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A comparison of cosmological models using recent supernova data
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We study the expansion history of the universe up to a redshift of z=1.75 using the 194 recently
published SnIa data by Tonry et. al. and Barris et. al. In particular we find the best fit forms of
several cosmological models and H(z) ansatze, determine the best fit values of their parameters and
rank them according to increasing value of χ2

min (the minimum value of χ2 for each H(z) ansatz). We
use a prior of Ω0m = 0.3 and assume flat geometry of the universe. No prior assumptions are made
about validity of energy conditions. The fitted models are fourteen and include SCDM, LCDM,
dark energy with constant equation of state parameter w (quiessence), third order polynomial for
H(1+z), Chaplygin gas, Cardassian model, w(z) = w0+w1z, w(z) = w0+zw1/(1+z), an oscillating
ansatz for H(z) etc. All these models with the exception of SCDM are consistent with the present
data. However, the quality of the fit differs significantly among them and so do the predicted forms
of w(z) and H(z) at best fit. The worst fit among the data-consistent models considered corresponds
to the simplest model LCDM (χ2

min = 198.7 for Ω0m = 0.34) while the best fit is achieved by the
three parameter oscillating ansatz (χ2

min = 194.1). Most of the best fit ansatze have an equation of
state parameter w(z) that varies between w(z) ≃ −1 for z < 0.5 to w(z) > 0 for z > 1. This implies
that the sign of the pressure of the dark energy may be alternating as the redshift increases. The
goodness of fit of the oscillating H(z) ansatz lends further support to this possibility.

PACS numbers:

I. INTRODUCTION

One of the fundamental goals of cosmology is the un-
derstanding of the global history of the universe. Us-
ing objects of approximately known absolute luminocity
(standard candles) in the nearby universe provides the
current rate of expansion. Using more distant standard
candles like type Ia supernovae (SnIa) makes it possi-
ble to start seeing the varied effects of the universe’s
expansion history. Such cosmological observations have
indicated[1] that the universe undergoes accelerated ex-
pansion during recent redshift times. This accelerating
expansion has been attributed to a dark energy compo-
nent with negative pressure which can induce repulsive
gravity and thus cause accelerated expansion. The sim-
plest and most obvious candidate for this dark energy[2]
is the cosmological constant[3] with equation of state
w = p

ρ = −1.

The extremely fine tuned value of the cosmological con-
stant required to induce the observed accelerated expan-
sion has led to a variety of alternative models where the
dark energy component varies with time. Many of these
models make use of a homogeneous, time dependent min-
imally coupled scalar field φ (quintessence[4, 5]) whose
dynamics is determined by a specially designed potential
V (φ) inducing the appropriate time dependence of the

field equation of state w(z) = p(φ)
ρ(φ) . Given the observed

w(z), the quintessence potential can in principle be de-
termined. Other physically motivated models predicting
late accelerated expansion include modified gravity[6, 7,

∗Electronic address: http://leandros.physics.uoi.gr

8], Chaplygin gas[9], Cardassian cosmology[10], theories
with compactified extra dimensions[11, 12], braneworld
models[13] etc. Such cosmological models predict specific
forms of the Hubble parameter H(z) as a function of red-
shift z in terms of arbitrary parameters. These parame-
ters are determined by fitting to the observed luminocity
distance dL(z) using the relation[14, 15, 16] (valid in a
flat universe)

H(z) = c[
d

dz
(
dL(z)

1 + z
)]−1 (1.1)

This is easily derived using the relation between dL(z)
and the comoving distance r(z) (where z is the redshift
of light emission)

dL(z) = r(z)(1 + z) (1.2)

and the light ray geodesic equation in a flat universe
c dt = a(z) dr(z) where a(z) is the scale factor.

Another similar approach towards determining the ex-
pansion history H(z) is to assume an arbitrary ansatz
for H(z) which is not necessarily physically motivated
(it is ‘model independent’) but is specially designed to
give a good fit to the data for dL(z). Given a particular
cosmological model (or ansatz) for H(z; a1, ..., an) where
a1, ..., an are model parameters, the maximum likelihood
technique can be used to determine the best fit values of
parameters (with 1σ− 2σ errors) as well as the goodness
of the fit of the ansatz to the data. This technique can be
summarized as follows: The observational data consist of
N apparent magnitudes mi(zi) and redshifts zi with their
corresponding errors δmi and δzi. Each apparent magni-
tude is related to the corresponding luminocity distance
dL of the SnIa by

m(z) = M + 5 log10[
dL(z)

Mpc
] + 25 (1.3)
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where M is the absolute magnitude which is assumed
to be constant for standard candles like Type Ia SnIa.
From equations (1.1) and (1.3) it becomes clear that the
luminocity distance dL(z) is the ‘meeting point’ between
the observed apparent magnitude m(z) and the theoret-
ical prediction H(z).

