
c&A 23 January 1997 

PHYSICS LElTERS 6 

ELSEVIER Physics Letters B 392 (1997) 30-38 

Coloured black holes in higher curvature string gravity 

P. Kanti a,‘, K. Tamvakis bv2 
a Division of Theoretical Physics, Physics Department, University of loannina, Ioannina GR-451 10, Greece 

h CERN, Theory Division, 1211 Geneva 23, Switzerland 

Received 3 September 1996; revised manuscript received 28 October 1996 

Editor: L. Alvarez-Gaumt 

Abstract 

We consider the combined Yang-Mills-Dilaton-Gravity system in the presence of a Gauss-Bonnet term as it appears in 
the 40 Effective Superstring Action. We give analytical arguments and demonstrate numerically the existence of black hole 
solutions with non-trivial dilaton and Yang-Mills hair for the particular case of SU(2) gauge fields. The thermodynamical 
properties of the solutions are also discussed. 

PACS: 04.20.Jb; 04.70.B~; 11.15.K~: 97.60.Lf 

1. Dilaton gravity with a Gauss-Bonnet term and 
an W(2) Yang-Mills potential 

The effective theory of gravity resulting from String 
Theory [ 1 ] at low energies includes important modifi- 
cations of Einstein’s theory due to the presence of the 
extra degrees of freedom such as dilatons, axions and 

Yang-Mills fields. The loop-corrected Superstring Ef- 
fective Action through the contribution of the Gauss- 
Bonnet term leads to the existence of singularity-free 
cosmological solutions [2,3] as well as to the exis- 
tence of new dilatonic black holes [4,5]. The black 

hole solutions found possess hair [ 61 outside the hori- 
zon as anticipated from considerations that are general 
and perturbative in CY’ [ 7,8]. The existence of black 
holes with non-trivial hair has been demonstrated in 
the Einstein-Maxwell-Dilaton system [ 9,101 and the 
Einstein-Yang-Mills (-Dilaton-Axion) system [ 111. 
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In the present article we shall extend the analysis of 
Ref. [4] by including an SU( 2) Yang-Mills field. 
We find new black hole solutions of the combined 

gravity-dilaton-SU( 2) Yang-Mills system in the (cru- 

cial) presence of the Gauss-Bonnet term. 
Let us consider the heterotic string effective action, 

ignoring for simplicity moduli and axion fields. Fol- 

lowing the notation of Ref. [4], we have 

(1) 

where cy’ is the Regge slope, g2 is some gauge coupling 
constant and Fpv is the Yang-Mills field strength. The 
Gauss-Bonnet term is defined as 

R& = RpvprRpvpa - 4 R,, RpV + R2 . (2) 

We shall consider only the contribution of an SU(2) 
Yang-Mills field, assuming trivial values for all other 
Yang-Mills as well as “matter” fields. 
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At this point we shall make a spherically symmetric 

ansatz for the space-time metric 

ds2 = -erdt2 + eAdr2 + r2(d8* + sin2Bd(p2) . (3) 

The functions I‘ and A depend solely on the radius 

r. For the W(2) Yang-Mills potential we shall adopt 
the magnetic ansatz [ 111 

*,*sw -----p- [ -?,df3 + FS sin Odcp] , (4) 

where e is an W(2) gauge coupling constant, w = 

w(r) is a radial function, and (+,, 50, Frp) is the anti- 

Hermitian SU( 2) basis expressed in polar coordinates; 
e.g. 6,. = i . 7, and [F,, +b] = &,bc+c with the indices 

ranging over (r, 0, qo) . The field strength correspond- 

ing to (4) is 

F= G [ -?,drAd/3++s sin6drAdppl 

( 1 - w2) - +, sin 8 de A dp . 
e (5) 

