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Abstract

We perform a systematic study of the Standard Model embedding in a D-brane configura
type I string theory at the TeV scale. We end up with an attractive model and we study s
phenomenological questions, such as gauge coupling unification, proton stability, fermion m
and neutrino oscillations. At the string scale, the gauge group isU(3)color× U(2)weak× U(1)1 ×
U(1)bulk. The corresponding gauge bosons are localized on three collections of branes; two o
describe the strong and weak interactions, while the last Abelian factor lives on a brane w
extended in two large extra dimensions with a size of a few microns. The hypercharge is a
combination of the first threeU(1)’s. All remainingU(1)’s get masses at the TeV scale due
anomalies, leaving the baryon and lepton numbers as (perturbatively) unbroken global sym
at low energies. The conservation of baryon number assures proton stability, while lepton n
symmetry guarantees light neutrino masses that involve a right-handed neutrino in the bu
model predicts the value of the weak angle which is compatible with the experiment when the
scale is in the TeV region. It also contains two Higgs doublets that provide tree-level masse
fermions of the heaviest generation, with calculable Yukawa couplings; one obtains a naturally
top and the correct ratiomb/mτ . We also study neutrino masses and mixings in relation to re
solar and atmospheric neutrino data.
 2003 Elsevier Science B.V. All rights reserved.
E-mail address: irizos@cc.uoi.gr (J. Rizos).
1 On leave of absence from CPHT, UMR du CNRS 7644, Ecole Polytechnique, 91128 Palaiseau, France.

0550-3213/03/$ – see front matter 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0550-3213(03)00256-6

http://www.elsevier.com/locate/npe


was
sions
e
d the
ined

re not
ssion of

hould
extra

resent

y that
s, we

ber.
upling
as two

olar
lowest
ia the
k, and
e the
ugh

ith an
l bulk
one
t leads
ntain
ecent

mions
ad to a
we
wing

odels
rically
l
gonal
82 I. Antoniadis et al. / Nuclear Physics B 660 (2003) 81–115

1. Introduction

In a previous work [1,2], a minimal embedding of the Standard Model (SM)
proposed in a D-brane configuration of type I string theory with large internal dimen
and low fundamental scale [3,4]. TheSU(3) color andSU(2) weak gauge fields wer
confined on two different collections of branes. The model correctly accommodate
right value of the weak angle for a choice of the string scale of a few TeV. It conta
two Higgs doublets and guaranteed proton stability. Among the issues, which we
addressed, are the fermion masses, neutrino oscillations, and a natural suppre
lepton number violating processes.

A generic feature of the models studied was that some of the SM states s
correspond to open strings with one end in the bulk, implying the existence of some
branes, in addition to the ones used above [1,2]. Starting from the last point, in the p
work we introduce an extra brane in the bulk with a correspondingU(1)b bulk gauge group
[2]. This group is broken by anomalies, leaving behind an additional global symmetr
will be identified with the lepton number. In order to give masses to the neutrino
introduce a right-handed neutrino in the bulk [5] that carries non-trivial lepton num
Large neutrino masses are then forbidden by symmetry, while the right-neutrino co
suppression required to explain the neutrino oscillation data, is achieved if the bulk h
dimensions of submillimeter size.

More precisely, in the minimal case of one bulk neutrino, we show that s
and atmospheric neutrino data can be accommodated using essentially the two
frequencies of the neutrino mass matrix: the mass of the zero mode, arising v
electroweak Higgs phenomenon, which is suppressed by the volume of the bul
the mass of the first Kaluza–Klein (KK) excitation. The former is used to reproduc
large mixing angle (LMA or even LOW) solution to the solar neutrino anomaly, thro
νe↔ νµ transitions. The later is used to explain atmospheric neutrino oscillations w
amplitude which is enhanced due to logarithmic corrections of the two-dimensiona
[6]. Compatibility of the two conditions using one bulk right neutrino is possible only if
introduces a non-orthogonal angle between the two compact bulk dimensions, tha
simultaneously to a CP violation in the neutrino sector. Atmospheric oscillations co
however a significant sterile component which seems to be in contradiction with r
atmospheric data analyses.

We also compute the tree-level Yukawa couplings of the two higgses to the fer
of the heaviest generation. They are given in terms of the gauge couplings and le
naturally heavy top and a ratiomb/mτ compatible with the experimental data. Next,
proceed to a systematic description of the main features that we will use in the follo
sections.

The general framework is type I string theory. We shall restrict ourselves to m
in which the closed string sector is supersymmetric, while supersymmetry is gene
broken by the open strings at the string scale [7].2 Within our framework, the minima
ensemble of D-branes needed in our construction is the following mutually ortho
2 Recent progress in constructing type I vacua with structure close to the SM can be found in [8–10].
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stacks: a stack of three coincident branes to generate the color group, a secon
of two coincident branes to describe the weakSU(2)L gauge bosons, and one mo
brane to generate theU(1)b bulk discussed above. The resulting gauge group so f
U(3)c × U(2)L × U(1)b, with the threeU(1) generators denoted byQc, QL andQb,
respectively. To ensure proton stability, we require baryon number conservation
generatorB ≡ Qc. The hyperchargeY cannot have a component alongQb, since this
would lead to unrealistically small gauge coupling, and as explained in [1] the co
assignment of SM quantum numbers requires the presence of an extra abelian factor
U(1)1 with generatorQ1, living on an additional brane. This brane should lie on top of
color or the weak stack of branes, as we argue below.

Since in our framework, supersymmetry is broken by combinations of (anti-)b
and orientifolds which preserve different subsets of the bulk supesymmetries, an
of D-branes Dp and Dp′ satisfyp − p′ = 0 mod4. It follows that a system with thre
stacks of mutually orthogonal branes in the six-dimensional internal (compact)
consists, up to T-dualities, of D9-branes with two different types of D5-branes, exten
different directions. Specifically, theU(1)b lives on the D9-brane, while theU(3)c and
U(2)L are confined on two stacks of 5-branes, the first along say the 012345 a
other along the 012367 directions of ten-dimensional spacetime. Thus, the (submilli
bulk is necessarily two-dimensional (extended along the 89 directions), and the add
U(1)1 brane has to coincide with eitherU(3)c or U(2)L. The parameters of the mod
are the string scaleMs , the string couplinggs and the volumesv45, v67 andv89 of the
corresponding subspaces, in string units.3 In terms of those, the four-dimensional Plan
massMP is given by

(1.1)M2
P =

8

g2
s

v45v67v89M
2
s

and the non-Abelian gauge couplings are

(1.2)
1

g2
3

= 1

gs
v45,

1

g2
2

= 1

gs
v67.

It follows that

(1.3)M2
P =

8

g2
3g

2
2

v89M
2
s =

2

α3α2
v̂89M

2
s ,

whereαi = g2
i /4π and v̂89≡ v89/(2π)2 = R8R9 for a rectangular torus of radiiR8,R9.

TheU(1)1 gauge couplingg1 is equal tog3 (g2), if theU(1)1 brane is on top of theU(3)c
(U(2)L).

Upon T-duality, one finds two additional realizations: (i) a set of D3-branes (along 0
describingU(3)c, and two orthogonal sets of D7-branes along 01236789 and 0123
describingU(1)b andU(2)L, respectively; (ii) three sets of D5-branes along 0123
012345 and 012367, giving rise toU(1)b, U(3)c andU(2)L, respectively. In both case
relation (1.3) remains intact.
3 Using T-duality, we choose all internal volumes to be bigger than unity,vij > 1.
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The gauge couplinggb of theU(1)b gauge boson which lives in the bulk is extrem
small since it is suppressed by the volume of the bulkv89. For instance, in the case whe
theU(1)b lives on a D9-brane, its coupling is given by

(1.4)
1

g2
b

= 1

gs
v45v67v89= gs

8

M2
P

M2
s

,

where in the second equality we used Eq. (1.1). Using now the weak coupling con
gs < 1 and the inequalitygs > g2

3,2 following from vij > 1 in Eq. (1.2), one finds

(1.5)
√

8
Ms

MP

< gb <

√
8

g3

Ms

MP

,

which implies thatgb 	 10−16–10−14 for Ms ∼ 1–10 TeV.
If the U(1)b gauge boson is light, it will be subject to strong constraints coming f

supernova observations, since it would be copiously produced in various nuclear re
leading to supernova cooling through energy loss in the bulk of extra dimensions
corresponding process is much stronger than the production of gravitons because
non-derivative coupling of the gauge boson interaction [11]. In fact, in the case ofn large
transverse dimensions of common radiusR, satisfyingmA,R−1 � T with mA the gauge
boson mass andT the supernova temperature, the production ratePA is proportional to

(1.6)PA ∼ g2
b ×

[
R(T −mA)

]n × 1

T 2 	
T n−2

Mn
s

,

where the factor[R(T − mA)]n counts the number of Kaluza–Klein (KK) excitatio
of the U(1)b gauge boson with mass less thanT . This rate can be compared with t
corresponding graviton production

(1.7)PG ∼ 1

M2
P

× (RT )n 	 T n

Mn+2
s

,

showing that forn = 2 (sub)millimeter extra dimensions, it is unacceptably large, un
the bulk gauge boson acquires a massmA � 10 MeV.

