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We re-examine the inflationary scenario in the standard SU(5) model with Coleman-Weinberg symmetry breaking and 
point out difficulties which may be resolved in a broken supersymmetric model. Because of a partial cancellation at the one- 
loop level, the effective potential in a broken supersymmetric theory may be much flatter than in standard SU(5), thus per- 
mitting a greater amount of inflation. 

The possibility that a phase transition during the 
Grand Unified Theory (GUT) epoch in the very early 
universe may have been responsible for the present 
high degree of  isotropy and large-scale homogeneity of  
the universe, as well as the apparent suppression of  
magnetic monopoles, continues to make the GUT 
epoch one of the most intriguing in our past [1]. In 
suggesting that the phase transition from a GUT such 
as SU(5) to SU(3) × SU(2) × U(1)proceeded via radi- 
atively induced one-loop corrections to the Higgs po- 
tential, Linde [2] presents a possible solution to sever- 
N problems arising in the original inflationary scenario 
of  Guth [1 ]. It had been argued previously that the 
cosmological observations mentioned above would be 
explained if the universe passed through a strong first- 
order phase transition when SU(5) broke down to 
SU(3) × SU(2) X U(1). During such a transition, the 
universe would have passed through a period during 
which the total energy density was dominated by the 
vacuum energy density of  the Higgs potential, rather 
than by radiation. This would have caused an era of  
exponential expansion during which the universe 
passed from a Rober tson-Walker-Fr iedman state to 
an approximate De Sitter state [3].  If the epoch of  ex- 
ponential expansion was long enough, the large-scale 
isotropy and homogeneity of  the universe would per- 
haps be explained. 

The main problem with the inflationary scenario 
proposed by Guth [1] was that obtaining sufficient 
expansion was incompatible with known mechanisms 

for completing the phase transition. Because of  the ex- 
ponential expansion, the bubble nucleation rate never 
becomes larger than the expansion rate and most of 
the universe gets hung up in the De Sitter phase. In his 
revised version, Linde [2] suggests that if the symme- 
try breaking proceeds ~ la Coleman-Weinberg [4],  
i.e., through one-loop corrections to the Higgs poten- 
tial, the exponential expansion could have occurred 
after the phase transition started. Our entire universe 
could have arisen from a single bubble and the fate of  
the universe outside our bubble is irrelevant. Although 
the revised version of  Linde [2] is extremely attractive, 
there are still some unanswered questions * 1. A princi- 
pal difficulty is that of  obtaining a long enough period 
of  exponential expansion. In this paper we emphasize 
some of  the difficulties and suggest that their resolu- 
tions may come from broken supersymmetric theories. 
These exhibit cancellations in the one-loop effective 
potential which enable one to construct flatter poten- 
tials which yield longer expansion time scales. 

We begin with a brief review of  the revised inflation- 
ary scenario. We assume that the early universe can be 
described by a Fr iedman-Robertson-Walker  metric 
of  the form 

ds 2 = d t  2 _ a2(t) 

X [dr2/(1 - kr 2) + r2(d0 2 + sin20 dq~2)], (1) 

• 1 Some of these have also been realized by the participants in 
the Nuffield Workshop on the Very early universe [5]. 
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where a(t)  is the Robertson-Walker scale factor and 
k = 0, +1 is a measure of  curvature. The Einstein field 
equations yield 

1 H 2 = 87rp/3rn 2 - k/a 2 + -sA, (2) 

~/p +3(1 +p/p)H= O, (3) 

where H - d/a is the Hubble parameter, 0 is the mass 
energy density, p is the isotropic pressure, A is the 
cosmological constant and mp ~ GN 1/2 is the Planck 
mass. We use units such that h = c = k B = 1. 

As we will see shortly, when SU(5) is broken down 
to SU(3) X SU(2) X U(1) the vacuum energy density 
of the universe changes by an amount AV (x o4 where 
o = (4) is the vacuum expectation value of  the adjoint 
24 of  Higgs. This constant energy density acts like a 
cosmological constant and must be cancelled at early 
times so that today A ~ 0. Thus we take an initial val- 
ue for A in eq. (2): (m2/87r)A = - A V .  