2. Some analytical considerations 

Using the static, spherically symmetric ansatz (3) 

and (5), the dilaton and Yang-Mills equation as well 

as the (tt), (rr) and (00) components of Einstein’s 
equations resulting from ( I) take the form 

r’ - A’ 2 
qY’+cb’(-_+;I 

cute4 
= g2r~ ( T’h’e-“+(I-e-“)[T”+f(r’-*~)I 

I W’Z I (1 - w2pe* 
,2 2e2r2 > 

(6) 

r’ - A’ 
w” + w’ ( -y-- +4’) + 9 

w(’ - w*> eA = 0 

(7) 

A’ 1+ 
( 

cY’e9 
2~,rql’( 1 - 3e-“) 

> 

iYp 1 - eA Lu’e+ 
=---+- 

4 
+- (#‘+4’*)(1 -e-*) 

r g2r 

afed 
+- ( M;z I (1 -w*pe* 

2g2r tJ2 2e2r2 (8) 

r’ 1+ ( a’e# 
2g~r4’(1-3e-*) =$+CZ_! 

) r 

ff’e4 
+- ( w’2 -- 

2g2r e2 

(1 - wye,, 
2e2r2 

) 
(9) 

+ 4/r’ -2.-(r’ _ 3~‘) + -!CC!_- 
> 2g2e2r4 

(l-w?) . 2 ,A 

(‘0) 

The corresponding components of T,, are 

(g5”+(6’*)(1 -e-“) 

Due to the presence of the higher curvature terms, 
the assumption of positive definiteness of the time- 
component of the “energy-momentum” tensor breaks 
down. This point is crucial for the evasion of the no- 

hair conjecture [6] and the existence of new black 

hole solutions. 
Let us now study our system at infinity. Demanding 

asymptotically flat solutions, we expand the functions 
eA”‘) er(r) , qb(r) and w(r) in a power series in l/r 
and substitute them in Eqs. (6) - ( IO). From Eq. (7) in 
the first order we take the constraint: w, ( I - w&,) = 
0. As a result, the only two options allowed are w, = 
Oandw, = Z!C 1. The first leads to wi = 0 in the second 
order, to w2 = 0 in the third order and eventually to 
the vanishing of all w,‘s. This case corresponds to an 
Abelian potential 



32 P. Kanri, K. Tamvakis/Physics Letters B 392 (1997) 30-38 

(12) 

with magnetic charge l/e. The other option, namely 
W - fl, leads to non-vanishing w,‘s and corre- 

sptn, to the non-Abelian sector of SU(2). In this 

case the radial magnetic field is B, N l/r3 implying 

that the Yang-Mills charge Q~M vanishes at infinity. 
We shall study the non-Abelian case in this article and, 
thus, make the choice woo = f 1, which leads us to the 

following asymptotic form of the solution near infinity 

e*(‘) = 1 + E + 16M2 - D 

4r2 
(13) 

r 

J(r) = 1 _ 2M + 0 

r 0 _$ 

4dr)=&b+~+~+O -!p 0 
w(r) =f 1 +%+O ( 1 

r ( 1) y5 ; 

(14) 

(15) 

(16) 

M is the ADM mass and D is the dilaton charge de- 
fined over a two-sphere at infinity as [IO] 

D = -; 
s 

d=C’V,+. (17) 

Let us now direct our attention to the other end of 

the allowed spatial range, i.e. near the event horizon. 

We note that Eq. (9) can be solved for e* as 

e*=-P+$FG 
2a ’ 

where 6 = f I and 

(18) 

&e’J (1 - w2)= 
Ly=l-- 

3cr’e$ 

4g2r2 e2 
-----I+# ’ y= zg2 

p_ “;r= -1 -l?(r+ 
cr’e4c#i 
-In3)+$$. (19) 

As a result e*, as well as A’, can be eliminated from 
Eqs. (6)-( 8) and (10). Choosing any three of them, 
since only three of them are independent, we obtain 
the system 

,‘f=_$ (20) 

(21) 

(22) 

where d, dl, d2, d3 are complicated functions of #, 
I”, w’, 4, w, and r. Demanding that 4: and wt are 

finite, we obtain from (20) and (22) the constraints 

&2 e2@‘,, Chrh (e 24s + e4”ri + ri) - 8e4”ri] 

