHF+HFGV02 

a,b 

where now 

r [HL H°] 
6,,tc ,co J 

Notice that neither 

easily analyzed by 

(for  the details of  

The supertrace B4 

(5.17) 

Z~ F) nor Z~ °) act on the third plane. The massless spectrum can be 

computing the helicity supertraces B2 and B4. B2 turns out to be zero 

this computation, see the Appendix F) .  This tells us that N v  = NH.  

is (cf. Ref. [ 20 ] )  

B 4 - 1 6  412 Z ~ ( - )  - 6,6LGF ' 
a.b (HF,G v) 

The massless contribution, which coincides with the supergravity result, is 

(5.19) 

7 N v  - N H  
B4lmassless = 18 + 4 = 42 ,  (5.20) 

from which we derive N v  = NH = 16. The massless spectrum therefore contains, besides 

the supergravity multiplet,  3 +  16 vector multiplets and 4 +  16 hypermultiplets:  it is there- 

fore the same as that of  the type I IA model N v  = 16. However, here the dilaton belongs 

to a vector multiplet.  This is a general property of all the N = 2 string compactifications 

in which all the supersymmetries  are realized either between only left- or between only 

right-movers,  such as the heterotic strings or type II asymmetric orbifolds as the ones 

we consider. The reason is that the dilaton, in such cases, is uncharged under the SU(2)  

operators that rotate the supercharges of  the N = 2 supergravity. 11 

~ One can construct the vertex operators, which represent the states of the string theory, and then construct 
explicitly the generators of supersymmetry in this representation (see Appendix B.3) One then finds that the 
spinor vertex operator, which corresponds to the two transverse space-time coordinates e-~ '%, is common 
to both the supercharges (in type II symmetric orbifolds, we have instead Q ~ e-~ H°, (~ ~ e-~fi°). As a 
consequence, the generators of the SU(2) symmetry of the N = 2 do not act on the space-time degrees of 
freedom, and therefore leave invariant the dilaton, whose vertex operator actually contains only space-time 
degrees of freedom. 
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The Nv = Nt4 = 8 orbifold is constructed by modding out the previous model with a 
further Z(2 °) projection, which acts semi-freely. The partition function of this orbifold 
is given as in (5.17), but with (5.18) replaced by 

r F ol 1 o] 
F6'6[GF,Go 2 E F(l) HF';  = 2,2 G ° G F, ; 

( HDI ,GDI ) 

[o ,,°1 xr~2~ Go i 0,,  G & j F  (3) 10' ;  
. 2,2 10,; G D , ]  . (5.21) 

The helicity supertrace B4 is now given by an expression similar to (5.19), but the 
second term, instead of being 36F~3} F°l°] ml0A' is now 

1 g,(3) 

which gives 

B4 Imassless = 30 (5.23) 

consistently with Nv = 8 ( B2 = Nv - NH is zero in all these models). 
Finally, the model Nv = NH = 4 is obtained by applying two Z~ o) projections, which 

act on the compact space, producing the following character: 

r [I/F, mq 1 r 6'6LGLG°] =g ~ ~ F(l'km I (H°',C °') (l~°2,a °21 2,2 G ° [ GF,; GD,] 

2,2 G ° I 0,; G o2 j F(3) ] 0,; 2,2 10,; GD~,GD2]. (5.24) 

In this case, the second term in B4 is 

(1F(3' 1F(3) [; ] q - [ ;  I I 12 Z '  Ik4 2,2 [ ;  0,0]0'0] -1-4 2,2 h,0] 41F(3)22 0, h] (h,g) g, OJ O, gj 
+lr(3) [0 'l h' 4--2, 2 g , ~ ] )  , (5.25) 

which gives Balmassless = 24 and Nv = 4. 

We remark that in all these models B2 -- 0. As a consequence there are no points in 
the moduli space in which there appear "N = 2", zlNv 4= ANH singularities. 

As in the case of the type IIA orbifolds, also in the asymmetric duals the R 2 gravi- 
tational corrections receive a contribution only from one loop, and are obtained by the 

2 2 (see [20]).  The only non-zero contribution is provided insertion of the operator aL/~R 
by the sectors with (H  °, G °) v~ (0 ,0) .  We obtain 

16r r2 ( ~ . . ~ v )  _ _  
ggZra v (p,(As)) -- 4 + log M(As)/z(As) + d Nv ( r  As, u As) , (5.26) 
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where we introduced the type II asymmetric mass scale and infrared cut-off, M (As) and 
/z (As~ respectively, and 

At6(TA~,uA~)=--61oglmTASI~7(TA~)[4--61oglmUA~I~7(uAs)]4, (5.27) 

/18 (TAS, e As) =--3 log ImT As IB (TAs) 14 -- 310g ImU As It/(uAs) 14 

- - loglmTASlOi(TAS)14-- loglmUAS[Oj(uAs)[4,  (5.28) 

/14 (V As, U As) -------3 log Im T As It /(T As) 14 - 31o 8 Im U As 177 (U As) 14 

_3  log ImZ As 104 (TA~) ] 4 . (5.29) 

5.4. Comparison of  symmetric and asymmetric orbifolds 

We now come to the comparison of the type IIA symmetric and the type II asymmetric 
orbifolds. As is clear from expressions (5.13)-(5.16) and the analogous (5.27)-(5.29) 
for the asymmetric orbifolds, for any type IIA symmetric orbifold it is possible to choose 
actions of the D-projections that can be reproduced in the type II asymmetric orbifolds, 
leading to the same corrections Auv: d NV (T 2, T 3 ) = ANv (T As, uAs). A comparison of the 

corrections with the R 2 term therefore leads to the following identification of the moduli 
in the vector manifold: T 2 = T As, T 3 = U As. These moduli are perturbative in both the 

constructions. On the other hand, the contribution of the modulus T l in (5.12), in the 
limit T 1 ---, oe, diverges only logarithmically. This is consistent with the vanishing of the 
perturbative, genus-zero (O(S As)) contribution to this term in the type II asymmetric 
orbifolds. We are therefore led to identify this modulus with the dilaton-axion field 
T A~ --= 4~S A~ of the asymmetric orbifolds [13,20]. The logarithmic behaviour is then 
interpreted as a non-perturbative effect. 

We remark that the identification of the perturbative moduli is possible only for 
special choices of the translations introduced by the D-projections. The reason is that 
it is not always possible to reconstruct the properties of the KS.hler class moduli of a 
product of two tori, whose lattice of momenta and windings is shifted by the action 
of the D-projections, with the Kahler class and complex structure moduli of a single 
torus with shifted lattice: different translations correspond to different cuts in the moduli 
space of the model, and not all the cuts correspond to dual constructions. However, 
we learned that a correct cut exists, and the identification of (TZ,T 3) with (T A~, U As) 

provides a test of the duality. The corrections computed in the type IIA symmetric 
orbifolds therefore provide the full, perturbative and non-perturbative, corrections for 
the asymmetric orbifolds. These are given by the expression (5.12), in which (i) the 
moduli T 1, T 2 are replaced by T As, uA~; (ii) the modulus T 1 is replaced by the dilaton 
47"rSAS; (iii) the type IIA string mass and cut-off have to be replaced by those of the 
type II asymmetric theory. Indeed, we are using a regularization scheme for which the 
ratio of the mass and the cut-off is duality-independent, and can be expressed in terms 
of the ratio of the Planck mass and a physical cut-off/z: 
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Mplanck 
/z (5.30) 

6. Conclusions 

In this work we constructed and classified all the four-dimensional N = 2, Z2 x 
Z2 symmetric orbifolds of the type IIA/B superstring. After having constructed the 
models at the fermionic point, according to the rules of the "fermionic construction", 
we established the equivalence, for this class of orbifolds, of world-sheet fermions and 
bosons, and we derived the partition function of each model at a generic point in the 
space of the moduli of the three tori of T 6 = T 2 x T 2 X T 2. Through an analysis of some 

helicity supertraces, easily computable from the partition function, we investigated the 
appearance of stringy Higgs and super-Higgs phenomena, which served as a guideline 
in the search for heterotic and/or type II duals. We devoted particular attention to the 
study of the latter, for which we provided an analysis analogous to that of the symmetric 
orbifolds. These pairs are related by a map that exchanges the dilaton-axion field of 
the type II asymmetric construction for a perturbative modulus of the type IIA dual, 
associated to a vector multiplet. Conversely, the type IIA dilaton is mapped into a 
perturbative modulus of the type II asymmetric dual, associated to a hyperrnultiplet. 
Through the comparison of the corrections to the R 2 term, we then provided a test of 
this duality, obtaining also a prediction on the non-perturbative physics of the type II 

asymmetric models. 
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Appendix A. The type II string in the free fermionic formulation 

In the free fermionic formulation of string theory [2-4] the string degrees of freedom 
are expressed in terms of free world-sheet fermions. For the four-dimensional type II 
string and in the light cone-gauge theory these fermions are [5] 

(i) the space-time degrees of freedom 

left: OzX~(z,~ ) , ~bk(z ) 
right : ?zX~(z ,~), R ~9~(z), / z = 1 , 2  
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(ii) the internal degrees of freedom 

left: x L ( z ) ,  yL(z) ,  ojL(z) 

right: x R ( z ) ,  yR ( z ) , o )~ (Z ) ,  I =  l . . . . .  6. 