We suppose that the universe was radiation domi- 
nated at very early times so that eqs. (2) and (3) yield 

p = N ( T )  3~a'2T 4 , (4) 

a ~ T  -1 ~ t  1/2, (5) 

where N ( T )  is the number of  bosonic and fermionic 
degrees of  freedom N ( T )  = N B ( T  ) + -~NF(T ). When 
the temperature of  the universe drops to a value such 
that p ~< A, the dynamics of  the expansion are gov- 
erned by A and we find from eq. (2) that the universe 
evolves towards an expansion 

a ~ e tit, (6) 

characterizing the De Sitter phase and an exponentially 
expanding universe. 

In order to break SU(5) down to SU(3) X SU(2) 
× SU(1), we consider one-loop corrections to the 
Higgs potential. In the region of  interest ~b < T ~ o, 
the potential may be expressed [4] as 

V(~b) = A~b 4 (In ~b 2/02 -- 1 ) + D~b2, (7) 

where 

A -  1 ( ~ g B m ~ - ~ F  g F m ~ )  (8) 
641r2o 4 

and gB(F) is the number of  helicity states for the 
bosons (fennions) of  mass roB(F) entering into the 
loop. For standard SU(5), the X and Y bosons domi- 

nate eq. (8) so that with gx  = gY = 18 and m 2 = m 2 
_ 2gs g2o2,  we have 

A = (5625/1024~r2)g 4, (9) 

where g is the SU(5) gauge coupling. The D~b 2 in eq. 
(7) serves as an effective mass term in the potential 
and can be expressed as 

_1 2 D - -~(rn 0 + c T  2 + bR - 3X(~b2)), (10) 

75 2 where m 0 is a bare mass, c = -gg , b is an unknown 
parameter taking the value 1/6 for a conformal cou- 
pling of  the scalar fields 4, R = R~ is the scalar curva- 
ture, -X/4  is the 4~ 4 self-coupling and (02) the quan- 
tum expectation value of  02. As we will see shortly, 
only for certain values o l D  can the inflationary sce- 
nario be realized. 

The properties of the potential (7) and SU(5) break 
hag have been discussed in detail in the literature [ 6 -  
13] and here we only point out some key features. 
The D4~ 2 term effectively serves as a barrier between 
the tree and false vacua. At high temperatures, D is 
large and the field q~ is confined near the origin. At 
lower temperatures it may become possible for ~b to 
tunnel through the barrier to a point 4)1 >~ O(T1), the 
temperature at which tunnelling takes place. To get a 
lower bound on the tunnelling rate, we consider the 
proposal of  Hawking and Moss [12] that a region of 
space larger than the De Sitter horizon volume jumps 
simultaneously to a local maximum V 1 of  the poten- 
tial. The rate for such a transition may be approxi- 
mated by idealizing to a true De Sitter space and look- 
ing for classical solutions of  the euclidean field equa- 
tions. Hawking and Moss [12] estimated the resulting 
tunnelling probability 

p ~ D 2 e  - B ,  (1 I)  

where 

l 4 [ 1 / V  0 1 /VI  ] 1 4 _ B =-~mp - ~ ~ . ,p [ (V 1 Vo)/V20l, 
(12) 

in the limit where V 1 - V 0 ,~ V 0. Here V 0 = ½Aa 4 
and at the local maximum 

V 1 ~, V 0 + D2 /SA .  (13) 

The Hawking-Moss action is therefore given by 

B ~ m 4 D 2 / 1 6 A 3 o  8. (14) 

We will use the expression (14) for B when the temper- 
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ature of  the universe has cooled to T H = H/2rr, the 
minimum temperature associated with the event hori- 
zon of  De Sitter space [14].  The picture of  a simulta- 
neous flip of  an entire horizon volume to the local 
maximum V of the potential only makes sense i fB 
>> 1. I f B  = O(1) the universe could just as well jump 
to another value of  q~ which could easily be much 
larger than its value at the maximum, thus cutting 
down on the possible expansion time after the jump. 
Furthermore, if B = O(1) the value of  4~ may be very 
inhomogeneous after the jump. There may well be 
other processes [15] which cause the universe to tun- 
nel faster than the Hawking-Moss mechanism, so 
while B >> 1 is a necessary condition for the revised in- 
flationary scenario to work, it may not be sufficient. 