The apparent magnitude can also be expressed in
terms of the dimensionless ‘Hubble-constant free’ lu-
minocity distance DL defined by

DL(z) =
H0dL(z)

c
(1.4)

as

m(z) = M̄(M, H0) + 5 log10(DL(z)) (1.5)

where M̄ is the magnitude zero point offset and depends
on M and H0 as

M̄ = M + 5 log10(
c/H0

1Mpc
) + 25 (1.6)

The zero point offset is an additional model independent
parameter that needs to be fit along with the model pa-
rameters a1, ..., an. However, since M̄ is model indepen-
dent its value from a specific good fit can be used directly
to other fits of model parameters. Thus the observed
mi(zi) can be translated to Dobs

Li (zi) using equation (1.5)
for the best fit value of M̄obs obtained from nearby SnIa.
The theoretically predicted value Dth

L (z) in the context
of a given model H(z; a1, ..., an) can be obtained by in-
tegrating the equation (1.1) as

Dth
L (z) = (1 + z)

∫ z

0

dz′
H0

H(z′; a1, ...an)
(1.7)

The best fit values for the parameters a1, ..., an are found
by minimizing the quantity

χ2(a1, ..., an) =

N
∑

i=1

(log10D
obs
L (zi) − log10D

th
L (zi))

2

(σlog10DL(zi))
2 + (∂log10DL(zi)

∂zi
σzi

)2

(1.8)
where σz is the 1σ redshift uncertainty of the data
and σlog10DL(zi) is the corresponding 1σ error of

log10D
obs
L (zi).

The probability distribution for the parameters
a1, ..., an is[17]

P (a1, ..., an) = N e−χ2(a1,...,an)/2 (1.9)

where N is a normalization constant. If prior informa-
tion is known on some of the parameters a1, ..., an then
we can either fix the known parameters using the prior
information or ‘marginalize’ i.e. average the probability
distribution (1.9) around the known value of the param-
eters with an appropriate ’prior’ probability distribution.
Here we use the former approach (fix the parameters with
prior information) for simplicity. This simplification has
negligible effect on our results as it can be verified by

comparing some of our results with corresponding re-
sults in the literature where marginalization has been
used (e.g. Ref. [18] for LCDM).

It is straightforward to minimize χ2(a1, ..., an) us-
ing numerical libraries like NAG [19, 20] (see also
[17]) or packages like Mathematica [21] to find
χ2

min(ā1, ..., ān)[22] where χ2
min is the minimum obtained

for the best fit parameter values ā1, ..., ān. If χ2
min/(N −

n)
<
∼ 1 the fit is good and the data are consistent with

the considered model H(z; a1, ..., an).
The variable χ2

min is random in the sense that it de-
pends on the random data set used. Its probability dis-
tribution is a χ2 distribution for N−n degrees of freedom
[17]. This implies that 68% of the random data sets will
give a χ2 such that

χ2(a1, ..., an) − χ2(ā1, ..., ān) ≤ ∆χ2
1σ(n) (1.10)

where ∆χ2
1σ(n) is 1 for n = 1, 2.3 for n = 2, 3.53 for

n = 3 etc. Thus equation (1.10) defines closed ellipsoidal
surfaces around ā1, ..., ān in the n dimensional parameter
space. The corresponding 1σ range of the parameter ai is
the range of ai for points contained within this ellipsoidal
surface. Similarly, it can be shown that 95.4% of the
random data sets will give a χ2 such that

χ2(a1, ..., an) − χ2(ā1, ..., ān) ≤ ∆χ2
2σ(n) (1.11)

where ∆χ2
2σ(n) is 4.0 for n = 1, 6.17 for n = 2, 8.02 for

n = 3 etc. Thus equation (1.11) defines the 2σ ellipsoidal
surface in parameter space and similarly for higher σ’s.

II. COSMIC EXPANSION HISTORY

We now apply the above described maximum likeli-
hood method using a recently published data set consist-
ing of 194 (N = 194) SnIa [23, 24]. This is a subset of
the total of 253 published SnIa sample obtained by im-
posing constraints AV < 0.5 (excluding high extinction)
and z > 0.01 (reducing peculiar velocity effects). Each
data point at redshift z includes the logarithm of the
Hubble-free luminocity distance log10(cD

obs
L (z)) and the

corresponding error σlog10DL(z). A table of the data we
used can be downloaded in electronic form [22]. These
Hubble-free luminocity distances are obtained assuming
a best fit value for the zero point magnitude offset M̄ [18].
We adopt this same value for M̄ and choose not to treat
M̄ as an additional free parameter to fit (and marginal-
ize) along with the parameters of each theoretical model
studied. In the Appendix we demonstrate that marginal-
ization over M̄ would have negligible effect (O(1%)) on
our results. Also comparison of our results for LCDM
and quiessence (w(z) = constant) with the correspond-
ing results of Ref. [18] where marginalization of M̄ was
implemented indicates that our simplified approach has
negligible effect on the obtained results. This same con-
clusion has also been reached in Ref. [25] and it’s origin
is demonstrated in the Appendix.
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In the construction of χ2 using equation (1.8) we have
used a value of σz corresponding to uncertainties due to
peculiar velocities with ∆v = ∆(cz) = 500km/sec which
implies σz = ∆z = (500km/sec)/c. The minimization of
(1.8) was implemented for each theoretical model using
a simple Mathematica code which can be downloaded
along with the table of the data set used[22] (or can be
sent by e-mail upon request).