’ + q$ [ e44h Ci + 4e4” Chrh (e 24r + 2e4”ri + ri) 

- 16ri] - e34hCir,, + 24e 24ifChri + 8e4” Cp-z 

- 48e”“ri = 0 (23) 

and 

w; = - 
wh (1 - wi) (1 + e4”f#h/2rh) 

rh (1 - e4hCh/4ri) ’ 
(24) 

where Ch = (1 - wi)=/e2. Since cu’/g2 always mul- 
tiplies e4, we may eliminate it from our calculations 

and restore it in the end. Substituting (23) and (24) 

in Eq. (21) gives 

r/f = -r12 + o( i ) + r’ =-&+0(l). (25) 

Expanding Eq. ( 18) near the horizon in powers of I’, 

for S = +l we obtain 

eA _ 2r2 (2r + e4@) 

4r2 - eW 
r’+cw, (26) 

while the choice S = -1 leads to en = 0( I), which is 
not a black hole solution. Taking into account all the 

above, we may conclude that the unique black hole 
solution with #, @‘, w’, w” finite and I’ -+ 00 near 

the horizon has the expansion 

er(‘) 
=yl(r-rh)+C3(r-rh)2 (27) 

e -*(‘) = Al (r - rh) + C3(r - rh)= (28) 

4(r) = +h + 4; (r - rh) + q (r - rh)= 

+ C3(r - rh)3 (29) 

W; 
w(r) = WA + w; (r-r-h) + 2 (r - rh)= 

+ O(r - rh)3, (30) 

where rh, $h, wh and yi are free parameters while 
from Eq. (26) we get 

(31) 
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Note that the constraint (23) is an algebraic second 

order equation for #,, which has two real solutions, 
&, only if its discriminant is positive. This ultimately 

gives 

t Ch - Z+- ) (Cb - z- ) 2 0, (32) 

where 

z* = 2 ]-(2+3x+3x2) 

&(2+3~+3x~)~+&~-l] (33) 

having set x = cr’~@‘~/g~r~. When x 5 l/&, or 

(34) 

the discriminant is always positive. This has the ob- 
vious interpretation that if the Gauss-Bonnet effective 

coupling a’&/$ is smaller than the critical value 

t-i/&, there is always a dilatonic black hole solu- 

tion. The same constraint was derived in the case 

of Einstein-Dilaton-Gauss-Bonnet theory [4]. There 
seems to be, however, an additional possibility in the 
present case. The inequality (47) can be true either 
when ch > z+ > z- or when ch 5 z- < z+. Since, 

however, z_ < 0 and ch > 0, the latter case is impos- 
sible and only Ch 2 z+ could, perhaps, be realized. 

Then, for x 2 1.11949, the inequality 0 < z+ < 1 
is true. Later we shall justify the choice Wh < 1, or 

equivalently ch < 1. Thus, solutions could also be 
present if the effective Gauss-Bonnet coupling is in 

the region 9 2 1.11949 ri. Nevertheless, no solu- 
tions were found in this new region. 

Before we proceed to describe our numerical pro- 

cedure and finally plot our solutions, let us compute 
analytically the temperature and entropy of the black 

hole. Introducing the Euclidean version of our metric 

ds2 = e’dT2 + eAdr2 + r2(d82 + sin2 8dq2) , (35) 

where r is a periodic coordinate ranging over the in- 
terval (0, p> , we define the temperature as [ 8,121 

v+x- 
=x7 (36) 

where K is the surface gravity of the black hole. Ac- 
cording to Gibbons and Kallosh [ 121, the above def- 
inition of temperature as the inverse of the period of 
the Euclidean time is still valid even in the presence of 

higher curvature terms such as a Gauss-Bonnet term. 