The amount of  inflation occurring after the tunnel- 
ling event is determined by the equation of motion of  
the Higgs field 

+ 3H~ + 2D~b = 0, (15) 

which gives a characteristic timescale r = O(3H/2D) 
for the rollover to the SU(3) X SU(2) × U(1)mini- 
mum. In order to explain [l]  the cosmological obser- 
vations of  large-scale isotropy and homogeneity we 
must require that the scale factor (6) a be inflated by 
a factor O(1028). We must therefore require that the 
expansion factor e Hr = exp(3H2/2D) > e 65 or 

3HZ/2D ), 65. (16) 

When we combine this condition with the requirement 
thatB >> 1 we find from eq. (14) the  double inequality 

4A3/204/m 2 <D < 3H2/130.  (17) 

We now argue that this cannot be satisfied by conven- 
tional Coleman-Weinberg SU(5). We take the follow- 
ing representative values for the GUT parameters: o 
= 3.8 X 1014 GeV corresponding to m X = 3.7 X 1014 
GeV and ASU(5) = 1.5 X 106 GeV corresponding to 
g2 = 12nZ/[20in T/mx + O~T/aG)] with a G =gZ/4n 
= 1/41 at the scale m x .  From these we deduce 

H = [(Srr/3m2p)Vo ] 1/2 = (4rrAo4/3m2)l/2 

= a.s x 101°g  (18) 

Putting these values into the inequalities (17) we have 

2.3 X 1020g 6 < D  < 7.3 X 1018g 4 (19) 

in the De Sitter phase. The two conditions on D can 
only be reconciled if 

g2 ~ 3.2 X 10 -2 ,  (20) 

which is certainly not the case during the De Sitter 
phase when g2 > @rag = 0.3. 

Thus we see that the new inflationary scenario pro- 
posed by Linde [2] and developed by Hawking and 
Moss [i 2] still needs further improvement. While im- 
provements might be found within the context of  con- 
ventional GUTs, we prefer to re-examine these diffi- 
culties in a supersymmetric GUT [16].  It is well 
known by now that supersymmetry can in principle 
solve a number o f  outstanding problems found in ordi- 
nary GUTs, while leaving intact the benefits. Among 
the problems alleviated by supersymmetry are the 
hierarchy problem [16] and the strong CP problem 
[ 17]. In view of  these assets, it is natural to consider 
what effect supersymmetry has on inflation. As we 
shall see, its net effect is again a positive one. 

On a simple level, many of  the problems found in 
GUTs are solved in supersymmetry by making use of  
the no-renorrnalization theorems [18].  In any theory 
in which supersymmetry remains unbroken, these 
theorems do away with many radiative corrections. In 
particular, in an exactly supersymmetric world there 
would be no Coleman-Weinberg [4] mechanism to 
govern inflation. This is clearly seen in eq. (8), since 
for any boson ( fermion)of  mBfv) supersymmetry tells 
us there is a corresponding partner with identical de- 
grees of  freedom and mass mF(B). Thus we have the 
identity A --- 0 and V(q~) = Dq~2. Hence one would have 
to revert back to the tree potential in order to break 
SU(5) in an exactly supersymmetric theory. In this 
case, the revised inflationary scenario [2] would not 
exist and we would have the old problems which faced 
Guth [ l ] .  

Supersymmetry, however, is not a good symmetry 
of  nature. We know there is no degeneracy between 
bosons and fermions at present energies. Instead, there 
must exist some scale m S at which supersymmetry is 
broken. In this case, typically we expect a mass split- 
ting between bosons and fermions 

- ( 2 1 )  

For the present discussion, we will not pin ourselves 
down to a specific supersymmetric model, but rather 
we will examine what effect the (at this point arbitrary) 

337 



Volume 118B, number 4, 5, 6 PHYSICS LETTERS 9 December 1982 

scale m S has on the inflationary scenario. From pres- 
ent-day phenomenology, we only know that m S 
> O(100) GeV. 