We now proceed to apply likelihood testing to various
theoretical models. Each model is defined by its pre-
dicted Hubble-parameter H(z). For example for LCDM
we have

H2(z; Ω0m) = (
ȧ

a
)2 = H2

0 [Ω0m(1+z)3+(1−Ω0m)] (2.1)

and there is a single parameter Ω0m to be fit from the
data. The simplest model to consider however is SCDM
defined by

H2(z) = H2
0 (1 + z)3 (2.2)

with no free parameters. Using equation (2.2) in (1.7) we
calculate Dth

L (z). We may then find χ2 using equation
(1.8) and minimize to find χ2

min. In the SCDM case there
are no free parameters to vary and no minimization is
needed. We thus find χ2 = χ2

min = 431.4 which implies
χ2

min/dof = 2.2 (dof=degrees of freedom). Since this
value χ2

min/dof is significantly larger than 1 we conclude
that SCDM does not provide a good fit to the SnIa data.

The next simplest model consistent with the flatness
indicated by WMAP[26] is LCDM defined by equation
(2.1). It is straightforward to evaluate Dth

L (z) numeri-
cally (using equation (2.1) in (1.7)) and use it to evalu-
ate χ2(Ω0m) from equation (1.8). A minimization of this
expression leads to[22]

χ2
min = χ2(Ω0m = 0.34) = 198.74 (2.3)

which implies χ2/dof = 1.03 (dof = 194−1 = 193). This
model is clearly consistent with the data since χ2/dof ≃

1. The 1σ errors on the predicted value of Ω0m = 0.34
are found by solving the equation

χ2(Ωm1σ) − χ2
min = ∆χ2

1σ(n = 1) = 1 (2.4)

which leads to

Ω0m = 0.34 ± 0.032 (2.5)

This result is identical with the result of Ref.[18] even
though our 1σ errors are slightly smaller. We note here
for comparison with the models discussed below (where
the prior Ω0m = 0.3 is used) that χ2(Ω0m = 0.3) = 200.3.

In Fig. 1 we show a comparison of the observed 194
SnIa Hubble free luminocity distances along with the the-
oretically predicted curves in the context of SCDM (con-
tinuous line) and LCDM (dashed line). In this case it is
even visually obvious that LCDM provides a good fit to
the data contrary to the case of SCDM. This visual dis-
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3.5

4

4.5
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FIG. 1: The observed 194 SnIa Hubble free luminocity dis-
tances along with the theoretically predicted curves in the
context of SCDM (continuous line) and LCDM (dashed line).

tinction is not possible when comparing the other data-
compatible models discussed below with LCDM. We thus
do not attempt to include the theoretical curves corre-
sponding to other models on the same plot.

We now consider other more general models and
ansatze which however reduce for certain parameter
values to LCDM. If these parameter values give a
χ2(LCDM) that is beyond the 2σ level away from the
minimum χ2

min then we would conclude that LCDM is
disfavored compared to the better fit model. Even if we
just find models with χ2

min < χ2
min(LCDM) = 198.74

but within 1σ we still have useful information since these
models are more probable than LCDM.

We start with a simple generalization of LCDM: We
replace the cosmological constant energy density by a
dark energy with constant equation of state parameter.
This ansatz has been called ‘quiessence’ in the literature
[27]. The form of H(z) is

H2(z; Ω0m, w) = H2
0 [(Ω0m(1+z)3+(1−Ω0m)(1+z)3(1+w)]

(2.6)
This ansatz has two free parameters Ω0m and w. We
use prior information from large scale structure (Ω0mh =
0.2±0.03 [28] with h = 0.72±0.08 [29]) to fix Ω0m = 0.3
in this and in all subsequent ansatze. We thus evaluate
χ2(w) and minimize with respect to w. We find

χ2
min = χ2(w = −0.93) = 199.3 (2.7)

Including the 1σ errors we have

w = −0.93± 0.08 (2.8)

For Ω0m = 0.34 we find[22]

χ2
min = χ2(w = −1.01) = 198.69 (2.9)
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FIG. 2: The redshift dependence of the equation of state pa-
rameter w(z) for the q − Λ ansatze. The thick curve is the
best fit and the light (dark) shaded regions represent the 1σ
(2σ) error regions.

which is identical with the corresponding result of
Ref.[18]. Thus, the minimization of this generalized
ansatz gives a best fit that is indistinguishable at the
1σ level from LCDM. This means either that LCDM is
truly the best fit model or that we have not chosen a
general enough ansatz to see a better fit.

A further generalized ansatz involves the combination
of cosmological constant with quiessence (quiessence-Λ
ansatz).