For such a class of metrics one can always find a 
change of coordinates where the apparent singularity 

at the horizon is removed. On the other hand rearrang- 

ing the equations of motion, we obtain 

d _ 
dr 

pw(r’ _ 0’) r2 

_ lemecwq(~’ _ r’) (1 _ e-1’) 
g2 

+ e-*qS’I+r] 
> 

= 0. (37) 

Eq. (37) is an identity. Integrating over the interval 

(rh,r), we obtain 

(y’e+” 
2M+D=&%(ri+-), 

g2 
(38) 

which gives 

T = Tsw 
rh (2M+ D) 

(ri + 9) 
(39) 

in terms of the temperature of a Schwarzschild black 

hole TSW = 1/87rh4 = 1/4rrh and the asymptotic 
parameters M and D. Since T is a function of positive 
constants, it never vanishes. As a result, there is no 

mechanism to prevent the complete evaporation of the 

black hole. However, this is indeed the case only when 

the parameters rh and @h obey the constraint (34). 
If, due to thermal evaporation, the parameters of the 
black hole stop to obey the above constraint, then this 
gravitational system can no longer be described by the 

concept of a regular black hole. 
The entropy S can be derived from the free energy 

F(P) of the system as 

s=p [y-F]. (40) 

The free energy is defined as F = IE/~, where IE is 

the Euclidean version of the action 

1E = s d4x,&C - 
s 

d4x,/i K , (41) 
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where K is a suitably subtracted boundary term that 

comes from R and R&. We may perform the time and 

angular integration in (41) and, by using the equations 
of motion, the action takes the form 

IE = 27$ p-*)J* 
[ 
(r’ - 4’) F-2 

Lute4 de4 00 

+- 82 (1 -e-*1 (r/+4’> - g2 - reeAT’qb’ . I r/P 

(42) 

Substituting again the expansions near the horizon as 
well as near infinity and making use of the definition 

(40)) we obtain 

s=? (I+$$), (43) 

where AH = 4mi is the area of the event horizon and 
Ssw = A”/4 is the Bekenstein-Hawking formula [ 131 

for the entropy of the Schwarzschild black hole. 
We note from Eq. (1) that in the limit e5 --) -cc 

the effective coupling cu’e4/g2 vanishes. Then, the 

contribution of the Gauss-Bonnet term and the SU( 2) 
potential to the equations of motion becomes trivial. 

We can show [4] that in this case the only accept- 
able solution is the standard Schwarzschild one with 

constant dilaton field, in agreement with the no-hair 
theorem. In this limit, we expect the temperature T 

and the entropy S of the coloured black hole to ap- 
proach the corresponding Schwarzschild ones, TSW 

and Ssw. As we can see from (39)) since in this limit 

D + 0, and (43)) this is exactly what we obtain. 

3. Numerical considerations and conclusions 

Taking into account the constraints (23)) (24) and 
(3 1) we may conclude that the parameters of the prob- 
lem are rh, +h, wh and yr . Note that the equations of 
motion (6)-( 10) do not involve r(r) but only r’(r). 
The final integration determining I’(r) involves the in- 
tegration constant yt which will be fixed by demand- 
ing asymptotic flatness through ( 14). 

Considering the Yang-Mills equation at the horizon, 
we obtain 

( eeA>iwi + 
wu-w;) =. 

4 
+ signw; =SignWh (Wi - 1). (44) 

According to this equation, if we choose the initial 
value wh to be greater than 1, then wiZ > 0, which 

means that w (r) increases with r. If we want to con- 
strain w (r) at infinity by w (cc) = l 1, then a local 

maximum must occur at some point r = Y,. At this 

point we would have w ( r,y) > 1 and w’( r,y) = 0. Us- 
ing again the Yang-Mills equation, we obtain 

signw”(r,) =signw(r,T) [w2(r,y> - 11. (45) 

