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The exclusive kernel of a previously proposed integral equation (IE) is expressed tn terms of DRM amplitudes 
in the central region. The I B6/B 51 relative normalization is fitted to four-prong NAL data. The IE is then solved 
numerically to compute the inclusive correlated density Rcc(Y). It is also predicted that R+_: R++ :R_  = fPc:P+:P-, 
f~- 2, aty = 0. 

New production mechanisms, as well as old models, 
have been proposed and applied lately, mainly to 
explain the strong short range component,  most prob- 
ably in coexistence with a weak long-range one, dis- 
covered in inclusive twoparticle rapidity correlations 
[1 ,2] .  In implementing the dual resonance model 
(DRM) at the inclusive level one usually takes advan- 
tage of  the Mueller's constraction: the n-particle 
inclusive density Pn is proportional to the appropriate 
discontinuities of  a B2n+4 amplitude. The complexity 
however, and the ill-behaved asymptoticity of  a BN'S 
integral representation, give rise to serious computation 
problemsas soon as n exceeds one. Thus, the P2 ~ disc. 
B 8 has been treated only qualitatively as far as we know, 
or calculated to order 1/s12 for large s12 in the central 
region (CR), obtaining very reasonable behavior never- 
theless [3].  

In this letter we investigate quantitatively some 
consequences of  the DRM for pair inclusive correla- 
tions, in the framework of  an integral equation scheme 
(IES) proposed earlier [4].  The n-particle inclusive 
correlation density Rn(s; Pl  ..... Pn) is the solution of  
n - 1 coupled linear integral equations, which involve 
in their kernels the Pl ,  and scaling combinations of  
BN'S f o r N  = 4, 5 ..... 4 +n, [see eq.(3)] .  B N stands for 
a generic N-point amplitude in a broad class of  models. 
The DRM's BN,  restricted into a kinematic region D*, 

belong into the class**. Two remarks are in order: 
i) Strictly within the IES (no Mueller's hypothesis), 
the Pl  has to be expressed in terms of  all the available 
exclusive channels integrated in the usual way. In our 
computations it is considered constant and equal to 
the experimental plateau value, estimated to be 
Pl = ° I I ( d ° / d y )  = 1.04 + 0.07 atPL = 205 GeV/c 
[5,6, 11 ].  ii) Given the Pl ,  the maximum-point B N 
needed to determine R n is, Bn+ 4 in the IES, B2n+4 in 
the generalized optical theorem approach. Of course, 
the price one pays for this reduction is at least the 
complexity of the integral equations one has now to 
solve. 

For n = 2, the simplest IE, i.e. no quantum numbers 
or transverse momenta couplings included, is the 
following 

R2(Y 3, Y4 ) = g2(y 3, Y4 ) 

+ fdy' p l ( y ' ) g 2 ( Y 3  , y ' ) R 2 ( y ' ,  y 4 ) .  (1) 

Y3 andY4 are the rapidities of  the secondary particles, 
and 

RE(Y 3, y4)  = [p2(Y3 , y 4 ) / p l ( Y 3 ) P l ( Y 4 )  ] - 1 , (2) 

is the usual inclusive correlated density. The exclusive 
kernel (correlation) is given by 

* D is characterized by the existence of two leading momenta 
Pi andp/such the (pa + pl) 2, l = 1, 2 ..... N, l ~ a, ~ = i, L is 
large enough for the "potential" between ~ and l to be no 
more complicated than two-body. Each secondary is arbi- 
trarily correlated to the others. In this note D is taken to be 
the CR. 

** The DRM can be partially unitarized by complexifying the 
Regge trajectories. This methos is followed here. On the 
other hand the functional boostrap method [4] that 
generates the IES, presupposes weak leading-particle cou¢ 
plings to the secondaries. Thus, it also treats unitarity in an 
approximate way. It is assumed that the two approximations 
are not drastically different. 
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Fig. 1. Dual tree diagrams in the central region. They determine, along with Pl,  the two-body exclusive kernel, eq. (3). Wavy lines 
signify Regge asymptotic limits. 

g2(Y3, Y4 ) = [LB6(Y3, Y4)/B5(Y3)I 2 

- iB5(Y4)/B4(Y)I 2]/pl(Y4) .  (3) 

The relevant amplitudes are shown in fig. 1. The inci- 
dent and leading particles are singled out in the deriva- 
tion of (1). Consequently, only the (12 ~ 34 "" 56) 
and (12 ~ 43 ~ 56) orderings are considered. Given the 
first, the other is taken into account trivially by virtue 
of  the translation invariance in rapidity. 

This property originates from the short range order 
character of  the DRM proven lately to hold at the 
planar-unitary level in general [7]. As a result, the 
eq. (1) assumes a convolution form that suggests 
immediately an integral transform technique for its 
solution, which is exhibited next. 

R2(Y ) = 2?__22 f dkI(k) c°sky/[1-23'2I(k)] . (4/ 
rrPl 0 

y denotes iy3-Y4l,  and 3' is the relative normalization 
of  IB61 to iB51, not precisely known theoretically due 
to the well known satellite and ghost-killing factor 
ambiquities; it is fitted to "semi-exclusive" data, as 
explained below. I(k) is the Fourier transform of  the 
quantity Olg2 =- K(y'). 