The world-sheet supersymmetry, necessary for a consistent theory, is realized in the 

usual way among the space-time coordinates and non-linearly among the internal coor- 

dinates [30] 

~ f A  = T]ABC f B  f C  E f C L L L , { X I ,  Y l ,  a)l , I = 1 . . .  6 } ,  

where e is a Grassmann field and rl ABc are the properly normalized structure constants 

of a Lie algebra G = G~v and similarly for right-movers G = G~v. 

It is known that the transportation properties of fermionic fields on surfaces with 

non-trivial topology, such as the string world-sheet, are not completely determined by 

the two-dimensional metric and an extra information must be supplied. This information 
is known as spin structure and describes the phases emerging when each fermionic field 

moves around a non-contractible circle of the surface. Spin structures are in principle 

arbitrary, but a consistent string model should satisfy a set of physical requirements: 

(i) multiloop modular invariance; 
(ii) factorization of physical amplitudes; 

(iii) global existence of left and right supercurrents. 
After imposing these constraints much freedom is left in choosing spin structures and a 

very big number of consistent string models can be obtained. 
If we restrict ourselves to periodic-antiperiodic fermionic fields, and demand space- 

time supersymmetry to emerge symmetrically from left- and right-movers (which means 

that left and right space-time fermions will be treated symmetrically), the choice of the 
internal fermion gauge groups /" R ( G w, Gw) is essentially unique: 

6 

G L = GRw = ~ S O ( 3 ) '  
I=1 

and the left and right supercurrents take the form 

6 6 

T F ( Z )  =iCgzXtZ~jL 4- ~ L L L TF(Z) =iO~X~O R + Z R R R X i Y l W i  , X l Y l W i  . ( A . 1 )  
1=1 1=1 

Then the solution of the consistency constraints can be expressed in a simple set of 

rules for constructing any type II string model. A specific model is defined by 
(1) A set of  boundary condition basis vectors {bl = 1 . . . . .  bN}, which generate a set 

o f  2 N boundary conditions vectors = ~ y-~U --: ( C ~ ~ ~ = 1 mibi, mi = 0 ,  1. Each 
boundary condition vector bi has 40 entries: 12 

12 Along the paper we employed a slightly different notation, that is to present a basis vector as the set of  pe- 
riodic fermions. For example, b = { 1, 1, 1, 1, 1, 1, 1,0 . . . . .  0} is written as b = {0n,L xI,L x2,L x3,L x4,L xs,L xL}  

in this notation. 
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bi z {bi(~/z), b i ( x  1) . . . . .  b i ( y  1) . . . .  bi((o 1) ... ; 
bi ( ~ z ) ,  b i ( x l )  . . . . .  bi(yl  ) . . . .  b i ( ( b l ) . . . } ,  

where b i ( f )  = 0, 1 correspond to the transportation properties of  each fermion 
f --~ - e  i~rbi(f) . The basis vectors are subject to some restrictions, namely 

(a)  bi • bi = mod 8,  V i = 0 . . . . .  N; 
(b)  b i . b j = m o d 4 , V i  4= 0 = 1  . . . . .  N; 

(c)  I - I f b i ( f ) b j ( f ) b k ( f ) b g ( f )  = 0 m o d 2 , V  i~j--/: k ~ g  = 0 . . . . .  N; 
( d )  I{b~(x~), bi(yt),bi(wl)}l 2 = biOP t') m o d 2 ,  I{b~(2~),b~(Y~), b~(~z)}l 2 = 

bi(d/t') r o o d 2 ,  Va  = 1 . . . . .  6 and Vi  = 0 . . . . .  N .  

(2) A set of  U(N-l) c[bi] 2 + 1 phases c [11] = 4-1, LbjJ = + l ,  i > j (we will use also the 

c r b'] nota t ion  C(bilbj ) ~ Lbfl ) '  which determine the weight of  each spin structure to 
the string partition function. 

The model ' s  partition function is then given by 

1 f d2r I E c [ ; ] Z [ ; ] ,  
Z = F r 3 I .I  4 , , , ~ - ~  

where 

Z 

/,)9.[o,(f)] ) 1/2 /,§ra(f) ] ) 1/2 

[~1 f...~left l-- I~ f)j 1-I 

and c[~] can be expressed in terms of c[ b'] i > j and c[b:] = c[l ] using LbjJ ' 

c[° ] 
OL j 
c = e  2 Bc , (A.4) 

=e,  c[b,j ,  (AS) 

with 8 ,  = ei~'(~(¢'~)+~(¢;~)). 

Along the paper, we have used indifferently two equivalent notations for the operation 
of  composition of  fermion sets: the sum, as here, which is more convenient when we 
specify the fermion sets through the boundary conditions they assign, and the "symmetric 
difference" (see Ref. [ 3 ] ), indicated as a product of  sets, which contains the union of  
two fermion sets minus their intersection, and is more convenient when, as in many 
sections of  the paper, we specify the periodic fermions contained in the various sets. 
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Appendix B. Massless spectrum and vertex operators 

B. 1. Z~ × Z~ orbifolds in the fermionic construction 

43 

e + ~  ( 2H° +/~'0 +/~ j +/:/2 +/z/3 ) , 

two dilatinos: 

e+½ ( 2Ho -/~o - R~ -/:/~ -/z/s ) , 

and twelve spin- l /2  fermions: 

e+iHI e + ~ ( Ro+B~ -rt2- B~ ) , 

e + i H 2 e + ~ ( H o - H I + H 2 - H 3 ) ,  

e±inse + ~ oq0-~t-~+6's),  

e + ~ (2/to+Ho+Hl +H2 +H3 ) ; (B.2) 

e+ ½ ~2H°- H°--H~ --H2--n3~ ; (B.3) 

e 4- if-ll e + ~ ( Ho+HI - H2 -- H3 ), 

e + i H z e  + ~(Ho-Hl+H2--H3) ,  

e-I-i/43 e + ~ ( H0-  HI - H2 +H3 ). 

(B.4) 

(B.5) 

(B.6) 

The bosons originate from the sectors ® and SS. The vacuum sector ® contains the gravi- 
ton e +i~H°+~°), the pair dilaton-pseudoscalar e +i(H°- f t° ) ,  a n d  the six complex scalars 
e -4-i(H~+ffD. From the vertex operator representation of the graviton and the gravitinos 

we read off the generators of the N = 2 supersymmetry: 

Q = e - ~ ( H ° - H ' - H 2 - H 3 )  and Q = e - ~ ( / ~ ° - / 7 / ' - / ~ 2 - / 7 / 3 )  , (B.7) 

from which we derive also the expressions of the generators of the N = 2, SU(2) 
algebra: J+, J -  (_= J+*) and jo, whose charge operator I ° is given by 

,o , f  1/ 
= ~ ( O H o  - O H 1  - -  O H 2  - O H 3 )  - -~ (OHo - O H i  - O H 2  - O H 3 ) .  (B.8) 

It is then easy to see that the dilaton-pseudoscalar 

e +~ ' ' -~ °~  , (B.9) 

13 In this notation, OH -- cTzH, ~ =_ c~e-H, where H -- X L ( z  ), H -- xR(~)  are respectively the holomorphic 
(left-moving) and the antiholomorphic (right-moving) part into which a world-sheet boson X is decomposed: 
X = H + - H .  