If w (rs) > 1, then w”(r,) > 0, which means that 
we can have only a local minimum at r,?. As a result, 

the initial value of w(r) must fall inside the inter- 

val ( -I, 1) . Moreover, we observe that the equations 

of motion remain invariant under the transformation 

w + -w. Thus, it would be sufficient to choose initial 

values of Wh in the interval (0,l) . 
The equations of motion (6)-( 10) are invariant un- 

der the combined transformation 

$-++_t&, r-+re@oi2. (46) 

As a result, it is sufficient to vary only one of rh 

and &,. Furthermore, we may use the above invari- 
ance to set a unique mass scale for all solutions by 
imposing the asymptotic condition &, = 0. This re- 

quires a shift 4 -+ 4 - +oo accompanied by a rescal- 
ing r + re -@‘=i’. Since the radial coordinate has 

been resealed, the other two asymptotic parameters, 

M and D, are also resealed according to the rule M + 

Me-4-i2 and D --t De- 4mi2. Similarly, the temper- 
ature T is also resealed as T + Te$-j2. 

In order to perform the numerical integration it is 

convenient to set $ = e = 1. We fix the value of the 
horizon at rh = 1 and start by giving initial values to 
the remaining parameters dh and wh. Starting from 

the expansions (27)-( 30), at r = r-1, + E with E = 
0( IO-‘), we integrate the system (20)) (2 1) towards 
r --f co, using the fourth order Runge-Kutta method 
with an automatic step procedure and an accuracy of 
10e8. The integration stops when the flat space-time 
asymptotic limit ( 13)-( 16) is reached. In the sec- 
ond allowed region of the Gauss-Bonnet effective cou- 
pling, defined by (47), and for the choices &I = 4: 
and &, = 4’_ we found solutions near the horizon 
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Parameters of solutions for rh = I 
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‘bh 

- I .o 

-2,s 

-5.0 

n 

I 
2 
3 

I 
2 
3 

I 
2 

3 

Wh 4Jcn rh 

0.255948298 -1.4468 I 2.06144 
0.042444284 - I .43634 2.05067 
0.0069 I6638 - 1.43605 2.05038 

0.262218961 -2.60644 3.681 13 

0.043590755 -2.60493 3.67836 
0.007101253 -2.60489 3.67828 

0.265648 18 I -5.00906 12.2378 
0.0442 12029 -5.00895 12.2371 

0.007205569 -5.00892 12.2369 

2M D r 

2.21664 0.3 I973 0.03568 
2.28005 0.30489 0.03576 
2.28 195 0.30477 0.03.577 

3.76146 0.14965 0.02122 
3.76249 0.14371 0.02123 
3.76395 0.14360 0.02 I24 

12.2629 0.0427 I 0.00649 
12.2713 0.041 I2 0.00650 

12.2730 0.041 I? 0.006.50 

with regular and non-regular behaviour respectively. 

However, in both cases the solutions lacked the right 
asymptotic behaviour ( 13)-( 16) near infinity. 

Making the choice #i, = &_ , which corresponds to 

the choice di = c$!+ for the Einstein-Dilaton-Gauss- 

Bonnet theory, we were able to find regular asymp- 

totically flat black hole solutions in the first allowed 
region defined by (34). For every initial value of the 

shooting parameter +I,, there is a discrete family of 

initial values of wh which results in a discrete family 

of asymptotically flat black hole solutions character- 

ized by the number n of zeros (nodes) of w(r). We 
find that as 41, -+ -cc the variation of the dila- 
ton field c$( r) with r becomes weaker and the dilaton 

eventually behaves as a constant. The dilaton charge 
D moves towards zero and the horizon takes on its 

Schwarzschild value ~1, = 2M. As we expect, the tem- 

perature T and the entropy S also take on the corre- 
sponding Schwarzschild ones. It should be noted that 
these solutions in the limit e -+ 00 or equivalently 
UT -+ I reduce to the ones previously found 141 in the 

absence of Yang-Mills field. This has been checked 

numerically. In the Table 1 we display three sets of 
corresponding values of +I,, wf,, and 4,. The dis- 
played values of T/,, 2M, D, and T are the resealed 
ones, corresponding to imposing the condition 4, = 