The form of H(z) in this case is

H2(z; a1, w1) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1)+

(1 − Ω0m − a1)] (2.10)

Setting Ω0m = 0.3 and minimizing χ2(a1, w1) with re-
spect to w1, a1 we find

χ2
min = χ2(w1 = 3.44, a1 = (5 10−4) = 195.6 (2.11)

Including the error bars we have

w1 = 3.44+0.44
−0.78, a1 ≃ (5 +0.4

−0.9) 10−4 (2.12)

Clearly the fit is better compared to LCDM but the
χ2(LCDM) = χ2(a1 = 0) = 200.3 corresponding to
LCDM with Ω0m = 0.3 differs by less than ∆χ2

2σ(n =
2) = 6.17 from χ2

min. Therefore, LCDM is consistent at
the 2σ level (but not at the 1σ) with the best fit of this
ansatz. Nevertheless, given that this fit is better it is
interesting to compare the dark energy properties corre-
sponding to this ansatz at best fit with those of LCDM.
These properties are well described by the effective equa-

tion of state parameter w(z) = p(z)
ρ(z) which in general (and

in this case) depends on the redshift z. We can express
w(z) in terms of H(z), dH

dz and Ω0m using the Friedman
equations

H2 =
ȧ2

a2
=

8πG

3
(ρm + ρDE) (2.13)

and

q ≡ −
ä

aH2
=

4πG

3H2
[ρm + (ρDE + 3pDE)] (2.14)

where q is the deceleration parameter and we have de-
fined as dark energy any other homogeneous and isotropic
source of gravity apart from matter. Using (2.13) and
(2.14) we find

pDE =
H2

4πG
(q −

1

2
) (2.15)

Using (2.13) and (2.15) we find[30]

w(z) =
pDE(z)

ρDE(z)
=

2q(z) − 1

3(1 − Ωm(z))
(2.16)

where

Ωm(z) =
8πGρm(z)

3H2(z)
= Ω0m(1 + z)3

H2
0

H2
(2.17)

Using now the definitions of q and H it is easy to show
that

q = −1 + (1 + z)
d lnH

dz
(2.18)

Thus substituting (2.18) in (2.16) we have

w(z) =
pDE(z)

ρDE(z)
=

2
3 (1 + z)d ln H

dz − 1

1 − (H0

H )2Ω0m(1 + z)3
(2.19)

In the case of generalized Friedman equations valid in
modified gravity models, equation (2.19) can still be use-
ful in characterizing the expansion history but it should
not be interpreted as a property of an energy substance.
Using the best fit form of the quiessence-Λ (q-Λ) ansatz
in (2.19) we find the predicted form of w(z) which is
plotted in Fig. 2 along with the 1σ and 2σ error regions
obtained by maximal variation of the parameters a1 and
w1 within the 1σ and 2σ error contours of χ2 as described
in the previous section. This form of w(z) (without error
regions) along with the corresponding forms predicted
by the other ansatze discussed below, is also shown in
Fig. 3. Clearly w(z) differs significantly from the LCDM
prediction of w = −1 at redshifts z > 0.5. In particu-
lar we find w(z) ≃ −1 for z < 0.5 while w(z) ≃ 3 for

z
>
∼ 1. Thus, this ansatz gives us a hint for the ‘meta-

morphosis’ of dark energy from antigravity (w = −1)
at low redshifts to ‘hypergravity’ (w ≃ 3) at high red-
shifts. Clearly this ‘metamorphosis’ (if true) can not
persist to arbitrarily high redshifts due to constraints
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coming from large scale structure and nucleosynthesis.
Thus, it is either not realized in nature and we have
w(z) ≤ 0 at all redshifts or it is part of an oscillating
behavior of the dark energy equation of state param-
eter. This later possibility could also help resolve the
coincidence problem[31, 32] and is a prediction[11] (see
also [33, 34]) of many models[35, 36, 37] with stabilized
modulus[38, 39] of extra dimensions.

In addition to w(z) we also plot the reduced form of
H(z) compared to LCDM defined as

H2
r (z) =

H2(z) − H2
LCDM (z)

H2
0

(2.20)

where H2
LCDM ≡ 0.3 (1 + z)2 + 0.7. The reduced best

fit H2
r (z) for the q-Λ ansatz is shown in Fig. 4 along

with the best fits Hr(z) functions corresponding to some
of the other ansatze discussed below. Even though both
ansatze (q-Λ and LCDM) are consistent with the data
and with each other at the 2σ level the predicted forms
of Hr(z) and w(z) differ significantly at z > 0.5.