We write here the vertex operator representation of the massless states of the Z2 × Z2 
orbifold constructed in Section 2. The massless states of the untwisted sector come from 
the NS-NS, R-NS, NS-R and RR sectors, which are given, in our convention, by the 

sectors Q (the "vacuum"),  S, S and SS, respectively. In order to describe the physical 
states, we introduce the SU(2),  R-parity currents e+~ H', aHi, e ± ~ i ,  3-'Hi, i = 0, 1,2, 3, 13 

where 

L L L L )(L L 
~ g H o = O L o  L , 3HI=X1Xe, 0 H 2 = x 3 X 4 ,  c 9 H 3 =  5av6 ,  

ano:j,, j,  OH, xRx  xRx 4, Ya3 R R , = , = =XsX6 (B.1) 

(the eigenvalues of OHo and aHo give the space-time spin). The fermions originate from 
the S and S sectors. They are two gravitinos, represented, in the -1/2-picture,  by 
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and the three complex scalars 

e +i(H'-/ /~) i = 1,2,3 (B.10) 

carry a non-zero I ° charge: they therefore belong to hypermultiplets. Since we are 
considering a type IIA orbifold, the three complex scalars (B.10) correspond to the 
complex structure moduli U i of the three tori of the internal space. The three complex 
scalars 

e -t-i(H'+//i) i =  1,2,3,  (B.11) 

have no I ° charge and are superpartners of the vectors: they therefore correspond to the 
three K~ihler class moduli T i. The SS sector contains four complex scalars, which carry 
I ° charge: 

e • ~ (Ho+HI +H2+H3 - / / 0 - / / i  - / /2 - - / /3 )  

e:t: ~ ( H o -  HI --H2 + H 3 - / / o + H i  +/7/2 -//7/3) , 

e:t: ~ ( Ho-HI+H2-H3-//o+//1-//2+//3) , 

e~: ~ (~/O+Hl -n2-H3-//0-//~ +B2+//3), (B. 12) 

and four vectors: 

e • ~ (Ho+HI +H2 +H3 +//0+//1 +//2+//3 ) 

e~ ~ ( Ho-HI--H2+H3+//0--//I-//2+//3) , 

e:~ ~ ~no-n, +n2 - n 3 + / / o - / / 1 + / / 2 - / / 3 )  , 

e ± ~ (Ho+H~ - U2- H3 +//0 +//~ - / / 2 - / / 3 )  ( B .  13) 

It is easy to recognize that the first vector belongs to the gravity multiplet, being obtained 
by applying twice the supersymmetry generators to the graviton. 

B.2. IIA versus l i b  in the f e rmion ic  language 

The type IIA~--~B exchange is realized by changing the chirality of, say, the right- 
moving spinors. In the fermionic construction this is implemented by the following 

changes with respect to the type IIA choice of Table 1: C(~I~ ) ~ + l ,  C(glv ) --* - 1 ,  
C(~]b~t ) --+ --l ,  C(~lb2z ) --~ --1. Under this exchange, the right-moving supersymmetry 
generator becomes 

O ---* e-~(ll°+Hl+H2+H3). (B.14) 

As a consequence, the SU(2) Cartan charge operator I ° is now 

I ° = ~ (OHo - OHl -- OH2 -- 01-13) -- ~ ( ~ o o  + OH1 + OH2 + OH3) .  (B.15) 

In this case the states that are associated, in the type IIA construction, to the complex 
scalars T ~, T 2, T 3, given in (B.11), now carry I ° charge, while those associated to 
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the three complex scalars U 1, U 2, U 3, given in (B.10), do not. The role of T i and U i 
is therefore exchanged, as expected. A change in the sign of C(b.lb22) exchanges Nv 
and Nt-/. This then changes the sign of the Euler characteristic of the compact space, 

X = 2(NH -- Nv).  

B.3. Massless states of type I1 asymmetric orb±folds 

The analysis of the massless spectrum of the asymmetric orb±folds discussed in Sec- 
tion 5 can be performed in a similar way, by going to the fermionic point. We quote 
here the vertices for the bosonic massless states of the untwisted sectors: (H  F, GF), 
(H°,G °) equal to (0 ,0)  or (0, 1). They are 

e±i(H0+#o) (graviton) 

e±i( Ho --/Z/o ) ( dilaton, pseudoscalar) 

e ±i~n~-flj~, i , j  = 1,2 (hyperscalars) (B.16) 

elim°e ± ~f43 , eliH3e +iB° (graviphoton, vectors) 

e ±i~H3-~%~ (vectorscalars) 

In particular, we notice that, although the dilaton is represented by the same vertex 
operator as the dilaton of the type IIA orb±folds, Eq. (B.9), in this case it is uncharged 
under the SU(2) symmetry of the N = 2 superalgebra. The analogous of the operators 
Q and Q, Eq. (B.7), are in fact in this case 

Q+, Q_ = e - ~ ( H ° + e H t ± H 2 4 - H 3 )  , (B.17) 

where e takes the values +1 and depends on the (immaterial) choice of the chirality of 
the spinors. The analogous of the operator 1 ° is therefore 

l°s = ~( ( OH2 + OH3) . (B.18) 
J 
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Appendix C. GSO projections on the twisted sectors 

We quote here the contribution to the quantity 4 ( N v  - Nt4), as a function of the 
modular coefficients, of each one of the 48 twisted supersectors. By supersector we 
mean a twisted sector and the sectors derived from it by addition of the sets S, S, 
SS, which provide the supersymmetric partners. For simplicity, we do not indicate the 

latter, so that bl is a short-hand notation for the sets bl, Sbl, Sbl,  SSbj.  The quantity 
4 ( N v  + NH) is given by the product of the two square brackets. 

bl: 

[1 + C(ellbl)] [1 @ C(e21bD ] .re, (C.1) 

bl + e3: 

[l  @ C(ellbl)C(e,]e3)] [ 1 + C(e2lbl)C(e2le3)] • otf(e3]e4)f(e3lb2 ), (C.2) 

bl ÷e4:  

[1 ÷ C ( e ,  lbl)C(e41e,)][1WC(e21b,)C(e21e4)] "aC(e31e4)C(e41~), 

bl +es :  

[1 +C(e~lb,)C(e~[es)] [1 ÷C(b ,  le2)C(b2les)]" aYC(e3les)C(~les), 

bj + e6: 

[ 1 +  

bl + e3 + 

[ 1 +  

bl + e3 + 

(C.3) 

(C.4) 

C(b, le~ ) C(e, le6) ] [ 1 + C<b~ le~) C(e2le6) ] " ~l~C(es le6)C(b21e3) C(b21e4)' (C.5) 

e4: 

C(blle~)C(elle3)f(elle4)] [1 + C(b~lee)C(e21ea)C(e21e4)] • af(b21e3)C(b2le4 ) , (C.6) 

e5: 

[1 + C(b~let)f(e~lea)f(e, les)] (C.7) 

× [ 1 + C(blfez)f(e21e3)C(e2]es)] • oz~/f(e31e4)C(e41es)f(b21e3 ) , 

bl + e3 ÷ e6: 

[1 + C(b~le,)C(e~le2)C(etle4)C(e~les)] (C.8) 

× [ I + C(blle2)C(ellez)f(eE]e4)f(e2les)] • ~')/C(b2le4)f(elles)f(e2[eDC(e4les), 
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bl + e4 ÷ e5: 

[ 1 ÷ C(b~tel)C(etle4)C(e, les)] (C.9) 

× [l ÷ C(btle2)C(e2le,)f(ezles)] • ol~/C(b2]e4)f(e3le4)C(e3les), 

bl + e4 ÷ e6: 

[ 1 + C(b, te,)C(e, le2)C(e, le3)C(e, le,)] (C. 10) 

× [ 1 ÷ C(bl]e2)C(elle2)C(e2le3)C(e2les)] • [3~/C(b21e3)C(elles)C(e21es)C(e3le5 ), 

bl + e5 + e6: 

