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Comment on ‘‘Solitonlike Solutions of the
Grad-Shafranov Equation’’

In a recent publication the author claims construction
of a new class of solitonlike solutions of the Grad-
Shafranov equation in plane geometry. However, this
construction is based on the mathematically erroneous
(as shown below) choice rp � j�j2�r� for the pres-
sure gradient with � being an analytic continuation of the
poloidal magnetic flux function in the complex plane.
Therefore, the cubic Schrödinger equation considered
by the author is irrelevant to the equilibrium problem
and the Grad-Shafranov equation.

The equilibrium equations considered are [Eqs. (5) [1] ]

�r��rBz� � ẑz � 0; rp�r2�r�� BzrBz � 0;

(1)

where Bz is the z component of the magnetic field; the
functions p and Bz are constant on magnetic surfaces,
i.e., p � p��� and Bz � Bz���. The following forms of p
and Bz are then chosen [Eqs. (13) [1] ]

BzrBz � �2
0�r�; (2)

rp � �2
0j�j2�r�; (3)

and Eq. (1) is extended in the complex plane, thus leading
to the cubic Schrödinger equation [Eqs. (14) [1] ]
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0�1� j�j2��: (4)

A solitonlike solution of (4) is [Eqs. (15) [1] ]

��x; y� � �p sech�x=L�e
	j��0�1=2�0y20�y: (5)

However, relation (3) containing j�j2 is not permis-
sible and leads to inconsistent results. An explicit proof
follows. Taking the curl of (3) yields rj�j � r� � 0,
implying that � depends only on j�j:

� � f�j�j�: (6)

In order that the complex function � be analytic, Eq. (6)
and the Cauchy-Riemann conditions lead to j�j � const
and therefore � � const. Furthermore, even without im-
posing the analyticity requirement upon �, by solely
introducing the polar form of the latter, � �
j�j exp�j��x; y��, Eq. (6) implies that

� � ��j�j�: (7)

Solution (5), however, is inconsistent with (7) [otherwise,
it should hold that x � x�y�]. Therefore, (4) is irrelevant
to the Grad-Shafranov equation; as a matter of fact, the
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real part of (5),

u�x; y� � �p sech�x=L� cos
��0 � 1=2�0y
2
0�y�;

does not satisfy the respective Grad-Shafranov equation
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0�1� u2�u: (8)

A mathematically legitimate choice for rp, instead of
(3), could be

rp � �2
0�

3r�: (9)

This leads to an equation of the form (8) for �. Solving
this equation in the complex plane, however, is a task not
easier than that for real �.

In conclusion, because of the mathematically erroneous
choice (3) for an analytic continuation of �, the cubic
Schrödinger Eq. (4) considered by the author is irrelevant
to the equilibrium problem (1) and to the Grad-Shafranov
equation. Despite this unlucky situation we consider the
idea of the author appealing and, hopefully, successful in
the future if one exploits it in an appropriate setting.
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