In order to shed more light to the dark energy ‘meta-
morphosis’ puzzle we now consider more general forms of
H(z) ansatze. For each ansatz we identify the predicted
form of H(z) and the parameters requiring fitting. Then
we evaluate and minimize χ2 with respect to these pa-
rameters setting Ω0m = 0.3. Finally, we identify the best
fit parameter values and the corresponding χ2

min (see Ta-
ble 1), plot the corresponding w(z) and H(z) (see Figs. 3
and 4) and classify the models according to the goodness
of fit. This classification will lead to some interesting
conclusions about the generic properties of dark energy.
The 1σ and 2σ regions of the w(z) and H(z) curves in the
context of a particular ansatz are not particularly useful
since other ansatze with equally good fits can give w(z)
and H(z) best fits that are well outside the 2σ regions of
the initial ansatz especially in regions with z > 1 where
just a few data points are available. Thus, in order to
simplify the plots of Figs 3 and 4 and avoid confusion we
only show the best fit curves without the corresponding
1σ and 2σ regions.

We now briefly describe each one of the ansatze con-
sidered:

1. Cubic Polynomial in (1+z) (P3):

H2(z) = H2
0 [Ω0m(1 + z)3 + a3(1 + z)3 + a2(1 + z)2

+a1(1 + z) + (1 − a1 − a2 − a3 − Ω0m)] (2.21)

where a1, a2, a3 are unknown parameters to be
fit. The only priors used in this (and the other
ansatze discussed here) are Ω0m = 0.3 and flat-
ness. In contrast to Ref. [40] we have not fixed
a3 = 0 since large scale structure data do not ex-
clude a non-clustering form of matter with prop-
erties similar to those of hot dark matter with
very large free streaming (or Jeans) length. This
model has a slightly worse fit (χ2

min = 196.6) com-
pared to q-Λ (χ2

min = 195.6) but it also corre-

sponds to w(z) ≃ −1 at z
<
∼ 0.5 and w(z) > 0

at z
>
∼ 1. Its properties at best fit are shown in

Figs. 3 and 4. The values of the best fit param-
eters are a1 = −2.55 ± 0.12, a2 = 0.50 +0.07

−0.05 and
a3 = 0.36±0.06. Compared to the quadratic ansatz
of Ref. [40] this cubic ansatz has slightly better
χ2

min and w(z) is larger than the corresponding
w(z) of the quadratic ansatz at z > 1 shown in
Ref. [40] and in Fig. 3.

2. Linder[41] ansatz w(z) = w0 + w1z
1+z (LA):

H2(z) = H2
0 [Ω0m(1 + z)3+

(1 − Ω0m)(1 + z)3(1+w0+w1) e3w1(
1

1+z
−1)] (2.22)

It can easily be verified using (2.19) that the ansatz
(2.22) leads to a w(z) of the form

w(z) = w0 +
w1z

1 + z
(2.23)

This ansatz was suggested by Linder[41] and it is
designed to interpolate between two values of w:
w(z) = w0 at z ≃ 0 and w(z) ≃ w1 at z >> 1. It
does not give a very good fit (compared to other
two parameter ansatze) to the data (χ2

min = 197.3)
even though it is still better than LCDM. The rea-
son is that it only allows a slow change of w(z)
with redshift between w0 and w1 while the data
seem to require a more ‘abrupt’ change from w0

to w1. The best fit values of these parameters are
w0 = −1.29± 0.10 and w1 = 2.84 ± 0.05.

3. Linear Ansatz w(z) = w0 + w1z:

H2(z) = H2
0 [Ω0m(1 + z)3 +

(1 − Ω0m)(1 + z)3(1+w0−w1) e3w1z ] (2.24)

This ansatz was suggested in Refs [42, 43, 44] in a
more general power series form. It can give very

good fits for low redshift data (z
<
∼ 0.5) but it can

not fit well the general form of w(z) at z
>
∼ 1. At

best fit it gives χ2
min = 196.6 which is about av-

erage compared to the other ansatze. The best
fit parameter values are w0 = −1.25 ± 0.09 and

w1 = 1.97 +0.08
−0.01 which leads to w(z) > 0.5 for z

>
∼ 1.

4. Chaplygin gas (CG) and Generalized Chaplygin gas
(GCG)[9, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56]:

H2(z) = H2
0 [Ω0m(1 + z)3+

(1 − Ω0m)
√

A + (1 − A)(1 + z)α] (2.25)

where the above form of H(z) is a generalization of
the usual Chaplygin gas ansatz which is obtained
for α = 6 [46]. For α = 6 the equation of state of
Chaplygin gas dark energy is

pc = −
A

ρc
(2.26)
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FIG. 3: The redshift dependence of the equation of state pa-
rameter for the cosmological ansatze of Table 1. The numbers
in the parentheses indicate the value of χ2

min for each ansatz
and its rank according to increasing value of χ2

min. The prior
Ω0m = 0.3 has been used in all cases except LCDM where the
best fit value Ω0m = 0.34 was used giving χ2

min = 198.745.

From the form of equation (2.25) it is clear that
the Chaplygin gas behaves like pressureless dust at
high redshifts and like a cosmological constant at
z ≃ 0. The sound velocity of Chaplygin gas grows
rapidly and approaches the velocity of light at late

redshifts (vs =
√

dpc

dρc
=

√
A

ρc
∼ t2). Thus inho-

mogeneities of Chaplygin gas do not grow (since
the Jeans length approaches the horizon) and no
constraints can be imposed from large scale struc-
ture observations. The physical motivation of the
Chaplygin gas equation of state (2.26) comes from
string theories[57]. In fact, considering a d brane
in a d+2 dimensional space-time, the introduction
of light cone variables in the resulting Nambu-Goto
action leads to the action of a Newtonian fluid with
equation of state (2.26).