The paper is organized in seven sections, of which this introduction is Secti
In Section 2, we perform a systematic search for models with four sets of b
corresponding to the gauge groupU(3)c × U(2)L × U(1)1 × U(1)b with the minimal
standard model fermion spectrum and a Higgs sector that generates masses for al
and leptons of the heaviest generation. We identify the hyperchargeU(1)Y combination
and in Section 3 we perform a renormalization group analysis of gauge couplin
identify models with low string scale, where theU(1)1 is on top of either the color o
the weak branes. In Section 4, we select four models with string scale in the TeV r
possessing in addition baryon and lepton number conservation, and we describe the
phenomenological features.4 They all contain two Higgs doublets that can provide tr
level masses to all fermions. Moreover, apart from the hypercharge, all other Ab
4 Orientifold models with baryon and lepton number conservation were also constructed in Ref. [9].
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factors are broken by mixed gauge and gravitational anomalies and become mas
the string scale. In Section 5, we compute the tree-level Yukawa couplings of th
higgses to the fermions of the heaviest generation and study predictions for mass re
In Section 6, we introduce one right-handed neutrino in the bulk and study the gene
of neutrino masses and neutrino oscillations. Finally, Section 7 contains our summa
conclusions.

2. Model search

As shown in [1], the minimal D-brane configuration that can successfully accomm
the Standard Model (SM) consists of three sets of branes with gauge symmetryU(3)c ×
U(2)L × U(1)1. The first set contains three coincident branes (“color” branes). An
string with one end attached to this set transforms as anSU(3)c triplet (or anti-triplet),
but also carries an additionalU(1)c quantum number which can be identified with t
(gauged) baryon number. Similarly,U(2)L is realized by a set of two coincident bran
(“weak” branes) and open strings attached to them from the one end areSU(2)L doublets
characterized by an additionalU(1)L quantum number, the (gauged) weak “doubl
number. Moreover, consistency of the SM embedding requires the presence of an ad
U(1)1 factor, generated by a single brane. This is needed for several reasons: TeV
unification, baryon number conservation, and mass generation for all quarks and l
of the heaviest generation. The hypercharge is then a linear combination of the
Abelian factors,Y = k3Qc + k2QL + k1Q1, whereQc,QL,Q1 are the charges und
U(1)c,U(1)L,U(1)1, respectively. It turns out [1] that there exist four possible “viab
models that reproduce the weak mixing angle all low energies. They correspond tok3= 2

3
(k3=−1

3), k2=±1
2, k1= 1 and require the Abelian braneU(1)1 to be on top of the colo

(weak) branes, so thatg3= g1 (g2= g1).
In all the above brane configurations there exist states (e.g., theSU(2)L singlet anti-

quarks) which correspond to open strings with only one of their ends attached t
of the three sets of D-branes. The other end is in the bulk, and requires the ex
of some additional branes extended in the bulk, carrying extra quantum numbers.
work, we consider a minimal extension of the models considered in [1] by introdu
one additional D-brane in the bulk giving rise to an extra Abelian gauge factorU(1)b. As
we will see later, the requirement of baryon and lepton number conservation leads
possible models that we are going to study in the next section. However, in this secti
do not impose this constraint and we systematically explore the possibility of reprod
the SM spectrum, together with possibly additional Higgs scalars, as open strings str
between any two of the four sets of branes. The extension of the Higgs sector is requ
the realization of the electroweak symmetry breaking and mass generation for all fer
of at least one (the heaviest) generation.

Thus, the total gauge group is

G=U(3)c ×U(2)L ×U(1)1×U(1)b

(2.1)= SU(3)c ×U(1)c × SU(2)L ×U(1)L ×U(1)1×U(1)b
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Table 1
SM particles with their generic charges under the Abelian part of the gauge groupU(3)c × U(2)L × U(1)1 ×
U(1)b

Particle U(1)c U(1)L U(1)1 U(1)b

Q
(
3,2, 1

6

) +1 w 0 0

uc
(
3̄,1,− 2

3

) −1 0 a1 a2

dc
(
3̄,1,+ 1

3

) −1 0 b1 b2

L
(
1,2,− 1

2

)
0 +1 c1 c2

ec(1,1,+1) 0 dL d1 d2

and contains four Abelian factors. The assignment of the SM particles is partially
from its non-Abelian structure. The quark doubletQ corresponds to an open string wi
one end on the color and the other on the weak set of branes. The anti-quarksuc, dc must
have one of their ends attached to the color branes. The lepton doublet and possibl
doublets must have one end on the weak branes. However, there is a freedom re
the Abelian structure, since the hypercharge can arise as a linear combination of a
Abelian factors. In a generic model, the Abelian charges can be expressed without
generality in terms of ten parameters displayed in Table 1.

In a convenient parametrization, normalizing theU(N) ∼ SU(N) × U(1) generators
as TrT aT b = δab/2, and measuring the correspondingU(1) charges with respect t
the couplingg/

√
2N , the ten parameters are integers:a1,2, b1,2, c1,2, d2 = 0,±1, d1 =

0,±1,±2,dL = 0,±2,w=±1 satisfying

(2.2)
∑
i=1,2

|ai | =
∑
i=1,2

|bi| =
∑
i=1,2

|ci | = 1,
∑

i=1,2,L

|di | = 2.

The first three constraints in (2.2) correspond to the requirement that theuc anddc anti-
quarks, as well as the lepton doublet, must come from open strings with one end at
to one of the Abelian D-brane sets. The fourth constraint forces the positronec open string
to be stretched either between the two Abelian branes, or to have both ends attache
AbelianU(1)1 brane, or to the weak set of branes. In the latter case, it hasU(1)L charge
±2 and is anSU(2)L singlet arising from the anti-symmetric product of two doublets.
parameterw in Table 1 refers to theU(1)L charges of the quark-doublets, that we c
choose to be±1, since doublets are equivalent with anti-doublets. Note that a prior
might also consider the case in which one of theuc anddc anti-quarks arises as a strin
with both ends on the color branes(3 × 3 = 3̄ + 6), so that itsU(1)c charges would be
±2. This, however, would invalidate the identification ofU(1)c with the baryon numbe
and forbid the presence of quark mass terms, since one of the combinationsQuc andQdc

would not be neutral underU(1)c. Hence, this case will not be explored.
The hypercharge can in general be a linear combination of all four Abelian g

factors. However, we restrict ourselves to models in which the bulkU(1)b does not
contribute to the hypercharge, in order to avoid an unrealistically small gauge cou
Hence,
(2.3)Y = k3Qc + k2QL + k1Q1.
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The correct assignments for SM particles are reproduced, provided

k3+ k2w= 1

6
,

−k3+ a1k1=−2

3
,

−k3+ b1k1= 1

3
,

k2+ c1k1=−1

2
,

(2.4)k2dL + d1k1= 1.

Notice that the second and third of the above equations imply thatk1 �= 0.
The next step, after assigning the correct hypercharge to the SM particles, is to

for the existence of candidate fermion mass terms. Here, we discuss only the ques
masses for one generation (the heaviest) and we do not address the general pro
flavor. To lowest order, the mass terms are of the formQdcH †

d ,QucHu andLecH †
e where

Hd,Hu,He are scalar Higgs doublets with appropriate charges. In a generic model
are four different candidate Higgs scalar doublets (and their conjugates)H1, . . . ,H4, with
U(1)L×U(1)1×U(1)b charges:

(2.5){H1,H2,H3,H4} =
{
(1,1,0), (1,0,1), (1,−1,0), (1,0,−1)

}
.

It is easy to show that for any hypercharge embedding of the form (2.3) withk1 �= 0,
there are at most three of the above Higgs doublets that have the correct hyper
Depending on the parameters of the model, they can be reduced to two. For the
charge assignments of Table 1, the required Higgs charges are

Hu = (1,2,0,−w,−a1,−a2),

Hd = (1,2,0,+w,+b1,+b2),

(2.6)He = (1,2,0,1+ dL, c1+ d1, c2+ d2).

Provided the constraints (2.2) are satisfied, bothHu andHd have the right charges o
(2.5) and correspond to strings stretched between the weak and one of the Abelian
Thus, (2.2) guarantees the existence of tree-level quark masses. On the other ha
existence ofHe depends on the particular choice of parameters, e.g., forc1 + d1 = 2,
He does not exist and a tree-level lepton mass term (LecH †) is forbidden. The generi
constraint that guarantees tree-level lepton masses is

(2.7)
∑
i=1,2

|ci + di | = |1+ dL| = 1.

Given the smallness of the lepton mass compared to the masses of the quarks
same generation, it would be reasonable to examine also the possibility that the
mass is generated by a higher order term. The next order candidate lepton ma

1 c † †
is of dimension six, proportional to
M2
s
Le H H H . The constraint in this case is more

complicated and the method we are going to use is the following: for each configuration
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that satisfies all other constraints except (2.7), we derive explicitly the candidate
doublets and check the existence of possible fifth order mass terms.5

The hypercharge constraints (2.4) can be easily solved. They requirea1 �= b1 and

(2.8)k3= a1+ 2b1

3(b1− a1)
,

(2.9)k2=− (a1+ b1)

2(b1− a1)w
,

(2.10)k1= 1

b1− a1
,

(2.11)c1=−b1− a1

2
+ (a1+ b1)

2w
,

(2.12)d1= b1− a1+ (a1+ b1)dL

2w
.