I(k) = S K(y') cosky '  d y ' .  , (5) 
0 

From the double-Regge limit expression for B 5 
[e.g. 8] ,  the Koba-Nie lsen  formula [9] for B 6, and an 
insignificant modification into the Toiler angle depen- 
dence (details will be given in a future communication),  
we find 

K(y) = ? 2 {exp(--2al2Y ) 

X IB( -  ot13, - ot34) F(a, b; c; S34/K)I 2 

- I1-'(- °el2) f f ( - ~ 1 2 '  1;K)I2} " (6) 

F(~0) is the Gauss' (confluent) hypergeometric function 

with a = - ot 12, b = - ot 13 and c = - ~12 - 0(34- The 
notation is further explained by fig. 1. We have checked 
that indeed K(y) vanishes like e x p ( - y )  for large y ,  in 
agreement with conclusions in ref. [3]. For the DRM 
to be phenomenologicaly applied, its zero-width 
divergence problems have to be dealt with first. To 
this effect, the standard prescription is followed, and 
s -+ Isl e x p ( - i e )  is substituted into the eq. (6) with 
e = Po/Eo ~ 0.16.1" o is the width of  the 0 resonance. 
The O is chosen as a typical hadron. For simplicity and 
definiteness we consider g 1 = K2 = K = - - (m2+(pT )2) 

[8],  oe12 = ot14 = ~13 = ~o--  (PT)2 and o~34 = o% +s34 , 
with m = m o and (pT) = 0.4 GeV/c. 

In fig. 2, the exclusive density [B6/B412 is fitted to 
preliminary NAL data [10] on Occ(Y)/%(Y ) for two 
values of  the intercept % ,  and the normalization 
parameter is fixed (7 "~ 0.09). Occ(Y ) -= dOcc/dY, 
Y = lY3-Y41, is the semi-exclusive ("semi",  in the 
sense of  undetected neutrals) two-particle cross section 
for the reaction pp -+ pp + ch(3) + ch(4), with the 
ch(3, 4) particles produced in the CR. o o accounts for 
those produced particles that do not populate the 
CR [4]. Consequently it should be rou~hly equal to 
the total diffractive cross section o ~ o a ,  attributed 
the value (5.62 -+ 0.30) mb at PL = 205 GeV/c [11 ]. 
This argument is supported by the fact that do n (dif- 
fractive)/dy attains its maximum nea ry  = -+ logx/~- 
for small n, and practically vanishes for n ~ 8 at NAL 
energies [11, 12]. 
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Fig. 2. The exclusive density IB6/B412 multiplied by the total 
diffractive cross-section, fitted to preliminary NAL data on 
dacc/dY [ 10] (see the text for further explanations). The 
model-calculated errorbars correspond to the experimental 
error in o d. The arbitrarily normalized ISR data at x/s = 23 GeV 
(error estimates omitted), were extracted from the semi - 
exclusive correlation R m, m = 4.5. dace(r/l = 0, r/2)/dr/2 
¢, O-nl(don/dr/z)[Rm(r/1 = 0, r/z)+ 11, 1 ~ n ~ 5 [ref. [131, 
and paper no 441 in ref. [ 1 ] ]. 
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Fig. 3. DRM - IES' prediction [eq. (4)] for the correlation 
density R:(y) in comparison with NAL and ISR data on 
Rcc(Y l ~ 0, Y2)" The solid line corresponds to ao = 0.6. The 
dashed line is the predicted curve for ~t o = 0.5 plus a diffrac- 
tive model-dependent term (dashed-dotted curve), taken from 
ref. [14] after reduclLion by a factor of 1.5 to account for 
the lower value of o d used in our cal~lation. The errorbars, 
for fixed % correspond to errors in a d and Pl" Aty = 0 the 
diffractive component accounts for about 20% of the total 
correlation, in rough agreement with findings in ref. [ 14]. 

Results of our computation based on eq. (4) are 
shown and further explained in fig. 3. The "two- 
component"  (% = 0.5) curve seems to keep closer 
to the data. Thus, on might conclude that the DRM's 
inability to describe diffraction, at least at the planar 
diagram level, is not remedied by the IE scheme. It is 

encouraging though that the effective trajectory has 
to be raised for the DRM-IES to "fake" diffractive 

effects. If the Pl  and R 2 were normalized to o T 

instead of o 1 , o o would be given by o d plus ael. The 
former trend is then met again, as it is found that an 
intercept ct o ~ 0.9 is needed to correlate the data in 
figs. 2 and 3 fairly. 

Finally, isospin effects can be studied in this 
approach. The eq. (1) assumes a matrix form in charge 
indices (eq. A(10), second paper in ref. [4] ) and the 
matrix equation corresponding to eq. (4) allows pre- 
dictions to be made about R++(y), R+_(y) and 

R _ _ ( y ) ,  in an obvious notation for the detected 

hadrons' charge. Necessarily no further details are given 

here. We predict 

R+_(O):R++(O):R _(O)=fOc:O+:p_.  (7) 

f i s  a DRM-dependent factor. For the chosen param- 
etrization we find f ~  2. The ratio R++ : R _ _  is model 
independent in the framework of the IES. 
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