The limitation of the Chaplygin gas ansatz is that
it constrains w(z) to w(z) < 0 at all finite redshifts.
Thus its goodness of fit is below average (χ2

min =
197.9 for A = 0.96 ± 0.03). This limitation does
not exist for the generalized Chaplygin gas ansatz
(arbitrary α) which gives a much better fit (χ2

min =
195.2 for A = 0.9998 +0.0001

−0.0004, α = 17.68 +0.02
−0.04). This

fit gives w(z) ≃ 1.9 > 0 for z
>
∼ 1 (see Fig. 3) as do

all the ansatze with above average goodness of fit.

5. Generalized Cardassian Ansatz (CA):

H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)fX(z)] (2.27)

where

fX(z) =
Ω0m

1 − Ω0m
(1 + z)3[(1 +

Ω−q
0m − 1

(1 + z)3(1−n)q
)1/q − 1]

(2.28)
This model [58, 59] emerges from a generalization
of the Friedman equations and predicts accelerated
expansion at recent times without any dark energy.
In this model the universe is flat and consists only
of matter and radiation. Here we follow Ref. [58]
and consider the generalization (2.28) of the orig-
inal Cardassian ansatz of Ref. [10]. The original
ansatz is obtained from equation (2.28) by setting
q = 1 and is equivalent to quiessence (w = const.).
The generalized Cardassian ansatz has been fitted
to SnIa data in Ref. [58] using a much smaller
SnIa dataset with redshifts z < 1. We find (see
Table 1) that this ansatz gives a relatively poor fit
to the data (χ2

min = 198.6 for q = 0.025 +0.008
−0.010,

n = −23 +8
−9) below the average goodness of fit for

the models considered and only slightly better com-
pared to LCDM with Ω0m = 0.3 (χ2

min = 200.4).
The predicted w(z) increases with z but remains
negative (see Fig. 3).

6. Generalized Quardatic Ansatz (GQuad):

H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1)+

a2(1 + z)3(1+w2) + (1 − a1 − a2 − Ω0m)] (2.29)

This is another generalization of the quadratic
polynomial fit for H(z) of Ref. [40]. Here we do
not add an arbitrary cubic term. Instead we al-
low the exponents of the two monomials to vary
and minimize with respect to the four parameters
a1, a2, w1 and w2 instead of two parameters a1

and a2 with fixed w1 = −2/3 and w2 = −1/3
for the quadratic model. The fit of the generalized
ansatz is better (χ2

min = 195.2 for a1 = 0.57 +0.03
−0.02,

a2 = 0.003 +0.0003
−0.0002, w1 = −1.13 ± 0.24 and w2 =

2.49 ± 0.02) than the quadratic ansatz (χ2
min =

196.8 for a1 = −4.05 +1.16
−1.27 and a2 = 1.79 +0.79

−0.63) and
the best fit form of w(z) differs significantly from
the corresponding quadratic best fit particularly for

z
>
∼ 1. In particular we find that w(z) ≃ −1 for

z
<
∼ 0.4 and w(z)

>
∼ 2 for z

>
∼ 1. For comparison

the quadratic ansatz of Ref. [40] predicts w(z) ≃ 0

for z
>
∼ 1 with very small 2σ errors at z > 1.

This disagreement of our generalized ansatz with
the quadratic ansatz at z > 1 despite the small
2σ error regions is another indication of the lim-
ited usefulness of ploting 1σ and 2σ error regions
of w(z) in the context of a particular ansatz. These
regions can be easily violated in the context of an-
other ansatz with better or similar fit.

A variant of this ansatz is one where one of the
two arbitrary power law terms is replaced by an
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exponentially increasing term. The corresponding
ansatz (Sinh+DE) is

H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1)+

a2 sinh(w2z) + (1 − a1 − Ω0m)] (2.30)

The results for this ansatz are almost identical to
those of equation (2.29) (see Table 1 and Fig. 3).

7. Oscillating Ansatz (OA):

H2(z) = H2
0 [Ω0m(1 + z)3 + a1 cos(a2z

2 + a3)+

(1 − a1 cos(a3) − Ω0m)] (2.31)

This is our best fit ansatz. It gives a better fit to
the data than any of the other ansatze (χ2

min =

194.1 for a1 = −3.36 +0.93
−0.76, a2 = 2.12 +0.93

−0.76 and
a3 = −0.06π ± 0.01π). The behavior of w(z) how-

ever for z
>
∼ 1 is qualitatively different compared

to the other ansatze (see Fig. 3). For z
<
∼ 0.3

we find w(z) ≃ −1. For 0.5
<
∼ z

<
∼ 1.2 we find

w(z) > 0 with a maximum w(z ≃ 0.75) ≃ 1.5. At

z
>
∼ 1.2, w(z) becomes negative and continues os-

cillating around w ≃ 0 with large amplitude. This
redshift range however includes only one data point
at z = 1.75 which can not constrain the behavior of
w(z) and H(z) in any statistically significant way.