[ 1 + C(b, le,)C(e, le=)C(e~le3)C(e~le4)] (C.1 1) 

× [ 1 ÷ C(b~le2)f(etfez)C(e21e3)f(e2le4)] " t~C(b21e3)C(bz[e4), 

bl + e4 ÷ e5 + e6: 

[ 1 + C(b, le,)C(e,l~2)C(e, le3)] [1 + C(b, te2)C(e, le2)C(e21e3)] • flC(b21e3), (C.12) 

bl + e3 + e4 + e6: 

[ 1 + C(h, le,)C(e,l~2)C(e, le,)] [ 1 + C(b~le2)C(~,le2)C(e2t,5)] • f lyC(e,  le,)C(~21e~), (C.13) 

b~ + e 3 + e s + e 6 :  

[1 + C(b,l~,)C(e,l~2)C(e, le4) ] [1 + C(btle2)C(e~le~)C(~21e4) ] • flC(b21e4), (C.14) 

bl + e 3 + e 4 + e s :  

[ I ÷ C(bllel)C(e, le3)C(e, le4)C(e, les)] (C.15) 

× [ 1 ÷ C(b~le~)C(e~[e3)C(e~le4)C(ezle5 ) ] • O~3/C(b~le3)C(b~le4), 

b~ + e 3 + e 4 + e s + e 6 :  

C(bt[et)C(elle2) ] [1 + C(blle:)C(e~lee) ] • t~, (C.16) [l-l- 

b2: 

[ 1 + C(b21e3 ) ] [ 1 ÷ C(b21e4)] " t 3, (C. 17) 

b2 + el: 

[ 1 + C(b21e3)C(e~le3)] [ 1 + C(b2le4)C(elle4)] • t~C(b~le~)f(e~]e2), (C.18) 

b2 + e2: 

[1 ÷ C(bzle3)C(ezle3)] [ 1 + C(b2le4)f(e21e4)] • 1~C(blle2)C(e~lez), (C.19) 

b2 + es: 

[ 1 ÷ C(b21e3)C(e3[e5 ) ] [ 1 + C(b21e4)C(e4[e5 ) ] • t~'fC(el les)C(e2le~), (C.20) 
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b2 + e 6 :  

[ 1 + C(b2le3)C(e~le3)C(e2le3)C(e4[e3)C(es[e3)] [ 1 + C(b~le4)C(eile4)C(e~le4 ) (C.21) 

• C(e3le4)C(es[e4)] " oLTC(bl]e~)C(blle2)C(e~les)C(ezles)C(e3les)C(e4[e~), 

b2 + eL + e2: 

[ 1 + C(b2[e3)f(etle3)f(e2[e3)] [ i  + C(~le , ) f (e~le , ) f (ez le4)]  • ~C(bt[e,)C(bi[ez), (C.22) 

b2 +eL + e s :  

[ 1 + C~b21e3~C~e~fes)C~e~le3~] (C.23) 

>( [1 q- C(b21e.)C(e,[e4)C(este, ) ] " l~/C(b~le~)C(e~le2)C(e~le2), 

b2 + e2 + es: 

[ 1 + C(b2[e3)C(e2le3)C(es[e3 ) ] (C.24) 

× [ 1 + C(b21.)C(e~le4)C(esle,)] • t~TC(b~tez)C(e~le2)C(e~le5 ) , 

b2 + e2 + e6: 

[ 1 + C(b2le3 ) C(e I te3) f ( . le3) f (es le3)  ] (C.25) 

× [ l q- C(b2le4)C(elle4)C(e3]e4)f(esle4 ) ] • aTC(bllel)C(el  [es)C(e3les)f(e4les), 

b2 + el + e6: 

[ ] -t- C(b2le3)f(e2le3)f(e,  le3)f(esle3) ] (C.26) 

× [ 1 + C(b2le,~)C(e~le4)C(e3le4)C(esle4 ) ] • olTC(bl]e2)C(e2les)C(e3les)C(e4les), 

b2 + e5 + e6: 

[ 1 + C(b2le3)C(e~le3)f(e2le3)C(e41e3)] (C.27) 

× [ 1 + C(b2le4)C(e~le4)C(e21e4)C(ea[e4)] • ceC(b~le~)C(b~le~ ), 

b z + e ~ + e ~ + e s :  

[ 1 + C(b2le3)f(e I le3)C(e21e3)C(esle~) ] (C.28) 

× [ 1 + C(bz[e4)C(e~le,)C(e2le4)C(esle~)] • I~yC(b~le~)f(b~le~ ) , 

b2 q- el q'- e2 + e6: 

[1+ 

b z + e l  + 

[ 1 +  

b2 + e2 + 

[ 1 +  

C(b21e3)C(e4[e3)C(esle3) ] [ 1 + C<a2le,)C<~le,)C<es[e, ) ] • olyC(e3les)C(e4[e5), (C.29) 

e5 -,1- e6: 

C(b2le3) C(e~le3)C(e,[e3) ] [ 1 -~ C(b2]e,)C(e2le4)f(e3Je4) ] • off(hi}e2), (C.30) 

e5 -I-- e6: 

C(b2 [e3 ) C(el ]e3)C(e4]e3) ] [ 1 + C(b21e4 ) C(el le4) C(e3[e4) ] " olC(b I ]el), (C.31 ) 
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b2+ei + e 2 + e s + e 6 :  

[ 1 + C(b21e3)f(e4le3 ) ] [ 1 ÷ C(b2le4)C(e31e4 ) ] • ~,  (C.32) 

b3: 

[ 1 + y] [ 1 + ol~C(blle~)C(b~le2)f(b2le3)f(b21e4)] • t~C(b~le~)f(b~le~), (C.33) 

b3 + e j :  

[1 + yCie~les)] [1 + ot1~C(bl[el)C(blle2)C(b2[e3) (C.34)  

"C(b21e4)C(el te2)C(el [e3)C(el le4) ] ' 1~C(bl le2)C(el le:), 

b3 -[- e2: 

[ l ÷ 3/C(e21es)] [ 1 + ce~/f(btlex)C(btle2)f(b21e3)C(b21e4)C(e~le: ) (C.35) 

"C(e21e3)f(e21e4)C(e21es) ] • t~C(bllel)f(elle2), 

b3 + e3: 

[ 1 + ~/C(e3[es)] [ 1 + c~flyC<b~let)f(blle=)f(b21e~)C(b2le,)C(e3[e~ ) (C.36) 

"C(e31ez)f(e3[e4)C(e3[es) ] • olC(b21e4)C(e31e4), 

b3 ÷ e4: 

[ 1 ÷ yC(e,  be~)] [ 1 + aflYC(bl lel)C(b~le2)C(bzle3)C(bzle4)C(e4be~ ) (C.37) 

"C(eale2)C(e4le3)C(e41es) ] • olC(b21e3)C(e4le3), 

b3 + el + e2: 

[1 + YC(eales)C(e21es)] [1 + Ce~YC(blle,)C(b~le2)C(b2le3 ) 

"C(b21e4)C(el le3)C(e~ le4)f(e, les)f(e21e3)C(e21e4)C(e2les) ] " [~, (C.38) 

b3 ÷ el + e3: 

[ 1 + yC(e, [es) C(e3 les) ] [ 1 + a f l yC(h  ~ le~ )C(b~ Ie2) C(b2 le3) C(b2 le4) C(e~ le2) C(e~ le4) 

.C(e~les)C(e21e3)C(e3le4)C(e31es) ] • ~C(b~le2)C(b21e3)C(elle2)f(e~le3), (C.39) 

b3 + el + e4: 

[ 1 + yC(e~ les)C(e41es) ] [ 1 + crflyC(b, le~ )C(b~ lez)C(bzle3)C(b2lea)f(el le2)C(el le3) 

.C(e~les)C(e2le4)f(e3len)f(e, les)] " t~C(b~lez)f(b21e4)C(e~[ez)C(e21e,), (C.40)  

b3 + e2 + e3: 

[ 1 + ~C(ez[es)C(e31es) ] [ 1 + oo~/C(b~le~)C(b ~ lez)C(b~le3)C(b2le4)f(e~le~)C(ezle4) 