The allowed values of(a1, b1) are{(−1,0), (−1,1), (0,−1), (0,1), (1,−1), (1,0)}. How-
ever, we notice that the solutions with parameters(a1, b1, c1, d1, k1) and(−a1,−b1,−c1,
−d1,−k1) are equivalent, since they correspond to a global change of signQ1 →−Q1.
Thus, it is sufficient to search for solutions with(a1, b1) ∈ {(−1,0), (−1,1), (0,1)}. Solv-
ing for these choices, we get three allowed hypercharge embeddings:

(2.13)(i) a1=−1, b1= 1: Y = 1

6
Qc + 1

2
Q1,

(2.14)(ii) a1=−1, b1= 0: Y =−1

3
Qc + w

2
QL +Q1,

(2.15)(iii ) a1= 0, b1= 1: Y = 2

3
Qc − w

2
QL +Q1.

Case (i) leads toc1=−1, c2= 0,d1= 2,d1= dL = 0. This is a special solution where th
U(1)b brane decouples from the model since no SM particles are attached to it. It sa
(2.7) and thus leads to tree level lepton masses. The solution exists for bothw = ±1,
as the value ofw does not play an important role whenk2 = 0. In case (ii), we have
c1=−(1+w)/2,dL = 0, d1= 1 orc1= (1+w)/2, dL = 2w,d1= d2= 0, while case (iii)
leads toc1= (w− 1)/2, dL = 0, d1= 1 orc1= (1+w)/2, dL = 2w,d1= d2= 0.

Combining the above three cases with the constraints (2.2) and (2.7), we get 9 d
configurations with tree-level quark and lepton masses, displayed in the upper p
Table 2. Relaxing the constraint (2.7) with the requirement that lepton masses arise t
dimension six effective operators, leads to 6 more distinct models corresponding
cases 10–15 of Table 2. In deriving these configurations, we have eliminated all m
connected to the ones above by the global charge redefinitionQb→−Qb.

As we mentioned before, in all the above configurations, we can define the b
numberB as

(2.16)B = 1

3
Qc.
5 Here, we check only the conservation of all gauge quantum numbers. In the string context, there may be
additional selection rules for the non-vanishing of the corresponding couplings that are model dependent.
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ffective operators∼ LecH†〈H†H 〉/M2 (cases 10–15). We
generate quark and lepton masses

L nh

– 2

L +Q1
1
2Qc + 1

2QL − 1
2Q1− 1

2Qb 2

L +Q1 – 3

+Q1 − 1
2Qc + 1

2QL − 1
2Q1− 1

2Qb 2

+Q1 – 3

L +Q1
1
2Qc + 1

2QL − 1
2Q1− 1

2Qb 2

L +Q1 – 3

+Q1 – 3

+Q1 − 1
2Qc + 1

2QL − 1
2Q1− 1

2Qb 2

L +Q1 – 3

+Q1 – 3

L +Q1 – 3

L +Q1 – 3

+Q1 – 3

+Q1 – 3
Table 2
Distinct models with lepton masses generated either at tree levelLecH† (cases 1–9), or by dimension six e
also display the lepton number combinationL (when it exists) and the number of Higgs doubletsnh, needed to

a1 a2 b1 b2 c1 c2 d1 d2 dL w Y

1 −1 0 1 0 −1 0 2 0 0 1 1
6Qc + 1

2Q1

2 −1 0 0 −1 0 −1 1 1 0 −1 − 1
3Qc − 1

2Q

3 −1 0 0 −1 −1 0 1 1 0 1 − 1
3Qc + 1

2Q

4 0 1 1 0 0 −1 1 1 0 1 2
3Qc − 1

2QL

5 0 1 1 0 −1 0 1 1 0 −1 2
3Qc + 1

2QL

6 −1 0 0 −1 0 −1 0 0 −2 −1 − 1
3Qc − 1

2Q

7 −1 0 0 1 0 −1 0 0 −2 −1 − 1
3Qc − 1

2Q

8 0 1 1 0 0 1 0 0 −2 1 2
3Qc − 1

2QL

9 0 1 1 0 0 −1 0 0 −2 1 2
3Qc − 1

2QL

10 −1 0 0 1 −1 0 0 0 2 1 − 1
3Qc + 1

2Q

11 0 1 1 0 −1 0 0 0 2 −1 2
3Qc + 1

2QL

12 −1 0 0 1 0 1 1 1 0 −1 − 1
3Qc − 1

2Q

13 −1 0 0 −1 0 1 1 1 0 −1 − 1
3Qc − 1

2Q

14 0 1 1 0 0 1 1 1 0 1 2
3Qc − 1

2QL

15 0 1 1 0 0 −1 1 −1 0 1 2
3Qc − 1

2QL
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As we will argue below,U(1)c gauge invariance is broken by anomalies to a glo
symmetry, implying baryon number conservation in type I string perturbation theory.
lepton number is also conserved at present energies, we can further examine whic
above models possess also the lepton numberL as a symmetry. In general,L can also be
expressed as a linear combination of all Abelian factors,

(2.17)L=
∑

i=c,L,1,b
piQi

that satisfies

pc + pLw= 0,

−pc + a1p1+ a2pb = 0,

−pc + b1p1+ b2pb = 0,

pL + c1p1+ c2pb = 1,

(2.18)dLpL + d1p1+ d2pb =−1.

Inspection of (2.18), in conjunction with (2.4) that requiresa1 �= b1, implies that lepton
number can only be defined forpb �= 0, i.e., only in the presence of the bulkU(1)b.
This is of course expected, since the models withoutU(1)b have no lepton number [1
Solving explicitly (2.18) for each one of the cases of Table 2, we find that only
models, namely 2,4,6,9, incorporate the lepton number as a (gauged) Abelian symm
Its precise definition for each of these models is also presented in Table 2.

3. The weak angle and the string scale

We now come to the determination of the string scale consistent with the low e
SM data. Following the hypercharge definition (2.3), the low energy data depend o
couplingsg3, g2 andg1 of the three brane setsU(3)c, U(2)L andU(1)1. These couplings
are in principle independent, but, as already explained in the introduction, in order to
the string scale we have to consider configurations where theU(1)1 brane is on top o
either theU(3)c or theU(2)L stacks. Hence, we have two possible coupling relation
the string scale

(3.1)(i): g3= g1 or (ii): g2= g1.

In our normalizations, the hypercharge couplinggY at the string scale is expressed a

(3.2)
1

g2
Y

= 6k2
3

g2
3

+ 4k2
2

g2
2

+ 2k2
1

g2
1

.

Following the one loop coupling evolution (αi = g2
i /4π),

I

(3.3)

1

αi(Ms)
= 1

αi(MZ)
+ bi

4π
ln
∆ Ms

MZ

,
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whereb3 = −7, b2 = −10/3+ nh/6, bY = 20/3+ nh/6 andnh is the number of scala
Higgs doublets. The constant∆I corresponds to a model independent piece of the ty
string thresholds, entering in the identification of the string scale with the ultraviolet c
of the effective field theory. Its value was computed in Ref. [12] to be∆I = 1/

√
πeγ 	

0.4, whereγ is the Euler’s constant. When the string scale is very high compare
present energies, this represents a small correction compared to the dominant loga
contribution coming from the renormalization group evolution. On the other hand,
the string scale is low, such a correction becomes important, as it effectively ch
the string scale by roughly a factor of two, and should be taken with caution sin
is of the same order with the (unknown) model dependent part of threshold correc
Consequently, we will leave∆I as a parameter and discuss its possible effects on
results case by case.

Solving the one-loop renormalization group equations (RGE) for the coupling e
tion, the values of the weak mixing angle sin2 θW and of the strong couplinga3 at the
Z-massMZ are related to the couplings at the string scale:

(3.4)

sin2 θW (MZ)= 1

1+ kY +
αem(MZ)

2π

(kY b2− bY )
(1+ kY ) ln

∆IMs

MZ

+ αem(MZ)

1+ kY
[
6k2

3

(
1

αL(Ms)
− 1

α3(Ms)

)
+ 2k2

1

(
1

αL(Ms)
− 1

α1(Ms)

)]
,

(3.5)

1

a3(MZ)
= 1

αem(MZ)

1

1+ kY −
1

2π

b2+ bY − b3(1+ kY )
1+ kY log

∆IMs

MZ

+ 1

1+ kY
[(

4k2
2+ 1

)( 1

αL(Ms)
− 1

α3(Ms)

)
− 2k2

1

(
1

αL(Ms)
− 1

α1(Ms)

)]
,

wherekY = 6k2
3 + 4k2

2 + 2k2
1 andαem is the electromagnetic coupling.