0 at the end of our computation. Plots involving the 
dilaton field (6(r), for three different coloured black 

hole solutions, after the imposition of the asymptotic 
condition, are given in Fig. 1. Fig. 2 depicts the Yang- 
Mills function w of the n = 1,2.3 coloured black hole 
solutions as well as the metric function g,,(r). The 
dependence of the other metric function g,,(r) is pre- 

o.51 

“1 10 10" 103 
r 

Fig. I. Dilaton field for coloured black hole solutions. Each curve 

corresponds to a different solution characterized by a different 

initial vaiUe of #h. 

w(r) 

1 10 101 103 10' LOS 106 10' 
r 

Fig. 2. The Yang-Mills function w of the n = 1,2,3 coloured black 

hole solutions as well as the metric component R,, for ~1, = I and 

4h=-l. 

sented in Fig. 3. 
As we have already mentioned, the Yang-Mills 

charge vanishes at infinity, so no new charge associ- 
ated with the Yang-Mills field can be defined. As for 
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0' 
1 .oo 1.01 1.02 1.03 

r 

Fig. 3. Dependence of the metric component grr for rh = 1 and 

qb~, = -2. While grr, for q%A = r#~‘_, moves towards an infinite 

value leading to the formation of an event horizon, for c$(, = 4: 

it reaches a maximum value at I-~ and then declines, leaving a 

scalar singularity unshielded. 

the dilaton charge, D, in the case of Einstein-Dilaton- 

Gauss-Bonnet theory 143, it was found to obey the 

relation 

e+Lz ’ 13 e2&m -- ‘y+ D = f(M,&) - (2M) R2 ” +..., 
60(2M)3 j$ 

(47) 

where the function f( M, 4,) follows from a pertur- 
bative, in LX’, calculation. In the present case, where a 

Yang-Mills field has been included, we find numeri- 
cally a similar relation to hold. Unfortunately, no per- 
turbative expression can be obtained in the case of 
Yang-Mills field and we are not in a position to write 

an analytic function of D in terms of M, c,& and w,. 

Nevertheless, this relation can be obtained numeri- 

cally. As a result, D is not an independent parameter 
of the theory. It should be noted that the above rela- 
tion between D and M, in the Yang-Mills case, was 
checked numerically and found to be valid indepen- 

dently of the number of nodes, n, of the solutions. 
In the same region (34) and for the choice C#J; = c$: 

we found solutions that had the right asymptotic be- 

haviour ( 13)-( 16) near infinity and seemed to com- 
prise a second group of regular black hole solutions. 
Examining more closely their behaviour near the hori- 
zon, they were found to possess a much more compli- 
cated structure. This structure is characterized mainly 
by the behaviour of the metric component g,,, which 

is also given in Fig. 3, while the other component, 
g,‘, exhibits a typical black hole behaviour. As we 
move from infinity towards the origin, the solution first 

reaches the value r = rs, around which we may write 
the expansions 

e-* = As + A2 (r - r,y)2 + . . . (48) 

I+=~I +y2(r-r,y) +... (49) 

4 = & + q!((r - r,y) + $(r - r,T)2 + . . . (50) 

w = w,y + wi(r - r,v) + +(r - r,)2 + . . . . (51) 

If we insert these expansions into the equations of mo- 

tion, we obtain a set of constraints that determine ~2, 

K w:* &‘? and WY as functions of the free parame- 

ters h,, AZ, ~1, &, and w,~. The curvature invariant 
R I.lvpaRpVprr near rs was found to be 

R &VP@ 
pw7”=*~(y2+~)2+y 

.I 

4(1 -A,)2 

+ IA 
+ C3(r - r,y) . 

s 
(52) 

We come to the conclusion that the surface r = rs is 

a regular one, whose existence may be interpreted as 

an unsuccessful attempt of nature to form a regular 
horizon. The significance of this fact will become clear 

below. Moving beyond the value r = rs, the solution 
eventually stops at the value r = r,. The asymptotic 

behaviour of the fields near rx is 

e -A =A,+&/=+... (53) 

r’=y1 +y24-+... (54) 