.C(ezles)C(e~le3)C(e3le4)f(e31es) ] " t~C(b~le~)C(b2[e3)f(e, le~)C(e~le3), (C.41) 
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b3 + e2 + e4: 

[1 + ~/C(e21es)C(e4les)] [1 + cet~3/C(b~[e~)C(b~[e2)C(bzle3)C(b21e4)C(e, le2)C(ezle3) 

• C(e21es)f(e~le4)C(e3lea)C(e4les)] "t~C(b~lez)C(bzle4)C(e~[ez)C(e~le4), (C.42) 

b3q-e3 +e4: 

[ 1 + TC(e31es)C(e41es)] [ 1 + ozflTC(b~le~)C(blle2)C(b21e3) 

• C(b21e,)C(e3lel)f(e31e2)f(e31es)f(e4lel)f(e41e2)C(e4[es)] • ol, (C.43) 

b 3 + e l + e 2 + e 3 :  

[ 1 + ~/C(eates)C(e2]es)C(e3[es)] [ 1 + oo~C(b~le,)C(b~le2)f(bzle3)f(b2[e4) 

• C(e~le4)C(eales)C(e2le4)f(e21es)f(e31e4)f(e31e5 ) ] • t~C(bzle3), (C.44) 

b3+e l  + e 3 + e 4 :  

[ 1 + Tf(elles)C(e3]es)f(e41es)] [ I + ottS~f(b~le~)f(bale2)C(b2le3)C(b2le4) 

"C(el le2) C(el les) C(e31e2) C(e3 le5) C(e4le2) C(eale5) ] " °{C(bl lel)' (C.45) 

b3+e l  + e 2 + e 4 :  

[ 1 ÷ ~/C(e a les)f(ez[es)C(e4]e5 ) ] [ 1 + aflyC(b~ lea )C(b~ [e2)f(b21e3)f(b21e4) 

• C(elle3)f(eates)C(e21e3)f(e2les)f(e41e3)f(e, le5 ) ] • t~C(b2le4), (C.46) 

b3 + e 2 + e 3 + e 4 :  

[ 1 + Tf(e2les)f(e3[es)C(e41es)] [ 1 + cet~TC(b~le~)f(blleDC(b21e3)f(b21e,) 

"C( ea le2) C ( e21es ) C( e3le~ ) C( e3 le5 ) C( e, lel ) C(o[es) ] " °{C( bt lez), (C.47) 

b3÷e l  ÷ e 2 + e 3 ÷ e 4 :  

[ 1 ÷ yC(e  , les)C(e2les)C(e3les)f(e, les) ] [ 1 + ~ T C ( b ,  le~)f(balez)C(bzle3) 

• C(b2len)f(e~les)C(ezles)f(e31es)C(e4[es)] • ozfbalea)f(b~le2), (C.48) 

In the previous expressions, all the modular coefficients are symmetric under the 
exchange of the arguments C(all~) --- C(Bla). We also defined 

Ce = C(bllF)C(blle3)f(bale4), 

13 = C( b2lF) C( b21et ) C( bzlez ) , 

T = C(bt les) C(b2les)" (C.49) 

By running the above formulae with a computer program, we find the following pairs 
of ( N v ,  N H ) :  (0,48), (48,0), (28,4), (4,28), (16,16), (0,24), (24,0), (6,18), 
(18,6), (12,12), (4,16), (16,4), (2,14), (14,2), (8,8), (0,12), (a2,0), (6,6), 
(3,9), (9,3), (4,4), (2,2), (0,0). 
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The formulae above simplify if, instead of factorizing the boundary conditions of the 

six circles with the sets el, i = 1 . . . . .  5, we consider only the factorization of the three 
tori (1 ,2 ) ,  (3 ,4)  and (5 ,6)  with the sets T/, i=  1,2,3, given by 

L L R R R T, = {y, , y 2 , w } , w }  I °91]} Yl , Y2 , 091 , 

T2 L L R R R = {y3  , y a , o g L ,  o9 L [ goR} . Y3 ,Y4 ,O93,  , 

L L R R R T3 : {ys ,  y 6 ,w~ ,w ~  [ ys,Y6,O)5,o)g}. (C.50) 

In this case, we can write a compact expression for the formulae, which give the sum 
and the difference of the total number of vector and hypermultiplets provided by the 

twisted sectors: 

Nv + NH 
- -  = 6 +  (1 +C(r, lr2)) 

4 
x (C(b, ir~ ) + C(b=lr2 ) + a/3C(b~lTt)C(b21T.)), (C.51) 

Nv - NH 3 C ot 
4 - ~  (b, l b 2 ) ( + / 3 )  

x ( l  + C(b, lr,) + C(b21r~) + C(b, lr,)C(b21r2)C(T, IT2)), (C.52) 

where ce and/3 are given by 

cr = C(b:IF) C(b ~ 172), 

/3= C(b2IF)C(b2ITI ) . (C.53) 

In this case, we can only find a subset of models, namely those with (Nv, NH) = (48, 0), 
(0 ,48) ,  (24,0) ,  (0 ,24) ,  (16, 16), (12,12),  (8,8)  and (0 ,0) .  

C. 1. A choice of modular coefficients for each model 

We give here a choice of modular coefficients for each one of the constructions of 

Section 5: 
(1) (48,0). All coefficients = +1. 

(2) (28,4). 

( D , D , O )  : 

(3) (16,16). 

( O , O , F )  : 

(4) (24,0). 

( D , D , D )  : 

(5) (18,6). 

(DD,  DD, O) : 

C(el[e3), C(elle4), C(e21e3 ) , C(e21e4 ) : - 1 .  

C(bllF) = --1. 

C(e21es), C(e4les ) = - - 1 .  

C(elle2 ), C(elle4), C(e2le3), C(e3le4 ) - - - 1 .  
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(6) 

(7) 
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12,12). 

(R,O,  FD) : 

( D , D , D ) :  

16,4). 

(DD, D,D)  : 

14,2). (8) 

(DD, DD, D) : 

(9) (8,8). 

(DD, DD, D) : 

( D , D , F )  : 

(D,D,  FD) : 

(O,F,F) : 

(0 ,  FD, FD) : 

10) (12,0). 

(DD, DD, DD) : 

11) (6,6). 

(DD, DD, DD) : 

(DD, D, FD) : 

12) (9,3). 

(RR, RR, RR) : 

13) (4,4). 

(D, FD, F) : 

(D, FD, FD) : 

(DD, DD, F) : 

(DD, DD, FD) : 

14) (2,2). 

(DD, FD, FD) : 

C(elle2), ~/= --1. 

C(elle2), C(e3]e4 ) = - 1 .  

C(elle2), C(e21e4) : - - 1 "  

C(el[e4), C(e2le3 ) : - 1 .  

C(elle2), C(e2le4), C(e31e4) = - 1 .  

C(elle3), C(el]e4 ), C(e2]e3), C(e31e4), "Y : --1. 

C(el]e3), "~: - 1 .  

C(b21e3)" 

C(b21e3), C(e4le5 ) : - I .  

C(elles), C(e2[e4), C(e3le5 ) : - 1 .  

C(elle2), C(e2les), C(e31e4), C(e4le5 ) : - 1 .  

C(elle2), C(e2[e4), ~ = - 1 .  

C(elle2), C(e21e4), C(e3]e4), C(e3]es), ol, i~ = - 1 .  

C(bzle3), C(elle3), C(elle4), C(e2le3), C(e2le4) =--1 

C(b2le3), C(ezles), C(e41es), ¢e =. - 1 .  

C(ellez), C(elle4), C(ezle3), C(e3le4), ")/= - 1 .  

C(e|le3), C(e2le4), "y = - 1 .  

C(b21e4), C(ellez), C(e2le3), ~/= - 1 .  
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(~5) (0,0) 

( E E F )  : 

FD, FD, F ) :  

(FD, FD, FD) : 

C(bllel), C(b2le3), '~ : - - 1 .  

C(bllel), C(bzle3), C(elle3), C(elle4), C(ezle3), 

C(e2[e4), ~/--- - 1 .  

C(bJlel), C(b21e3), C(e2le5), C(e4les), ~/--. - 1 .  