Given a coupling relation of (3.1), we can use Eqs. (3.4) and (3.5) to determine the
scaleMs that correctly reproduces the low energy data. Clearly, the solution depen
|k3|, |k2| and |k1|. According to our previous analysis, there are three classes of mo
which correspond to the three possible hypercharge embeddings (2.13), (2.14) and

(i): |k3| = 1

6
, |k2| = 0, |k1| = 1

2
,

(ii): |k3| = 1

3
, |k2| = 1

2
, |k1| = 1,

(3.6)(iii ): |k3| = 2

3
, |k2| = 1

2
, |k1| = 1.
Using (3.4) and (3.5), for each of the embeddings (3.6) and the unification conditions (3.1),
we computed the corresponding string “unification” scaleMU ≡∆IMs . In our calculation
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Table 3
The string unification scaleMU and the two independent gauge couplings for the two possible b
configurations and the various hypercharge embeddings

|k3| |k2| |k1| MU (TeV) g2(MU )/g3(MU ) g2(MU )g3(MU )

g1= g3
1
6 0 1

2 4.6×1020 1.1 0.21

1
3

1
2 1 2.4× 103 0.76 0.48

2
3

1
2 1 7.2 0.65 0.61

g1= g2
1
6 0 1

2 1.5×1022 1.1 0.26

1
3

1
2 1 0.32 0.57 0.73

2
3

1
2 1 – – –

we have used the following values for the low energy quantitiesa3(MZ) = 0.119,
sin2 θW = 0.231,aem(MZ)= 1/127.934. The results are presented in Table 3.

In the above calculations we have assumed that the number of doubletsnh is the
minimumnh = 2 required by the model. Of course, one can consider models with
doublets which can be for instance replicas of these two. It would be thus interest
examine the dependence of the above results on the number of doublets. To this
can extract analytic formulas regarding the unification scaleMU . For the caseg1 = g3,
taking for simplicityk1= 1 andkL =±1

2, we find

(3.7)
3(4+ 7k2

3)

π
log

MU

MZ

= 1

αem(MZ)

(
1− 2 sin2 θW (MZ)

)− 2
(
1+ 3k2

3

) 1

α3(MZ)

which implies that at the one-loopMU is independent of the number of doublets. Simila
for g1= g2 andk1= 1, kL =±1

2, we have

(3.8)
50+ 126k2

3− nh
6π

log
MU

MZ

= 1

αem(MZ)

(
1− 4 sin2 θW(MZ)

)− 6k2
3

1

α3(MZ)
,

where we find a very weak dependence. Obviously, the number of doublets affec
value of the weak gauge coupling atMs and thus the volume of the bulk through (1.3).

4. The models

So far, we have classified all possibleU(3)c × U(2)L × U(1)1×U(1)b brane models
that can successfully accommodate the SM spectrum. The quantum numbers o
model as well as the hypercharge embedding are summarized in Table 2. Furthe
compatibility with type I string theory with string scale in the TeV region, requires the
to be two-dimensional of (sub)millimeter size, and leads to two possible configura
place theU(1)1 brane on top of the weakU(2)L stack of branes or on top of the colorU(3)c
branes. These impose two different brane coupling relations at the string (unification)

g1 = g2 or g1 = g3, respectively. For every model, using the hypercharge embedding
of Table 2, the one loop gauge coupling evolution and one of the above brane coupling
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conditions, we can determine the unification (string) scale that reproduces the weak
at low energies. The results are summarized in Table 3.

According to the results of Section 2, there are three distinct hypercharge embe
that correspond to(|k3|, |k2|, |k1|)= {(1/6,0,1/2), (1/3,1/2,1), (2/3,1/2,1)}. Since we
wish to restrict ourselves to models in which supersymmetry is broken at the string
(Ms ), we would likeMs to be low, at the TeV scale, to protect the mass hierar
Thus, model 1 of Table 2, with hypercharge embedding(1/6,0,1/2), is rejected for
bothU(1)1 brane arrangements, since the resulting string scale is too high. Furthe
models with hypercharge embedding(1/3,1/2,1) lead toMs ∼ 103 TeV for g1 = g3.
This scale, although much lower than the traditional GUT scale, is rather high fo
stabilization of hierarchy. On the contrary, forg1= g2, we findMs ∼O(1) TeV (when the
universal threshold correction∆I is taken into account) that lies at the edge of the pre
experimental limits. The third embedding(2/3,1/2,1) reproduces successfully the lo
energy data only forg1= g3 and a string scaleMs ∼O(10) TeV.

In all configurations of Table 2, the baryon number appears as a gauged A
symmetry. This symmetry is broken due to mixed gauge and gravitational anom
leaving behind a global symmetry. Baryon number conservation is essential for low
scale models, since one needs to eliminate effective operators to very high accu
order to avoid fast proton decay, starting with dimension six operators of the formQQQL

which are not sufficiently suppressed [13]. In addition to baryon number, one shoul
assure that the lepton number is a good symmetry of the low energy theory. Lepton n
conservation is also essential for preservation of acceptable neutrino masses, as it
for instance the presence of the dimension 5 operatorLLHH . Such an operator woul
lead to large Majorana neutrino masses, of the order of a few GeV, in models
the string scale, typically a few TeV, is too low for the operation of an effective sea
mechanism. Hence, we shall be interested only in models in which the lepton num
a good symmetry. Indeed, as seen in Table 2, only in four models, namely 2,4,6 and 9,
lepton number appears as a (gauged) Abelian symmetry. Being anomalous, this sy
will be broken, but lepton number will survive as a global symmetry of the effective th

In fact, these four models can be derived in a straightforward way by si
considerations of the quantum numbers. The quark doubletQ is fixed by non-Abelian
gauge symmetries, while existence of baryon number implies that the anti-quarksuc, dc

correspond to strings stretched between the color branes and one each of the Abelia
U(1)1 andU(1)b. Thus, one has two possibilities leading to models that we call A (dc has
one end in the bulk) and B (uc sees the bulk). Existence of lepton number fixes the le
doublet as a string stretched between the weak branes and theU(1)b brane, while for each
of the models A and B there are two possibilities for the anti-leptonec to emerge as a
string stretched between the two Abelian branes, or to have both ends on the weak
Thus, we obtain two additional models that we call A′ and B′. As it can also be seen in th
table, all these models have tree-level quark and lepton masses and make use of o
Higgs doublets. They also require low energy string scale for some of the brane co
conditions. We now proceed to a detailed study of these four models and to an ana
their main phenomenological characteristics.
Notice from Table 3 that in both classes of models A and B, the coupling constant
ratio is g2/g3 	 0.6 at the string scale, implying through the relations of Section 1 that
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at least one of the internal compact dimensions along the world-volume of the we
of branes must be larger than the string length, by at least a factor of two (in the c
two large dimensions, or by a factor of four in the case of one). The relevant experim
signal would be the production of Kaluza–Klein excitations for theW± bosons and the
other mediators of the electroweak interactions but not of gluons, providing one of th
indications of new physics [14].

4.1. Models A and A′

We consider here the models 2 and 6 of Table 2, hereafter referred as models A a′,
respectively. They are characterized by the common hypercharge embedding

(4.1)Y =−1

3
Qc − 1

2
QL +Q1

but they differ slightly in their spectra. The spectrum of model A is

Q(3,2,+1,−1,0,0),

uc(3̄,1,−1,0,−1,0),

dc(3̄,1,−1,0,0,−1),

L(1,2,0,+1,0,−1),

ec(1,1,0,0,+1,+1),

Hu(1,2,0,+1,+1,0),

Hd(1,2,0,−1,0,−1),

while in model A′ the right-handed electronec is replaced by an open string with both en
on the weak brane stack, and thusec = (1,1,0,−2,0,0). The two models are present
pictorially in Fig. 1.

Apart from the hypercharge combination (4.1) all remaining Abelian factors
anomalous. Indeed, for every Abelian generatorQI , I = (c,L,1, b), we can calculate
the mixed gauge anomalyKIJ ≡ TrQIT 2

J with J = SU(3),SU(2), Y , and gravitationa
Fig. 1. Pictorial representation of models A, A′.
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anomalyKI4≡ TrQI for both models A and A′:

(4.2)K(A) =


0 −1 −1

2 −1
2

3
2 −1 0 −1

2

−3
2

1
3 −1

3
1
6

0 −4 −2 −4

 , K(A
′) =


0 −1 −1

2 −1
2

3
2 −1 0 −1

2

−3
2 −5

3 −4
3 −5

6

0 −6 −3 −5

 .
It is easy to check that the matricesKKT for both models have only one ze
eigenvalue corresponding to the hypercharge combination (4.1) and three non-va
ones corresponding to the orthogonalU(1) anomalous combinations. In the conte
of type I string theory, these anomalies are canceled by a generalized Green–S
mechanism which makes use of three axions that are shifted under the correspondinU(1)
anomalous gauge transformations [15]. As a result, the three extra gauge bosons
massive, leaving behind the corresponding global symmetries unbroken in pertur
theory [16]. The three extraU(1)’s can be expressed in terms of known SM symmetrie

Baryon number: B = 1

3
Qc,

Lepton number: L= 1

2
(Qc +QL −Q1−Qb),

(4.3)Peccei–Quinn: QPQ=−1

2
(Qc −QL − 3Q1− 3Qb).

Thus, our effective SM inherits baryon and lepton number as well as Peccei–Quinn
global symmetries from the anomaly cancellation mechanism. Note however that PQ
original Peccei–Quinn symmetry only in model A′, such that all fermions have charg
+1, while Hu andHd have charges−2 and+2, respectively. In model A, the glob
PQ symmetry defined in (4.3) is similar but with lepton charge+3. The reason is tha
in model A the fermion-Higgs Yukawa couplings are different, and leptons get m
fromHu and not fromHd .