~=~.~+~:(r-r*.)+~:I(r-r.~)3’2+... (55) 

w = w, + w:(r - r,) + wi(r - r,)3/2 + . . . , t-56) 

where again ~2, C/J:, w:, 4: and wi are given through 
the equations of motion as functions of the free param- 

eters AX, Al, yl, +X and w,. The curvature invariant 
R p~paR~v~rr near rx takes the form 

&.wp~RpvPu= ($ (Y,+$‘)~+ a) & 

(57) 

This means that at the value r = r, the solution ends up 
in a pure scalar singularity. Since no regular horizon 
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exists at some value r = rh > rxr we may conclude 

that a naked singularity has been formed at I,. 
For the critical value of &, defined by (34)) the 

two solutions &_ and 4: coincide, which means that 
the branch of regular black hole solutions meets the 

branch of the solutions that describe a naked singular- 
ity. As long as the parameters ~1~ and ~$h of the solu- 

tion obey the constraint (34)) the only acceptable so- 
lution of the equations of motion is the regular black 

hole solution (27)-( 30) with the flat asymptotic be- 

haviour ( 13) -( 16) near infinity. When ~1~ and 41~ be- 

come such - maybe due to thermal evaporation - that 
the constraint (34) is violated, the expansions (27) - 

(30) break down and the solution can no longer be 
described by the concept of the regular black hole. 

Then, the system shifts to the other branch of solu- 

tions, described above, corresponding to a naked sin- 
gularity with exactly the same asymptotic behaviour 

at infinity. 
Alexeyev et al. [5], by using a method based on 

integrating over an additional parameter, were able to 

examine the structure of the black hole solutions found 
in the Einstein-Dilaton-Gauss-Bonnet theory [4] in- 
side the event horizon. According to their results, the 

solution under the regular horizon rh exists only un- 

til the value Y = r,T, where a pure scalar singularity 
exists. Another solution begins from r,, which exists 

only until the “singular horizon” I,. When the Gauss- 

Bonnet effective coupling becomes larger, the distance 

between r,, and rk becomes smaller. Once the critical 
limit (34) is reached, t-1, = rs = rx, and the internal 

structure vanishes. Since the Yang-Mills function w 
always resembles the behaviour of the dilaton field, 
we expect that the inclusion of the SU( 2) Yang-Mills 
potential respects the above internal structure of the 

regular black hole. Actually, the similarity between 
the internal structure of the black hole found by Alex- 

eyev et al. and the structure of the solution describing 
a naked singularity found above is obvious. However, 
the interpretation of rX and r,% is different: while in 

the first case they play the role of a “singular hori- 

zon” and a pure scalar singularity, respectively, inside 
the horizon, in the second case they stand for a scalar 
singularity and an unsuccessful event horizon, respec- 
tively. As a result, we can make the further conjecture 
that the internal structure moves towards the horizon 
as the effective coupling becomes larger, the points r.,, 

rv and r/, merge for the critical value, while for values 

beyond the critical point this structure penetrates the 

horizon and manifests itself as a naked singularity. 
Summarizing we should note that the “hair” found 

are not primary hair in the sense that, although there 

is a non-zero Yang-Mills field beyond the horizon, 

there is no new charge defined and sensed at infinity. 
The situation is analogous to the case of Einstein- 

Yang-Mills where the dilaton and the Gauss-Bonnet 
term were neglected. The dilaton charge appearing in 

our case is not an independent parameter and after 

the imposition of the asymptotic condition & = 0 
depends solely on the mass. 
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Note added in proof 

While the present article was being completed, a 
related article entitled “Dilatonic Black Holes with 

Gauss-Bonnet Term”, by T. Torii, H. Yajima and K. 
Maeda, gr-qc/9606034, came into our attention. 
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