Table 1
Model H(z), (Ω0m = 0.3) χ2

min Best Fit Parameters

OA H2(z) = H2
0 [Ω0m(1 + z)3 + a1 cos(a2z

2 + a3) a1 = −3.36 +0.93
−0.76, a2 = 2.12 +0.93

−0.76

(1) +(1 − a1 cos(a3) − Ω0m)] 194.1 a3 = −0.06π ± 0.01π

GCG (2) H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)

√

A + (1 − A)(1 + z)α] 195.2 A = 0.9998 +0.0001
−0.0004, α = 17.68 +0.02

−0.04

GQ H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1) + a2(1 + z)3(1+w2) w1 = −1.13 ± 0.24, w2 = 2.49 ± 0.02

(3) +(1 − a1 − a2 − Ω0m)] 195.2 a1 = 0.57 +0.03
−0.02, a2 = 0.003+0.0003

−0.0002

Sinh+DE H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1) + a2 sinh(w2z) w1 = −0.81 +0.1

−0.3, w2 = 5.90 +0.93
−3.13

(4) +1 − ΩOm − a1] 195.4 a1 = −0.50 +0.1
−0.3, a2 = 0.026 +0.005

−0.015

q-Λ (5) H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z)3(1+w1) + (1 − Ω0m − a1)] 195.6 w1 = 3.44 +0.44

−0.78, a1 ≃ 5 10−4 +0.4 10−4

−0.9 10−4

P3 H2(z) = H2
0 [Ω0m(1 + z)3 + a3(1 + z)3 + a2(1 + z)2+ a1 = −2.55± 0.12

(6) a1(1 + z) + (1 − a1 − a2 − a3 − Ω0m)] 196.6 a2 = 0.50 +0.07
−0.05, a3 = 0.36 ± 0.06

Linear H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)

(7) (1 + z)3(1+w0−w1)e3w1z ] 196.6 w0 = −1.25± 0.09, w1 = 1.97 +0.08
−0.01

Quad H2(z) = H2
0 [Ω0m(1 + z)3 + a1(1 + z) + a2(1 + z)2

(8) +(1 − a1 − a2 − Ω0m)] 196.8 a1 = −4.05 +1.16
−1.27, a2 = 1.79 +0.79

−0.63

LA H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)(1 + z)3(1+w0+w1)

(9) e3w1( 1
1+z

−1)] 197.3 w0 = −1.29 ± 0.10, w1 = 2.84 ± 0.05

CG (10) H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)

√

A + (1 − A)(1 + z)6] 197.9 A = 0.96 ± 0.03

CA (11) H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)fX(z)] 198.6 q = 0.03 +0.008

−0.010, n = −23 +8
−9

LCDM (12) H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)] 198.7 Ω0m = 0.34 ± 0.03

QUIES (13) H2(z) = H2
0 [Ω0m(1 + z)3 + (1 − Ω0m)(1 + z)3(1+w)] 199.3 w = −0.93 ± 0.08

SCDM H2(z) = H2
0 (1 + z)3 431.4 −

The quality of the fit for the oscillating ansatz com-
bined with indications from the better fits of other
ansatze that indicate w(z) > 0 for z

>
∼ 1 supports the

idea that some type of oscillation probably takes place
for w(z).

From the theoretical viewpoint this idea is also sup-
ported for two reasons:

• Coincidence Problem Resolution: An oscillating ex-
pansion rate can help resolve the coincidence prob-
lem since our present accelerating phase is viewed
simply as part of a sequence of accelerating and de-
celerating periods in the expansion history of the
universe [31, 32]

• Extra Dimensions: Models with extra dimensions
generically predict oscillations of the stabilized
modulus of the extra dimension size (the radion
field) due to its coupling to redshifting matter
[11, 12]. These oscillations backreact on the ex-
pansion rate and induce oscillations of the Hubble
parameter.

Another factor pointing towards oscillating expansion
rate is the north-south pencil beam survey of Ref.[60]
which suggests an apparent periodicity in the galaxy
distribution. The number of galaxies as a function of
redshift seems to clump at regularly spaced intervals of
128h−1Mpc. Recent simulations [61] have indicated that
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FIG. 4: The reduced Hubble parameter for some of the best
and the worst fits of the cosmological ansatze of Table 1. The
number in the parenthesis shows the rank (1 − 13) of the
corresponding ansatz in terms of goodness of fit. The LCDM
curve is not flat at zero because in its construction we used
the best fit value Ω0m = 0.34 while the HLCDM on the axis
assumes the prior Ω0m = 0.30.

this regularity has a priori probability less than 10−3 in
CDM universes with or without a cosmological constant.
An oscillating expansion rate could resolve this puzzle
without invoking special features in the primordial fluc-
tuations spectrum.