The general one-loop string computation of the masses of anomalousU(1) gauge
bosons, as well as their localization properties in the internal compactified spac
performed recently for generic orientifold vacua [17]. It was shown that orbifold se
preservingN = 1 supersymmetry yield four-dimensional (4d) contributions, localize
the whole six-dimensional (6d) internal space, whileN = 2 supersymmetric sectors giv
6d contributions localized only in four internal dimensions. The later are related
anomalies. Thus, evenU(1)s which are apparently anomaly free may acquire non-
masses at the one-loop level, as a consequence of 6d anomalies. These results
following implications in our case:

(1) The twoU(1) combinations, orthogonal to the hypercharge and localized on the s
and weak D-brane sets, acquire in general masses of the order of the string sca
contributions ofN = 1 sectors, in agreement with effective field theory expectat
based on 4d anomalies.
(2) Such contributions are not sufficient though to make heavy the thirdU(1) propagating
in the bulk, since the resulting mass terms are localized and suppressed by the
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volume of the bulk. In order to give string scale mass, one needs insteadN = 2
contributions associated to 6d anomalies along the two large bulk directions.
models such contributions are indeed in general present and arise from mix
gauge-gravitational anomalies of two different sources: (i) the generic presenc
neutral 6d Weyl fermion on the bulk brane which coincides either with theU(1)b
gaugino (in the supersymmetric case) or the goldstino of the non-linearly rea
supersymmetry (in the brane SUSY breaking case [7]); (ii) the contribution o
right-handed neutrino which arises from a six-dimensional Weyl spinor. As a re
the third Abelian gauge fieldU(1)b acquires also a mass of the order of the string sc
although its gauge coupling is tiny due to the volume suppression (see Eq. (1.5)

(3) Special care is needed to guarantee that the hypercharge remains massless de
fact that it is anomaly free, along the lines of Ref. [17].

The presence of massive gauge bosons associated to anomalous Abelian gauge sy
is generic. Their mass is given byM2

A ∼ gsM2
s , up to a numerical model dependent fac

and is somewhat smaller that the string scale. When the latter is low, they can affe
energy measurable data, such asg − 2 for leptons [18] and theρ-parameter [19], leadin
to additional bounds on the string scale.

Note that the global PQ symmetry leftover fromU(1)b is spontaneously broken by th
Higgs expectation value giving rise to an unwanted electroweak axion. A possible w
was suggested in Ref. [1], using an appropriate departure away from the orientifold

A plausible extension of the model is the introduction of a right-handed neutrino i
bulk. A natural candidate state would be an open string ending on theU(1)b brane. Its
charge is then fixed to+2 by the requirement of existence of the single possible neu
mass termLHdνR . The suppression of the brane-bulk couplings due to the wave fun
of νR would thus provide a natural explanation for the smallness of neutrino masses
that if the zero mode of this bulk neutrino state is chiral, the anomaly structure of the m
changes:B − L becomes anomaly free and as a consequence the associated gaug
remains in principle massless. However, as we discussed above, this is not in gene
because of 6d anomalies [17]. In any case, this problem is absent if we introduce a
like bulk neutrino pair

νR(1,1,0,0,0,+2)+ νcR(1,1,0,0,0,−2)

that leaves the anomalies (4.2) intact. Note thatνcR does not play any role in the subsequ
discussion of neutrino masses and oscillations.

Coming to the issue of gauge couplings and the string scale, as already exp
we have two different realizations for each model. The first is withg1 = g3 at Ms that
corresponds to a configuration where theU(1)1 brane is placed on top of the color bran
According to Table 3, this leads to an intermediate string scaleMs ∼ 106 GeV, which
appears too high to guarantee the stabilization of hierarchy. The second possibility is
theU(1)1 brane on top of the weak branes, leading tog1= g2. The required string scale

now lowMs ∼O(500) GeV (300–800 GeV, depending on the threshold corrections), and
could account for the stability of the hierarchy.
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4.2. Models B and B′

Another phenomenologically promising pair of models consists of solutions 4 and
Table 2, named hereafter B and B′, which corresponds to the hypercharge embedding

(4.4)Y = 2

3
Qc − 1

2
QL +Q1.

The spectrum is

Q(3,2,+1,+1,0,0),

uc(3̄,1,−1,0,0,1),

dc(3̄,1,−1,0,1,0),

L(1,2,0,+1,0,−1),

ec(1,1,0,0,+1,+1),

Hu(1,2,0,−1,0,−1),

Hd(1,2,0,+1,+1,0),

for model B, while in B′ ec is replaced byec(1,1,0,−2,0,0). The two models are
represented pictorially in Fig. 2. The four Abelian gauge factors are anomalous. Proc
as in the analysis (4.2) of models A and A′, the mixed gauge and gravitational anoma
are

(4.5)K(B) =


0 1 1

2
1
2

3
2 2 0 −1

2

−3
2

2
3

4
3

11
6

0 8 4 2

 , K(B
′) =


0 1 1

2
1
2

3
2 2 0 −1

2

−3
2 −4

3
1
3

5
6

0 6 3 1

 .
It is easy to see that the only anomaly free combination is the hypercharge (4.4)
survives at low energies. All other Abelian gauge factors are anomalous and will be b
by the generalized Green–Schwarz anomaly cancellation mechanism, leaving
global symmetries. They can be expressed in terms of the usual SM global symm
Fig. 2. Pictorial representation of models B and B′ .
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as the followingU(1) combinations:

(4.6)Baryon number: B = 1

3
Qc,

(4.7)Lepton number: L=−1

2
(Qc −QL +Q1+Qb),

(4.8)Peccei–Quinn: QPQ= 1

2
(−Qc + 3QL +Q1+Qb).

Similarly to the analysis of models A and A′, the PQ charges defined above are
traditional ones only for model B. In model B′, the lepton charge is−3, as a result o
the Higgs–Yukawa couplings to the fermions (see below). The right handed neutrin
also be accommodated as an open string with both ends on the bulk Abelian brane:

(4.9)νR(1,1,0,0,0,+2)+ νcR(1,1,0,0,0,−2).

According to the RGE running results of Table 3, there is only one brane configur
for the models under discussion, that reproduces the weak mixing angle at low en
This consists of placing theU(1)1 brane on the top of the color branes, so thatg1 = g3,
which leads toMs ∼O(10) TeV (7–17 TeV, depending on the threshold corrections).

5. Fermion masses

Although the general question of quark and lepton masses goes beyond the sc
this paper, we would like to make here some comments in the context of our constru
The Yukawa couplings relevant to fermion masses are constrained by the variousU(1)
symmetries and can present interesting patterns.

Model A. The relevant Yukawa couplings are

(5.1)MA = λuQucHu+ λdQdcH †
d + λeLecH †

u + λνLHdνR.
Here, charged leptons and up quarks (of the heaviest generation) obtain masses f
same Higgs (Hu).

When all Yukawa couplings arise at the lowest (disk) order, it is easy to check that
simplest case (absence of discrete selection rules, etc), they satisfy the following re

(5.2)λu = λe =
√

2g2, λd =
√

2gs, λν =
√

2gb.

The top and bottom quark masses are given by

(5.3)mt = g2v sinβ, mb =√gs v cosβ,

where tanβ = vu/vd , with vu andvd the vacuum expectation values (VEVs) of the t

higgsesHu andHd , respectively, andv =
√
v2
u + v2

d = 246 GeV. Note that in the cas

where the color branes are identified with D3 branes, one has
√
gs = g3, and in any case

gs � g2
3. Note also that since the string scale in this model is relatively low,Ms � 1 TeV,
there is no much evolution of the low energy couplings from the electroweak to the string
scale. Thus, using the known value of the bottom massmb 	 4 GeV, one obtains for the
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top quark massmt 	 162 GeV which is less than 5% below its experimental valuem
exp
t =

174.3± 5.1 GeV. In addition, the Higgs VEV ratio turns out to be large, tanβ 	 100. Note
that such a large value is not in principle problematic as in the supersymmetric case
can lead to important higher order corrections.

On the other hand theτ -mass is of the same order as the top mass, which is unrea
However, there is still the possibility that the lepton Yukawa couplingλe vanishes to
lowest order due to additional string discrete selection rules, and is generated by a
dimensional operator of the formLec(H †

uH
†H) providing the appropriate suppression.6

Model A′. The Yukawa couplings here are

(5.4)MA′ = λuQucHu + λdQdcH †
d + λeLecH †

d + λνLHdνR
with the same relation for the tree-level couplings as in (5.2). Using the parametriza
(5.3) we see that the relation ofmt tomb is the same as in model A and the same rema
apply. Since here the lepton and down quark acquire their masses from the same
one obtains the phenomenologically interesting relation:mb/mτ =√gs/g2= g3/g2, when
strong interactions are on D3-branes. Thus, from Table 3,mb/mτ 	 1.75 at the (string)
unification scale, which is in the upper edge of the experimentally allowed regi
theZ-mass, 1.46� mb/mτ |exp � 1.75. This relation could replace the successful G
predictionmb =mτ of the conventional unification framework, in low scale string mod
In conclusion model A′ seems to be able to generate the required hierarchy of mass
the third generation.

Model B. The relevant trilinear Yukawa couplings are,

(5.5)MB = λuQucHu + λdQdcH †
d + λeLecH †

d + λνLHuνR.
The tree-level Yukawa couplings satisfy

(5.6)λe = λu =
√

2gs, λd =
√

2g3, λν =
√

2gb

and we have

(5.7)mt =√gs v sinβ, mb = g3v cosβ.