C.2. Reading the (super-)Higgs mechanism directly from (C.1)-(C.48) 

In Section 3 we saw how it is possible to interpret the GSO projections of the 

fermionic construction in terms of  lattice shifts and twists and, in the light of the 

previous analysis, we are also able to understand them in terms of  Higgs and super- 

Higgs mechanisms. The Higgs mechanism is present whenever there are shifts due to 

modular coefficients C(e~ le j  ) = - 1 :  they translate in fact into D projections. There is 

a super-Higgs mechanism when there is a shift due to modular coefficients C<b~lej) = 
--1 and/or  C<I,,IF) = --1 (by symmetric difference, the set F can be seen to assign 

the boundary conditions of  the sixth circle of  7 -6, which in the notation of  Section 3, 

Eq. (3.5),  are (y,  6 ) ) .  According to this interpretation, we see that the missing massless 

states still belong to the string spectrum, and there are corners in moduli space in which 

some or all of  them become massless. On each N = 4 sector, besides the GSO projection 

that reduces the number of  states, starting from a maximum of sixteen, there is also in 

action a GSO projection on the world-sheet chiralities, which determines whether such 

states are hyper- or vector multiplets. By looking at formulae (C .1 ) - (C .48) ,  which 

express the quantity Nv ± Nn for each one of  the 48 twisted (super)sectors, we can see 

that in each sector the GSO projection splits into a product of three factors: the first two 

factors, which determine whether a given twisted supersector provides massless states 

or not, can be translated in terms of  lattice shifts. The modular coefficients entering the 

first factor in square brackets determine the shift in the first circle of the corresponding 

untwisted toms, while the shift in the second circle is determined by the coefficients 

entering the second square brackets. The product of  coefficients after the square brackets 

translates into a shift in the twisted T 4. A shift on a twisted lattice is directly related 

to the sign of  Nv - Nn. The coefficients inside the square brackets therefore determine 

whether such states are massless or massive, while the coefficients out of  the square 

brackets determine whether the massless states are hyper- or vector multiplets. 

Appendix D. Classification of partition functions 

The classification of  the "partition functions" can be easily carried out by observing 

that the situations listed in (4.1),  (4.2), (4.4) and (4.5) are in a one-to-one correspon- 

dence with the number of  massless multiplets, no matter whether they are hypermultiplets 

or vector-multiplets, of  the corresponding twisted sector. The classification of "partitions 
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functions" therefore amounts essentially to a complete account of  these numbers. There 

is, however, a subtlety, because this method does not allow a distinction between (4.2) 

and (4.3).  In fact, "D"  can always be superposed to "F",  but not all the combinations 

are allowed, because the insertion of  "D" makes sense only when it involves at least 

two circles belonging to two different tori. The result is shown in Table D.I.  In this 

table we did not quote the constructions that differ from the above by an exchange of  

Nv and NH and/or  by a permutation of  the three planes. 

From Table D. 1, it easy to read the number of  supersymmetries that are spontaneously 

broken. When the free action of  a SUSY-breaking projection appears in at most one 

plane (indicated by F or FD),  there is no spontaneous breaking of  supersymmetry. 

When the free action involves two planes, there is a spontaneous breaking of  N = 4. 

When finally the free action involves all the three planes, there is spontaneous breaking 
of  N = 8 .  

Appendix E. Lattice integrals and threshold corrections 

We give below our notation and conventions for the usual (2,2) and (2,2)-shifted 

lattice sums used in the text. The Zz-shifted (2,2) lattice sums are 

F~,2(T, U) = Z e -  u. 'q~p~,gl~pR (E.1) 

where the shifts h and projections g take the values 0 or 1. Here, w denotes the 

shift vector with components (a l ,a2 ,  b ' ,  b 2) and g - (m l ,m2 ,n l , n2 ) .  We have also 
introduced the inner product 14 

g . w = m b  + an ,  w 2 = 2ab , (E.2) 

so that al generates a winding shift in the I direction, whereas b I shifts the Ith momen- 

tum. The vector g is associated to the F2,2 lattice and therefore the vector associated to 

the shifted lattice will be 

h 
p = g + w ~ .  (E.3) 

With these conventions, left and right momenta read 

IU (ml + al h) - (m2 + a2~) + T ( n  1 + b lh)  -~ r g  (/'l 2 n t- b2~)l 2 
P~ 2T2U2 , (E.4a) 

p Z - p ~ = 2 ( m t + a l h )  ( n l + b z h )  . (E.4b,  

14 For wl = (aj, bj ) and w2 = (a2, b2), the inner product is defined as wl • w2 = alb2 + a2bl. 
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Table D. 1 
The contribution to the massless spectrum and lattice sums in the N = 4 sectors of the models 

55 

( NV, NH ) N 1 N2V N 3 N I N 2 N 3 plane 1 plane 2 plane 3 

(48,0) 

(28,4) 

(16,16) 

(24,0) 

1 8 , 6 )  

12,12) 

16,4) 

14,2) 

(8,8) 

(12,0) 

(6,6) 

(9,3) 

(4,4) 

( 2 , 2 )  

(0,0) 

16 16 16 0 0 0 0 0 0 

8 8 12 0 0 4 D D O 

8 8 0 8 8 0 O O F 

8 8 8 0 0 0 D D D 

4 4 10 0 0 6 DD DD 0 

4 8 0 4 8 0 D 0 FD 

4 4 4 4 4 4 D D D 

4 6 6 0 2 2 DD D D 

4 4 6 0 0 2 DD DD D 

2 2 4 2 2 4 DD DD D 

4 4 0 4 4 0 D D F 

D D FD 

8 0 0 8 0 0 0 F F 

0 FD FD 

4 4 4 0 0 0 DD DD DD 

2 2 2 2 2 2 DD DD DD 

2 4 0 2 4 0 DD D FD 

3 3 3 1 1 1 DD DD DD 

4 0 0 4 0 0 D FD F 

D FD FD 

2 2 0 2 2 0 DD DD F 

DD DD FD 

2 0 0 2 0 0 D D FD FD 

0 0 0 0 0 0 F F F 

FD FD F 

FD FD FD 

It  is e a s y  to c h e c k  t h e  p e r i o d i c i t y  p r o p e r t i e s  ( h ,  g i n t e g e r s )  

, .  [;],w =zw [ h ]=,w r-,,1 
2,2 2,2 g 2,2 g + 2 2,2 [_g] 

as  we l l  a s  t h e  m o d u l a r  t r a n s f o r m a t i o n s  t ha t  t h e  e x p r e s s i o n  

w _ 2,2 [_gJ 

z2,2 In? 

o b e y s  

7 - - - + 7 " + 1 "  

1 
3"----4 - - -  " 

T 

[:1 ] 2,2 + g , 

Z w e - r r i ~ - h g z  w 
2,2 ----+ 2,2 • 

( E . 5 )  

( E . 6 )  

(E.7) 

(E.8) 
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The relevant parameter  for these transformations is 

w 2 
a = -~- = a b .  (E.9)  

From expressions ( E . I )  we learn that the integers a t  and b* are defined modulo 2, in 

the sense that adding 2 to any one of  them amounts at most to a change of  sign in 

Z w rlq Such a modification is necessarily compensated by an appropriate one in the 2,2 LIJ " 
rest of  the partition function, in order to ensure modular  invariance; we are thus left 

with the same model. On the other hand, adding 2 to a ,  or b I translates into adding 

a mult iple of  2 to A. Therefore, although ,t can be any integer, only ,4 = 0 and ,~ = 1 

correspond to truly different situations. Only when .4 = 0, is the (2,2) block modular  

invariant by itself, when the sum over ( h , g )  is taken. 