III. CONCLUSION

We have fitted several cosmological models using the
maximum likelihood method and the most recent SnIa
data consisting of 194 data points. No priors have been
used in our analysis other than those indicated by other
observations i.e. flatness and Ω0m = 0.3. The fact that
we have fixed Ω0m instead of marginalizing over it could
have artificially decreased somewhat the error bars of the
parameters. This decrease however is not important in
view of the main goal of this work which is the classifica-
tion of the models studied according to their quality of
fit to the data.

We have confirmed recent studies[40, 62, 63] indicat-
ing an increase of the equation of state parameter with
redshift termed ‘metamorphosis’ of dark energy in a re-
cent study[40]. We have shown however that the best
fit ansatze indicate that this ‘metamorphosis’ continues
beyond w(z) = 0 and leads to w(z) > 0 at z ≃ 1. Nucle-
osynthesis and large scale structure constraints are not
consistent with w(z) > 0 at arbitrarily high redshifts.
Thus our best fits to the data can only be made con-

sistent with these constraints if some kind of oscillating
behavior is realized for the effective dark energy equa-
tion of state parameter w(z). This possibility is further
enhanced by the fact that an oscillating expansion rate
ansatz has provided the best fit to the data among all
the 13 ansatze considered and also by other theoretical
and observational arguments discussed in the previous
section.

At low redshifts (z < 0.5) all the fitted ansatze ap-
proach w(z) ≃ −1 with w(z) approximately constant.
Most (but not all) of the better fits predict w(z) slightly
less than −1 (up to −1.3) for some redshift range within
[0, 0.5] but not necessarily at z = 0. There are good fits
however (like the quiessence−Λ ansatz) with χ2

min below
average for which w(z) > −1 for all z implying that phan-
tom energy[64, 65] (w < −1) is consistent with the data
but is not necessarily more probable than dark energy
(w > −1). Since there are good fits with w(z) > −1 and
rapidly increasing w(z) for z > 0.5, we conclude that even
if the prior w > −1 were used, with the proper ansatz we
would still be able to see the rapid increase of w(z) with z.
This does not agree with the conclusion of Ref. [40] that
it is the use of priors that would hide the increase of w(z)
with redshift. Here we have shown that the cosmological
ansatz selection can also play a crucial role in revealing or
hiding the true expansion history of the universe. Other
comparisons of particular ansatze with the SnIa data can
also be found in the literature[66, 67, 68, 69, 70].

Thus we are led to an important question: Is there
a systematic way to use the SnIa data in constructing a
relatively simple cosmological ansatz that will give the best
possible fit to the data given the number of parameters?
Addressing this important issue will be the subject of a
subsequent paper.

Acknowledgements: We thank U. Alam , V. Sahni
and J. Tonry for useful clarifications on the analysis of
the SnIa data. This work was supported by the European
Research and Training Network HPRN-CT-2000-00152.

IV. APPENDIX

Here we demonstrate that the marginalization over the
zero point magnitude M̄ defined in equation (1.6) would
have negligible effect (O(1%)) on our results. Any model
will predict the theoretical value Dth

L (z; a1, ..., an) with
some undetermined parameters ai (e.g. Ωm, ΩΛ). The
best-fit model is obtained by minimizing the quantity[18]:

χ2(M̄ ′) =
N

∑

i=1

(log10D
obs
L (zi) − 0.2M̄ ′ − log10D

th
L (zi))

2

(σlog10DL(zi))
2 + (∂log10DL(zi)

∂zi
σzi

)2

(4.1)
where M̄ ′ = M̄ − M̄obs is a free parameter representing
the difference between the actual M̄ , (see equation (1.6)),
and it’s assumed value M̄obs in the data.

Uniform marginalization over M̄ ′ corresponds to inde-
grating over M̄ ′ and therefore working with a χ̄2 defined
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by:

χ̄2 = −2ln(

∫ +∞

−∞
e−χ2/2dM̄ ′) (4.2)

which after some manipulation gives:

χ̄2 = −2ln(

∫ +∞

−∞
e−

1
2
CM̄ ′2+BM̄ ′−A

2 dM̄ ′) (4.3)

where

A =

N
∑

i=1

a2
i

σ2
i

= χ2(M̄ ′ = 0) , B = 0.2

N
∑

i=1

ai

σ2
i

(4.4)

and

C = 0.04
N

∑

i=1

1

σ2
i

(4.5)

with

ai = log10D
data
L − log10D

th
L (4.6)

Thus, the “marginalized” over M̄ ′ χ2 is:

χ̄2 = χ2(M̄ ′ = 0) −
B2

C
+ ln(

C

2π
) ≃ χ2(M̄ ′ = 0) (4.7)

because in the cases considered the last two terms on
the RHS of equation (4.7) are of O(1) while the first is
O(102) and therefore dominates over the others. Thus
the effects of the marginalization are of order 1% and
can be neglected. This same conclusion has also been
reached in Ref. [25].
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