The first relation implies again a heavy top, while the bottom to tau mass ra
now predicted, with a valuemb/mτ = g3/

√
gs � 1 which is apparently far from it

experimental value. However, in this case, the string scale is relatively high and the
one should take into account the renormalization group evolution above the weak
Solving the associated RGEs with the boundary conditions (5.7) and assumingg3=√gs ,
we obtain acceptablemb andmτ masses forMs ∼ 3× 103 TeV and tanβ ∼ 80. Note that
the successful prediction ofmb andmτ is related to the conditionmb =mτ at the (string)
unification scale, which in the case of non-supersymmetric Standard Model is obtai
relatively low energies [20]. Indeed, in Fig. 3, we plot the mass ratiomb/mτ as a function
of the energy, within the non-supersymmetric Standard Model with two Higgs dou
Nevertheless, the resulting value ofMs is still significantly higher than the unificatio
6 Models with similar properties have been considered in the past in the perturbative heterotic string
framework.
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Fig. 3. Evolution of the ratiomb/mτ as a function of the energyµ for tanβ = 2 and tanβ = 80. We have used a
low energy parametersmb = 4 GeV,mtop= 174 GeV,a3(Mz)= 0.12, sin2 θW = 0.23113.

scale required from the analysis of gauge couplings in Section 3. Moreover, the top
mass turns out to be rather high,mt ∼ 220 GeV. It is an open question whether t
discrepancy can be attributed to threshold corrections that can be important in th
of two-dimensional bulk [6].

Model B ′. The relevant Higgs couplings are given by

(5.8)MB′ = λuQucHu+ λdQdcH †
d + λeLecH †

u + λνLHuνR
while the tree-level Yukawa couplings by

(5.9)λu =
√

2gs, λd =
√

2g3, λν =
√

2gb and λe =
√

2g2.

Here, as in model A, theτ and top mass are of the same order and thus in conflict
experiment. As in model A, vanishing leading order coupling could be a way out.

In the above analysis we have also assumed that only the heaviest generation a
masses at the lowest order. The other two are considered to have vanishing trilinear Y
couplings. This property does not follow from the gauge symmetries we considere
should be attributed either to discrete string symmetries or to additional gauge symm
by enlarging the model.6

6. Neutrino physics

One of the challenges of Standard Model extensions is the justification of the sma
of neutrino masses. The favorite scenario used to rely upon the introduction of right-h
neutrinos (SM singlets) and their mixing with some extra massive singlets. The suppr
of the neutrino masses is then obtained as a result of the structure of the full mass

(“see-saw” mechanism). In order for this mechanism to work effectively, the extra singlet
mass should be about ten orders of magnitude higher than the electroweak scale.
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Among the promising features of D-brane models is a novel scenario to accou
neutrino masses: right-handed neutrinos are assumed to propagate in the bulk wh
handed neutrinos, being a part of the lepton doublet, live on the brane. As a resu
Dirac neutrino mass is naturally suppressed by the bulk volume. Adjusting this volum
that the string scale lies in the TeV range, leads to tiny neutrino masses compatib
current experimental data.

The extra-dimensional neutrino mass suppression mechanism described above
destabilized by the presence of a large Majorana neutrino mass term. As already me
in Section 3, the lepton-number violating dimension five effective operatorLLHH leads,
in the case of TeV string scale models, to a Majorana mass term of the order of a few
Even if we manage to eliminate this operator in some particular model, higher
operators would also give unacceptably large contributions, as we focus on mod
which the ratio between the Higgs vacuum expectation value (VEV) and the string s
just of orderO(1/10). The best way to protect tiny neutrino masses from such contribu
is to impose lepton number conservation. As we have seen in Section 2, we ca
models which successfully accommodate all SM particles and preserve lepton num
an effective global symmetry in perturbation theory. These are the models A, A′ and B, B′
described in detail in Section 3.

Apart from neutrino masses these theories contain also the ingredients to e
neutrino oscillations. The right-handed neutrino, being a bulk state, has a tower of Ka
Klein (KK) excitations. Their mixing with the ordinary (left-handed) neutrino leads
oscillation patterns that have to be compared with present solar and atmospheric n
data. There exist extended discussions in the literature [5] regarding the neutrino
and oscillation problems in the context of extra-dimensional theories. Among the com
results of these works is that an explanation of the solar neutrino anomaly is po
provided the small mixing angle (SMA) solution is acceptable. However, recent
results in conjunction with SuperKamiokande data [21–24] strongly disfavor the
solution and thus render this higher-dimensional oscillation mechanism proble
at least as far as solar neutrino oscillations are concerned. A possible way ou
introduce three bulk neutrinos and explain the oscillations in the traditional way
The effect of the KK mixing can be eliminated by appropriately decreasing the
of the extra dimensions and thus increasing the value of the string scale. Howev
these discussions are restricted to the case of effectively one-dimensional bulk. B
these phenomenological difficulties, there is also a serious theoretical problem, sinc
dimensional propagation of massless bulk states gives rise to linearly growing fluctu
which yield in general large corrections to all couplings of the effective field the
destabilizing the hierarchy [6].

Two-dimensional scenarios have not been considered in detail. We will see
how the above problems can be resolved and discover that a two-dimensional bu
enough structure to describe both the solar and atmospheric neutrino oscillatio
introducing a single bulk neutrino pair. On the other hand, recent experiments are als
to differentiate between the contributions of active and sterile neutrinos to the ne
anomaly problems. From this point of view, the KK excitations do not carry any Stan

Model charges and are thus considered as sterile. It is then important to examine if all these
constraints are compatible with our model.
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As explained in the introduction, our setup incorporates a two-dimensional bulk a
are going to assume hereby that neutrinos propagate in the full bulk volume which is
dimensional space. Among the common features of the models considered in Sectio
finds tree-level neutrino couplings and mass-terms of the form:

(6.1)
3∑
i=1

λiLiHiνR→
3∑
i=1

λiviνiLνR,

wherei is a generation index and for each generationi, Hi is one of the available Higg
doubletsHd or Hu, providing masses to down quarks (models A,A′) or to up quarks
(models B,B′), respectively, withvi = 〈Hi〉 the corresponding VEV. The above couplin
provide a mass to one linear combination (νL) of the weak eigenstates (νiL), while the
other two remain massless. Note, that it would be possible to generate masses for
handed neutrinos by introducing additional bulk neutrino pairs. In this case the num
free parameters is increased and predictability is lost. Thus, here, we will study the c
a single bulk neutrino pair. DefiningNL = (νL, ν0L, ν

′
0L) the mass eigenstates, the we

eigenstates can be written as

(6.2)νiL =
∑
j

UijNLj ,

whereU is a 3× 3 unitary matrix withU∗j1= (U−1)1j = λjvj /mD andm2
D =

∑3
i=1λ

2
i v

2
i

is the mass-square of the massive combination (νL). Being of brane-bulk type, th
couplingsλi are naturally suppressed by the bulk volumev89 (see Section 1) and lea
to a tiny Dirac neutrino mass

(6.3)mD = v̄√
v89

= 2
√

2

g3g2

Ms

MP

v̄,

where v̄ =
√∑3

i=1h
2
i v

2
i with hi , i = 1,2,3, the associated dimensionless Yuka

couplings andvi the corresponding Higgs VEV(v = 〈Hd 〉, 〈Hu〉) depending on the mode
Using typical values for the gauge couplings (see Table 3 of Section 3),vi < v = 246 GeV
andhi/4π = O(1), we obtainmD < 6× 10−3 eV for Ms � 10 TeV. This provides an
explanation for the smallness of neutrino masses and is actually the extra-dimen
version of the see-saw mechanism.

The above picture is simplified because we have neglected the contributions of the
of KK neutrino states. Taking them into account, and assuming for simplicity that th
bulk radii are equalR8=R9=R and form an angleπ/2− θ , where−π/2< θ < π/2, the
mass terms become

(6.4)Lm =mDνL
∑
�k
δ
−m2

�k/M
2
ν
(�k)
R +

∑
�k
m�kν

c
R
(�k)
ν
(�k)
R + c.c.,

whereνR = ν(0)R and the summation over�k extends over all KK momenta. Bym2
�k we

denote the mass-square of the KK excitation labeled by momenta�k = (k1, k2)
(6.5)m2
�k =

1

R2 cos2 θ

(
k2

1 + k2
2− 2k1k2 sinθ

)
.
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We also use the notationm2
k for the mass-square of thekth KK level.δ is a model dependen

constant bigger than one, associated to the coupling of two Neumann–Dirichlet (NDZ2-
twisted strings to an untwisted (NN or DD) string [26]. In our models, there are fourZ2-
twisted coordinates, implyingδ = 16.M plays the role of an ultraviolet (UV) cutoff, whic
is normally the string scaleMs , but we prefer using the symbolM because in certai
processes there exists an induced cutoff that can be a few orders of magnitude belMs .
For instance, this is the case of solar neutrinos, where the production energy is of o
a few MeV, and thus heavier KK modes are effectively cut off.