In the case where there are two independent shifts Z2, as in the cases we indicate by 

RR,  modular  invariance requires also orthogonali ty of  the two shift vectors: wl • w2 = 0. 
/~'O,'l ,W2 [hi, h2] satisfies the following equalities: The lattice sum, which we denote by 2,2 Lg~, g2J' 

;] w., [7] 2,2 [gJ ' /'2,2 O, = ['2,2 ' 

(E.10) 

where Wl2 - Wl 4- w2 reflects the action of  the diagonal Z2. We refer to Appendix C 

of  Ref. [ 13] for a detailed discussion of  target space duality. One of  the issues, valid 

when ,4 -- 0, our case of  interest, is that a change in the lattice vector w, which preserves 

modular  invariance (i.e. w 2 / 2  = 0 mod2) ,  amounts to an SL(2,  Z)  transformation 

performed on T and /o r  U, and vice versa. We can therefore fix the lattice shift vectors 

and then derive the general result by SL(2 ,  Z)  transformations. If  we choose wl = 

(0 ,0 ,  1 ,0 ) ,  w2 = ( 0 , 0 , 0 ,  1), the first Z2 translates the momenta of  the first circle 

( insert ion of  ( - l ) m ' ) ,  the second Z2 translates the momenta of  the second (insertion 

of  ( - 1 ) " ' 2 ) .  J5 In this case the lattice sum reads 

/'2,2 [ g l , [ h i ' h 2 ] = ~ - ~ - ' ( - 1 ) m ~ g ~ + m 2 g 2 e x p { 2 7 r i ~ ' ( m l ( n 1 4 " ~ ) 4 " m 2 ( n 2 4 " ~ ) ) g 2 J  raneZ 

TzU2 4 - - -  4. TU n24 .  4. Uml - , ( E . l l )  

By performing a Poisson resummation over the momenta (ml ,  m2), we can express the 

shifted lattice in the Lagrangian formulation. When 

w =  ( w l , w 2 )  = ( ( 0 , 0 , 1 , 0 ) , ( 0 , 0 , 0 , 1 ) ) ,  

we have 

15 Notice that these are the same translations as were introduced when projecting with D (3.12). 



Z22[ hi '  
' gl, 

where 

Z22[ n l (h l ) '  
" ml(gl) ,  
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h21 1 [h i (h i ) ,  n2(h2) ] 
g2 = 17114 ~ Z Z2,2[ml(gl) ' m2(g2)J '  

(ml ,hi) (m2,n2) 

n2(h2) ] = (Im'r)--1 V/~[Gij 
m2(g2)J 

x exp [_.rrTi, (mi + nfr)(mj + nj ¢) ] 
• i - -dm-;  " 

In the above expression, the tensor T/j is defined as 

Tij = Gij + Bi.i , 

where 

( I o  ) ImT ( l R e U )  
0 - T Gi/= ImU ReU Iul 2 Bij = ImT ' ' 

.and 
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(E.12) 

(E.13) 

(E.14) 

(E.15) 

hi (E.16) m i E z +  gi2 ' n j E Z + ~ .  

Relations (E.15) can be inverted giving T and U as functions of Bij, Gij: 

G12 . ~  (E.17) 
T = - B I e + i ~ ,  U = ~ I 1  + t  G,~ ' 

In terms of the metric Gq and the antisymmetric tensor Bij, the argument in the expo- 
nential of (E.13) becomes 

(mi + niT) (m/ + n.i~) 
- zrGij ImT + 27riBij mini. (E. 18) 

By using the identity 

- - -  e-  7r ~ eiCr(am+bn +ran) 0 (E.19) 
b b (re,n) 

it is easy to prove that the equality (3.11) 

F2'2 [gl, g2 Z eirr(a'g'+bd'l+hlg')eiTr(a2g2+b2hz+h2gz) tg [a2] 
al,01,a2,t~ bl [b2j 

(E.20) 

holds for w = (Wl, w2) = ( (0, 0, 1,0),  (0, 0, 0, 1) ) at the particular value of moduli 

To = i, Uo = i. (E.21) 

Notice also that this is the self-dual point. 
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Table E. 1 
The nine physically distinct models with a = 0 

Case a b i j 

I (0 ,0)  (1,O) 4 2 
II (0, O) (0, 1) 4 4 
III (0,0) (1, 1) 4 3 
IV (1,0) (0,0) 2 4 
V (0, 1) (0,0) 2 2 
VI (1, 1) (0,0) 2 3 
VII (1,0) (0, 1) 3 4 
VIII (0, 1) (1,0) 3 2 
IX (1,-1)  (1, 1) 3 3 

We recall here the integrals of  shifted lattice sums. If  there is no shift, we have [ 31 ] 

- - 14 1~7 ( U )  14) - log 8~ 'e l - r  f (F2,2(T,U) 1) = log(T21r/(T)  U2 V ~  (E.22) 

In the case where there is only one Z2 shift, as in expressions (4.2),  i.e. when w - 

(Wl, 0),  we have 

w ) /'2,2 [~] (T,U) - 1 = - l o g  (T21Oi(Z) 14g2loj(g)l  4) - - l o g - -  
\(h,g) 

,n.e 1 -~' 

6 , / 5  ' 

(E.23) 

where the relation between the shift vector Wl = (a,  b) and the pairs ( i , j )  is given in 

Table E. 1. 

For the other cases, given in Eqs. (4 .3 ) - (4 .5 ) ,  the integral is obtained by taking the 

proper combination of  (E.22) and (E.23).  We collect here the results, including also 

the infrared running. Modulo an integration constant, the result is 

Ms/tX - 3 log(Ir/(T)1419"](U)14T2U2) , (E.24) I ( 0 )  = 3 l o g  2 2 

lW ( V) = log M2s/ I.t 2 - log(IOi(T)  1410j( U)14T2U2), (E.25) 

1 IW ( FO ) = log M2s/l* 2 - ~ log(lOi(T) [4[Oj(U)14T2U2) 

--~ log([Ok(T) 14lOe(U)14T202), (E.26) 2 

IW ( O ) = 2 log M2s/ tZ 2 - 3 log(Ir l (T)  14lrl(U)]4T2U2) 

_ 1  2 log(IOi(Z)  1410j(U)14T2U2), (E.27) 

IW(DD) = 3 log M2/I x2 - 3/4  log(Ir / (T)  [41T](U ) 14T2U2) 

3 
1 - a  ~ log( IOio (Z)laIoj,~ (U)14T2U2) .  (E.28) 

a= l  

In expression (E.26),  the first term is due to the integration of  a lattice with only 
one Z2 shift, w = ( w l , 0 ) ,  and the dependence of  the pairs ( i , j )  on wl is given in 
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Table E.2 
The six physically distinct models with w i • wj  = 0 '¢i, j = 1,2 
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Case w I w 2 

(i) (0 ,0 ,  l ,O) (0, 0 ,0,  l)  
(ii) (1,O,O,O) (0, l ,O,O) 
(iii) ( l ,O,  O, l)  ( 0 , - l ,  1,O) 
(iv) (1,O,O,O) (0, O, O, l) 
(v) (0,0, 1,O) (0, l, 0,0) 
(vi) (0,0, 1, 1) (1,-1,0,0) 

Table E. i .  The second term is due to the integration of a lattice with a shift specified 
by w ~ = w~ + w2, where wi is the same as in the first term and w2 is a vector in an 
independent direction. Modular invariance requires w~ = (wi + w2)2 = 0. The pair (k, g) 

can be anyone of  Table E.1, with the only constraint (k,g) -~ ( i , j ) .  
In the case of  two Z2 shifts, as in (E.28),  there is a sum of three terms, a = 1,2, 3, 

which refer respectively to the shifts given by the vectors (Wl,W2, Wi + w2). The 

requirement of  modular invariance reduces the number of  possibilities to the six given 

in Table E.2. 

Appendix F. The helicity supertraces in the type II asymmetric orbifolds 

As discussed in Section 4, the helicity supertraces are defined in terms of the four- 
dimensional helicity A as 

B2n -= S t r  A. 2n . (F. 1 ) 

In the f ramework of string theory, the physical four-dimensional helicity is the sum of the 
contributions of  the left- and right-movers: A = AL+AR. The supertraces are computed by 

acting on the helicity-generating partition function Z (v, ~) with the differential operators 

that represent //L (AR): 

I 1 
~L -- "~/~9t,  , ~-R ---- - - ~ / 6 3 ~  - ( F . 2 )  

In the type II asymmetric  orbifolds of  Section 5.3, the contribution of the right-moving 
fermions cannot be cast directly in the form (4.14) (with H 2 = G 2 = 0).  In order to 
compute the helicity supertraces we must start from the expression 

a ,  ( _ o _ o + . o  r _.Ol 
Z~ b,G ° ( fJ ) -  ~4 0 ( ~ ) 0  D 0 b+GO OLb_Goj. 