In a supersymmetric theory, as we have seen, there 
are no radiative corrections. When supersymmetry is 
broken at ms,  the one-loop potential exists and takes 
the form of  eq. (7)with  

A = (gB(F)/32n2o4)m2 ( ~  m2) , (22) 

where we have m 2 ~ m 2, m 2 so that m2B + m 2 
2m 2. In some cases there are still more cancellations 

so that A = O((mS/o)4 ). Let us suppose once more 
that the X bosons and their superpartners dominate eq. 
(22). Thus in analogy with eq. (9) we have 

A = (75/32~r202)g2m2. (23) 

The supersymmetric version of  eq. (17) then becomes 

0.46 g3m~o/m 2 < D  < 2.3 X 10 . 2  g2m2so2/m2 (24) 

and puts the following constraint on m S 

gms < 5 X 10-2o. (25) 

For typical values o f o  ~ 2 × 1015 GeV in supersym- 
metric models the inequality (24)yields grn S < 1014 
GeV, not a difficult constraint to satisfy. 

To check the naturalness of  such a model, let us 
consider what happens ifrn S = 1010 GeV ,2 .  Using o 
=2  X 1015 GeVwe h a v e H ~  1.6 × 106 g GeV and 
T H ~ 2.6 × 105 g GeV. [Note that the lower value of  
T H requires us to lower the value of ASU(5 ) if we want 
to maintain the Hawking-Moss picture [12],  in order 
that the transition does not take place via strong cou- 
pling phenomena [ 19]. In a supersymmetric theory, 
however, it is possible that ASU(5 ) is smaller than its 
standard SU(5)value.] To ensure that we have enough 
inflation we nmst require that D ~ 6 × 1010 g2 GeV 2 
or 

m20+ 12bH 2+cT2H-3)t(qb2)~ < 1 0 1 1 g  2GeV 2, (26) 

where we have used R = 12H 2 corresponding to 
De Sitter space. The term c~X(q~ 2) is negligible [20] 

1 only i fm 0 = 0 and b = g - the conformal case. How- 
ever, in this case the terms 12bH 2 + cT 2 on the left- 

+2 Presumably the value of m s for the gauge supermultiplet 
must be much smaller than 10 l° GeV, but other supermul- 
tiplets could have a supersymmetry breaking mass splitting 
of this order. 

side of eq. (26) are already sufficient to violate the in- 
equality. Linde [21] has argued that in general one 
must impose 

)~ ~ ~ r r  2 ~ 5 X 10 -3 .  (27) 

One might have thought that the Coleman-Weinberg 
A = O(g 4) could be sufficiently small to respect the 
condition (27). However, this is not the case, as eq. (9) 
tells us that A = O ( 1 ) .  However, the broken supersym- 
metric version (22) suggests that all is well if 

gms < O(10 -1) o, (28) 

which is weaker than our previous condition (25). 
The benefits of  considering the one-loop potential 

in a broken supersymmetric theory have been three- 
fold. First, it raised the barrier between the SU(5) and 
SU(3) × SU(2) × U(1)phases V 1 - V 0 = D2/8A by 
reducing the value of A by a factor O(ms/mx) 2, thus 
ensuring that the universe sits in the SU(5) phase until 
it falls into the essentially stationary De Sitter state 
with temperature T H. Secondly, by lowering the quan- 
tity 2xV = ~Ao 4 again by O(ms/mx) 2 , supersyrmnetry 
generates a flatter potential which facilitates inflation. 
1hirdly, supersymmetry allows [21] the growth of  
(q52) to be sufficiently slow for the effective Higgs mass 
D to remain small enough to get a long timescale for 
the rollover and hence a large exponential growth (16). 
All of  these advantages are directly traceable to the can- 
cellations in A (8) which arise naturally in GUTs with 
broken supersymmetry, although the cancellation 
could be arranged ad hoc in a conventional GUT. It re- 
mains to be seen whether the new inflationary scenario 
remains intact when one considers a detailed supersym- 
metric GUT [22].  The indications are, however, that 
supersymmetry will indeed provide a more realistic in- 
flationary scenario. 
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