The mass terms (6.4) lead to a mixture of the usual left-handed neutrino wit
infinite tower of its KK excitations. A detailed analysis of the eigenstate problem in
framework is presented in Appendix A where we derive the basic formulas for neu
masses and transition probabilities. Due to its complexity, the problem can be
treated numerically in the general case or analytically using some approximation. Th
approach has the disadvantage of being rather tedious as it involves summations
very large number of KK modes, so we will adopt here an analytic perturbative appr
Concerning the interpretation of neutrino anomalies, there are also two possible trea
the first is a direct fit of neutrino data to the transition probability formulas obtaine
our framework. The second is to try to simulate the standard solutions to the sol
atmospheric neutrino anomaly problems. We will use here the second method, a
sufficient for demonstrating the basic features of our model.

Following Appendix A, the mass spectrum of the full system, in the case of two
dimensions, is

(6.6)m̃2
k =m2

k + rkm2
Dδ

−2m2
k/M

2
(1−∆k)+ · · · ,

whererk is the multiplicity of thekth KK level and

(6.7)∆k = πm2
D

(
R2 cosθ

){
log

(
M2R2 cosθ logδ2)+ sk},

with sk a volume independent constant. Our solution is based on the assumption
mDR� 1, as justified by (6.3) and∆n < 1 that simplifies the formulas involved. Und
these assumptions, and following the analysis in Appendix A, the survival probabili
a neutrino of flavori is given by

(6.8)Pνi→νi ≈ 1− 4u2
i

(
1− u2

i

)
sin2

(
m2

0

4

L

E

)
− 3.2u2

i ∆0 sin2
(
ω

R2

L

4E

)
,

wherem2
0 = m2

D(1 − ∆0) and ui = |Ui1| satisfying the unitarity relation
∑
i u

2
i = 1;

L is the distance that the neutrino travels before being detected andE is the beam energy
According to the discussion in Appendix A, the survival probability takes this form
for specific values of the angleθ :

(6.9)sinθ = p

q
, p,q ∈ Z, |p|< q, ω= q(3+ (−1)q)

2(q2− p2)
,

wherep,q are relatively prime integers andq = 1 for p = 0. In our approximation, the
m2
DL
survival probability (6.8) is a superposition of two modes with frequencies:4E and

ωL
4R2E

. These two frequencies can be considered as independent parameters, as the first
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depends on the Yukawa couplings and the Higgs VEVs, while the second depen
the compactification radius or equivalently on the string scale. The existence of the
frequencies provides us with the opportunity to fit both solar and atmospheric oscill
using (6.8). Furthermore, the amplitudes of the two modes depend onui and∆0 defined in
(6.7). These parameters can be used in order to fit the oscillation amplitudes.

In the standard neutrino (two flavor) scenario, one usually explains the solar ne
anomaly byνe → νµ oscillations and the atmospheric neutrino deficit byνµ → ντ
oscillations. The formula for the transition probability is:

(6.10)Pνi→νj = sin2 2θij sin2
(
>m2

ij

4

L

E

)
,

where>m2
ij =m2

i −m2
j is the neutrino mass difference in the case of two states mix

ExpressingL in km, E in GeV and>m2 in eV2, the frequency>m2
ij
L

4E takes the form

1.27×>m2
ijL/E.

Recent analysis of atmospheric neutrino data [23] at 3σ c.l. gives 1× 10−3<>m2
atm<

6×10−3 eV2 and 0.7< sin2 2θatm< 1. Regarding solar data, the situation has dramatic
changed after the latest SNO results: only the LMA and LOW MSW solutions
acceptable at the 3σ c.l. with 2.3×10−5<>m2

LMA < 3.7×10−4 eV2, 0.6< sin2 2θLMA <

1 and 3.5× 10−8 < >m2
LOW < 1.2× 10−7 eV2, 0.8< sin2 2θLOW < 1. Moreover, the

LMA gives a much better fit. The region of the SMA solution (with best fit val
>m2

SMA ∼ 5× 10−6 eV2, sin2 2θSMA ∼ 2× 10−2) is acceptable only at the 5.5σ level
and is thus practically excluded [22].

The atmospheric neutrino oscillation frequency is higher than solar solutions,>m2
atm>

>m2
sol, and thus we have to use the lowest frequency in (6.8) (i.e.,m2

0) to simulate
solar neutrino oscillations. Formula (6.8) contains four independent parameters, n
mD,R,Ms and ue (assuminguτ = 0 and thusu2

e + u2
µ = 1). Fitting both solar and

atmospheric oscillations requires to leading order in∆0:

(6.11)
ω

R2 =>m2
atm,

(6.12)m2
D =>m2

sol,

(6.13)4u2
e

(
1− u2

e

)= sin2 2θsol,

(6.14)3.2u2
µ∆0= sin2 2θatm.

Neglecting the constant terms0 in the expression (6.7) of∆0, in the limitMR� 1, and
assumingδ = 16,∆0 can be written in terms ofMs andmD as

(6.15)∆0≈ 1

2πa2

m2
DM

2
P

M4
s

log

(
MP

πaMs

√
logδ

2

)
, a = 2

√
2

g3g2
,

where we have assumed that the cutoff is equal to the string scale (M =Ms ). This choice
of the cutoff is suitable for the atmospheric neutrino data, where the oscillation amp
is proportional to∆0. In any case, the exact value of the cutoff plays a minor rol

our calculation, due to the fact that it appears always logarithmically. Furthermore, the
expectation valuēv is related to the rest of the parameters through Eq. (6.3), while the
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angleθ enters in the Plank mass definition (1.3)

(6.16)R2 cosθ = 1

4π2a2

M2
P

M4
s

.

In terms of the integersp,q that have been introduced in (6.9), we can rewrite the
equation as

(6.17)Wp,q ≡ 3+ (−1)q

2
√
q2− p2

= >m2
atm

4π2a2

M2
P

M4
s

,

or equivalently

(6.18)cosθ = 3+ (−1)q

2Wp,qq
.

Thus, the four conditions (6.11)–(6.14) together with (6.15) and (6.3), (6.16) fix all
parameters of the model. Therefore, fitting the atmospheric neutrino frequency (6.11
determines the compactification radius

(6.19)1× 10−3<
ω

R2 < 6× 10−3 eV2,

or 3< R < 6 µm forω ∼ 1. Choosing for the solar neutrino deficit the preferred LM
solution, we get from the second condition (6.12) the neutrino mass range

(6.20)4.8× 10−3<mD < 7.7× 10−2 eV.

The third condition (6.13) fixes the mixing coefficientu2
e and has two possible solution

namely, 0.18< u2
e < 0.5 or 0.5< u2

e < 0.82. Choosingu2
e 	 0.18 andu2

µ 	 0.82 (uτ = 0),
Eq. (6.14) leads to∆0 ∼ 0.27 (in the case we choose the lowest allowed value
sin2 2θatm), which lies at the edge of the validity of our perturbative approach. Any o
choice ofui compatible with the constraints leads to bigger values for∆0. This justifies
also the choiceuτ = 0 in order to minimize∆0 in (6.14).7 From (6.14) we get the strin
scale

(6.21)8 �Ms � 13 TeV,

while compatibility with (6.3) requiresO(1) values for the Yukawa couplings. It
interesting that this range for the string scale coincides with the values we found
the analysis of gauge couplings in Section 3, for the models B and B′. Coming to the
angle, we get from (6.17) 0.02�Wp,q � 0.2 for the allowed range of>m2

atm and we can
easily verify that there exist integersp,q that satisfy (6.17).

Let us now consider the LOW solution to the solar neutrino deficit. Following sim
steps, the four constraints (6.11)–(6.14) in this case give

(6.22)1.9× 10−4<mD < 3.5× 10−3 eV,
7 Normally, one should repeat the eigenstate analysis of Appendix A numerically in the non-perturbative
region, but from a preliminary analysis we do not expect significant change of our results.
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with u2
e ≈ 0.28 and thusu2

µ ≈ 0.72 and∆0≈ 0.30. The string scale turns out to be sligh
lower in this case:

(6.23)1.8�Ms � 2.2 TeV,

while for the angleθ we get 20�Wp,q � 200. Note that the range of string scale is n
compatible with the values found from the analysis of gauge couplings in models A
A′. In this solution, the left-handed neutrino Yukawa couplings do not have to be ofO(1).

Moreover, the practically excluded SMA solution can also be obtained in
framework. The associated parameters in this case are:u2

e ∼ 5× 10−3, u2
µ = 1− u2

e ≈ 1,
∆0 ∼ 0.2,mD ∼ 2× 10−3 eV,Ms ∼ 6 TeV, 0.2 �Wp,q � 1.2. Note that the caseθ = 0
corresponds top = 0, q = 1 and thusWp,q = 1. As seen from our results, only the SM
solution includes this value in the allowedW -range and this is the reason why only th
solution could be reproduced in the case of an orthogonal torus. The LMA and
solutions require a bulk forming a non-orthogonal lattice, corresponding to non-t
values ofθ . It is also worth noticing that such non-trivial values ofθ induce CP violation
in the neutrino sector, which is interesting to be further explored.

The mixing of the neutrino zero mode with its KK excitations can lead to a decay o
left-handed neutrino to these KK modes, considered as sterile from the SM point of
In our framework, and to leading order in the∆0 expansion, the average conversion rate
a neutrino of flavori to sterile is given by (A.19)

(6.24) Pνi→s ∼ 2u2
i >0.