The helicity-generating partition function reads 

(F.3) 
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z ( v ,  rO - 
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H F H o 
~:(U)~(t~) 1 F6,6[GV:GO ] 

HF,GF HO,G o ]r/] 12 

x -2 Z_.,' ' L-, L Go (v) R[b, G°J (~) ' 
a,b 

(E4)  

where Z~ [~] (v) is the same as expression (4.13), with H 2 = G 2 = 0 and arguments 
( H  °, G °) instead of ( H  l , Gl) .  

El. The helicity supertrace B2 

The only non-vanishing contribution to B2 can originate from the sectors of the 
orbifold for which ( H  °, G °) 4: (0, 0). In these sectors, there is a constraint, coming 

from the twisted boson character, which is non-vanishing only for (HF, G F) = (0 ,0)  

or ( H  F, G F) = ( H  °, G°). When ( H  F, G F) = (0 ,0) ,  we get 1/2 of the contribution of 

one N = (2, 2) sector of the corresponding type IIA symmetric orbifolds, which is zero 
because of the non-complete saturation of the fermion zero-modes. When ( H  F, G F) = 

( H  °, G °), we get an identical contribution. In order to see this, we redefine the arguments 
in (F.3) as 

~ +  H°---~ A,  [ ~ + G ° ~  B.  (F.5) 

After this substitution, we use the Riemann identity and recast the right-moving fermion 

contribution 

- ~ - a H ° H o 

/Lb 

(E6)  

as 

 E;I . o  
(F.7) 

Also the contribution of this term therefore vanishes, due to the non-complete saturation 
of the fermion zero-modes. 

F.2. The helicity supertrace B4 

In these orbifolds, all the N = 4 sectors, namely 
(i) the N = (4 ,0)  sector with (H°,G °) = (0 ,0) ;  

(ii) the N =  (2 ,2)  sector with (H°,G °) 4: (0 ,0)  and (HF, G F) = (0 ,0) ;  
(iii) the N = (2 ,2)  sector with (H°,G °) 4: (0 ,0)  and (HF, G F) = (H°,G°), 
contribute to B4. In the first sector the contribution is given by (,~4). We obtain 
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3 1 ( ) a+b+ab+aGF+bGF+HVG r 
(A4)- 16 .012 Z Z - 

a,b (HF,G ~) 

~ -  Z 6,6 [GF, G ° (F.8) 
H D ,G D 

(rid indicates the number of D-projections). This expression is a series that starts with 
a square-root pole, 

a - i  q- l~2 + ao + . . .  (F.9) 

The term ao gives the massless contribution, which turns out to be constant in the 
full space of T AS, U As, the moduli in the vector multiplets, but not in the space of 
the moduli belonging to hypermultiplets. At a generic point in moduli space, we have 
ao = 6. When (H °, G °) =~ (0, 0), B4 amounts to 6(A2A2). In this case, the arguments 
(H F, GF), as we saw, are constrained. One therefore proceeds as for the computation 
of B2, by splitting the sum over (HF, G F) into the two terms (H~,G F) = (0,0) and 
(H F, G F) = (H °, G°). After the same substitution of variables as in (E5), one obtains 
that the contribution of each one of the two terms is equal to the contribution of one 
complex plane of the symmetric orbifold. In these sectors, the arguments (H D, G D) are 
constrained as well: (H D, G °)  = (0,0) or (H D, G °)  -- (H °, G°). One therefore gets 
the various expressions: 

6(A2~.2} : 36F~3)[00 ~] NV = 16; (F. 10) 

1F(3) 
=12 \ 2  2,2 2 2,2 [°o',:]) 

(h,g) 

= 1 2 ~ ' ~ '  ~,4 2,2 0 , 0 J  q-4" 2,2 O,,g) g, OJ 

° ~--2,2 [~ I I 0, N v = 4 ;  (F. 12) 0, 4 2,2 g, g 3 /  

' [a = 12 Z F(3~2,2 N v  = 0 . (El3)  
(h,g) 

References 

[ 1 I C. Vafa and E. Witten, Nucl. Phys. B 447 (1995) 261. 
[2] H. Kawai, D.C. Lewellen and S.H. Tye, Nucl. Phys. B 288 (1987) 25. 
131 1. Antoniadis, C.P. Bachas and C. Kounnas, Nucl. Phys. B 289 (1987) 87. 
14} I. Antoniadis and C.P. Bachas, Nucl. Phys. B 298 (1988) 586. 
15] S. Ferrara and C. Kounnas, Nucl. Phys. B 328 (1989) 406. 
161 R. Gopakumar and S. Mukhi, Nucl. Phys. B 479 (1996) 260. 
17] D.R. Morrison and C. Vafa, Nucl. Phys. B 476 (1996) 437. 
181 G. Curio and D. Lust, Int. J. Mod. Phys. A 12 (1997) 5847; 

B. Andreas, G. Curio and D. Lust, Nucl. Phys. B 507 (1997) 175. 



62 A. Gregori et aL/Nuclear Physics B 549 (1999) 16-62 

[9] G. Papadopoulos and P.K. Townsend, Phys. Lett. B 357 (1995) 300. 
[10] A. Sen and C. Vafa, Nucl. Phys. B 455 (1995) 165. 
[11] C. Bachas and E. Kiritsis, Nucl. Phys. B (Proc. Suppl.) 55 (1997) 194. 
[12] C. Kounnas, Nucl. Phys. B (Proc. Suppl.) 58 (1997) 57; 

E. Kiritsis and C. Kounnas, Nucl. Phys. B 503 (1997) 117. 
[131 A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, Nucl. Phys. B 510 

(1998) 423. 
[14] C. Kounnas and A. Kumar, Nucl. Phys. B 511 (1998) 216. 
[15] R. D'Auria, S. Ferrara and C. Kounnas, Phys. Lett. B 420 (1998) 289. 
[16] S. Kachru and C. Vafa, Nucl. Phys. B 450 (1995) 69; 

A. Klemm, W. Lerche and P. Mayr, Phys. Lett. B 357 (1995) 313; 
S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nucl. Phys. B 459 (1996) 313. 

[171 P.S. Aspinwall and J. Louis, Phys. Lett. B 369 (1996) 233. 
[181 S. Ferrara, J. Harvey, A. Strominger and C. Vafa, Phys. Lett. B 361 (1995) 69, hep-th/9505162. 
[19] A. Gregori, C. Kounnas and M.P. Petropoulos, Nucl. Phys. B 537 (1999) 317; 

A. Gregori, hep-th/9811096, to appear in Proc. 6th Hellenic School and Workshop on Elementary 
Particle Physics, Corfu, Greece, 6-26 September 1998. 

120} A. Gregori. C. Kounnas and P.M. Petropoulos, hep-th/9901117. 
[21] E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. de Wit and L. Girardello, 

Nucl. Phys. B 250 (1985) 385; 
B. de Wit, P.G. Lauwers and A. Van Proeyen, Nucl. Phys. B 255 (1985) 569. 

[22] D. Dijkgraaf, E. Verlinde and H. Verlinde, Commun. Math. Phys. 115 (1988) 649. 
[23] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Nucl. Phys. B 540 (1999) 87. 
[24] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Phys. Lett. B 385 (1996) 87. 
[251 A. Klemm and S. Theisen, Nucl. Phys. B 389 (1993) 153. 
[26] J.A. Harvey and G. Moore, Phys. Rev. D 57 (1998) 2329. 
[27] E. Kiritsis and C. Kounnas, Nucl. Phys. B 442 (1995) 472. 
[28] J.A. Harvey and G. Moore, Nucl. Phys. B 463 (1996) 315; 

P.M. Petropoulos and J. Rizos, Phys. Lett. B 374 (1996) 49. 
[29] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Nucl. Phys. B 483 (1997) 141. 
[30] 1. Antoniadis, C.P. Bachas, C. Kounnas and P. Windey, Phys. Lett. B 171 (1986) 51. 
[311 J. Dixon, V. Kaplunovsky and J. Louis, Nucl. Phys. B 355 (1991) 649. 