Constraints (6.12) and (6.14) fix both the above probabilities. Assuming the LMA sol
to the solar neutrino deficit, we get

(6.25) Pνµ→s ∼ 0.44

for atmospheric and

(6.26) Pνe→s ∼ 0.05

for solar neutrinos, where in the second case we have assumed a cutoffM ∼ 50 MeV. For
the LOW solution, the transition probabilities are similar: Pνµ→s ∼ 0.32,  Pνe→s ∼ 0.08.
Note that the decay rate to sterile neutrinos is significant in the case of atmos
neutrinos and is negligible in the case of solar neutrinos. This is related to the str
of our model for neutrino oscillations. The atmospheric neutrino deficit is simulated
the lightest KK neutrino excitation (which is interpreted from the SM point of view
sterile neutrino), while the solar data are explained using the (active form the SM po
view) zero mode.

Constraints for the conversion of active to sterile neutrinos have been recently exa
in reference [25]. Following their analysis in the case of the LMA solution, the constra
the average decay rates for solar neutrinos is Pνe→νs < 0.40 at 90% c.l. which is obviousl
satisfied by our model. For atmospheric neutrinos the relative constraint takes the fo
(6.27)>P =  Pνµ→νs −  Pνe→νs < 0.17.
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Evaluating this constraint in our framework, one finds>P = 0.44− 0.10= 0.34 (where
 Pνe→νs = 0.10 in the case of atmospheric due to the higher cutoff in∆0 of Eq. (6.7)) which
is by a factor of two higher than the experimental bound. However, one should tak
consideration that our perturbative analysis, focusing on explicitly revealing oscilla
does not allow to access the region∆0 ∼ 1 where in principle the above rates cou
change. As mentioned earlier this region could be studied only numerically. This re
summation over a huge number of KK modes and at present it appears insolubl
numerically.

In any case the exact nature of atmospheric neutrino oscillations is expected
further examined in the K2K [27] experiment. In case the predictive scenario of a s
bulk neutrino presented here fails to satisfy the sterile production constraints, one
proceed in the introduction of additional bulk neutrinos and explain oscillations in
traditional way, that is by zero mode mass difference and not by mixing with the
Their presence can still lead to sterile production which can be reduced by approp
raising the string scale and thus decoupling the KKs [25].

7. Summary and conclusions

In conclusion, we performed a systematic study of the Standard Model embe
in type I string theory at the TeV scale. We found that the minimum configuration
interesting phenomenological features requires three sets of D-branes, so that
particles are obtained as open strings stretched among these brane stacks. Two
describe respectively the strong and weak interactions, while the third one contains a
Abelian brane that extends in a two-dimensional bulk of submillimeter size.

The model predicts the correct value of the weak angle for a string scale of a few T
also contains baryon and lepton number as perturbative global symmetries, ensuring
stability and absence of large (Majorana) neutrino masses. On the other hand, it us
Higgs doublets that can provide masses to all quarks and leptons. Concentrating
heaviest generation, we computed all trilinear Yukawa couplings and studied the re
mass relations. We found a naturally heavy top and the mass ratio of bottom quark
lepton close to its experimental value.

Finally, we have studied neutrino masses and oscillations by introducing a single
handed neutrino state in the bulk. We found that both solar and atmospheric neutrin
can be explained if the bulk is a non-orthogonal torus forming a non-trivial angle.
oscillations are then explained using the zero-mode, which obtains a tiny mass fro
electroweak Higgs, while atmospheric oscillations use its first KK excitation. Howev
the cases of atmospheric data, it seems to be an excess in sterile production with re
current atmospheric data analyses.

Overall, the model looks very promising and deserves further investigation. Part
directions that have not been discussed are the masses and mixing angles of the two
generations, possible important threshold corrections related to the two-dimensiona

supersymmetry breaking effects in models with brane supersymmetry breaking, as well as
explicit type I string realizations.
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Appendix A. Neutrino masses and oscillations

We consider the neutrino mass eigenvalue problem that arises when the usu
handed neutrino localized on the “brane” mixes with one pair of right-handed neu
propagating in a two-dimensional bulk. The solution of this problem in the case of
dimensional bulk has already been studied in the literature [5]. A new feature o
two-dimensional bulk is that the associated KK sums are divergent and a mass scM

playing the role of the UV cutoff, normally identified withMs , appears in the mass an
eigenstate expressions. Moreover, we consider neutrino oscillations and derive fo
for the transition rates of both active and sterile neutrinos.

We will assume for simplicity that the two bulk radii are equal,R8 = R9 = R, but we
will allow for the possibility that the angleθ between the two compactified directio
is arbitrary−π/2< θ < π/2. The masses of the KK excitations, labelled by mome
�n= (n1, n2), are:

(A.1)m2
�n =

1

R2 cos2 θ

(
n2

1+ n2
2− 2n1n2 sinθ

)
.

The KK modes can be ordered according to their mass and labelled by a uniqu
numberk. Massive levels have in general degeneracy four, apart from particular poin
have higher degeneracy for special values ofθ . In any case, only the direct sum of the sta
of each degenerate level couples to the left-handed neutrino. Hence, we can diagon
the degenerate subspace and choose one of the eigenstates, which corresponds to
of the degenerate KK modes. In this basis, the relevant neutrino mass terms take th

Lm =mDνL
∑
k

√
rk δ

−mk
2

M2 ν̃
(k)
R +

∑
k

mkν̃
c(k)
R ν̃

(k)
R + c.c.+ decoupled,

whereν̃(k)R = 1√
rk

∑
@ν
(@)
R andν̃c(k)R = 1√

rk

∑
@ ν
c(@)
R , @= 1, . . . , rk , with rk the multiplicity

of the KK level with massmk . The mass terms can be written in matrix form (NT
LmNR +

c.c.) with NL = (νL, ν̃
c(1)
R , . . .), NR = (ν̃

(0)
R , ν̃

c(1)
R , . . .) and m an infinite-dimensiona
matrix.
In order to determine the left-handed neutrino mass eigenstates, we consider
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(A.2)

mm†=



m2
D
A m1mD

√
r1 δ

− m2
1

M2 m2mD
√
r2 δ

− m2
2

M2 · · · mkmD
√
rk δ

− m2
k

M2

m1mD
√
r1 δ

− m2
1

M2 m2
1 0 · · · 0

m2mD
√
r2 δ

− m2
2

M2 0 m2
2 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

√
rk−1mk−1mDδ

−m
2
k−1
M2 0 0 · · · 0

√
rk mkmDδ

− m2
k

M2 0 0 · · · m2
k



,

whereA=∑
@ r@δ

−2m2
@/M

2
. In the sequel we will assume that all masses are measur

string units, which we restore only at the end of our calculations.
The exact eigenvalue equation for the mass of thenth KK level m̃n can be written in the

form

(A.3)m2
D

∑
@

r@δ
−2m2

@

m̃2
n −m2

@

= 1

and the associated eigenstates

(A.4)νnL =
1

Nn

(
1, cn1, c

n
2, . . .

)
with

(A.5)cn@ =
mDm@

m̃2
n −m2

@

δ−m2
@

and

(A.6)N2
n =m2

Dm̃
2
n

∑
@

r@δ
−2m2

@

(m̃2
n −m2

@)
2
.

The above results can be used to expressνL in the basis of the mass eigenstates

(A.7)νL =
∑
n

1

Nn
νnL

and calculate its time evolution

∑ ( 2 )

(A.8)νL(t)=

n

1

Nn
exp

im̃nL

2E
νnL,



re,

r

110 I. Antoniadis et al. / Nuclear Physics B 660 (2003) 81–115

whereE is the neutrino beam energy andL is the distance from the source. Therefo
using (6.2) we can derive the time evolution of the weak eigenstates

(A.9)νiL(t)=Ui1νL(t)+Ui2ν0L +Ui3ν′0L.
The transition ratePνi→νj , that gives the probability for a neutrino of a specific flavoi

produced in the source to be detected as flavorj in the detector, is

(A.10)Pνi→νj =
∣∣〈νiL(0)|νjL(t)〉∣∣2=

{∣∣1− u2
i + u2

i T
∣∣2, i = j,

u2
i u

2
j |1− T |2, i �= j,

whereui = |Ui1| and

(A.11)T ≡
∑
n

1

N2
n

exp

(
im̃2

nL

2E

)
.

The formulas for the transition probabilities to active neutrinos are

(A.12)Pνi→νj =
{(

1− u2
i

)2+ u2
i

(
1− u2

i

)(
T + T ∗)+ u4

i |T |2 , i = j,
u2
i u

2
j

(
1− (

T + T ∗)+ |T |2), i �= j.
Therefore, the transition rate for a neutrino of flavori to decay into a sterile neutrino is:

(A.13)Pνi→s = 1−
3∑
j=1

Pνi→νj = u2
i

(
1− |T |2).

Using (A.11) we obtain

(A.14)
T + T ∗

2
= 1− 2

N2
0

sin2 m̃
2
0L

4E
− 2F2

(
m̃2
n

)
,

(A.15)|T |2= 1− 4F2
(
m̃2
n

)+ 4F 2
2

(
m̃2
n − m̃2

0

)+ F 2
1

(
m̃2
n

)
,

where

(A.16)Fp
(
m̃2
n

)=∑
n�=0

1

N2
n

sinp
m̃2
nL

4E
.

We can now calculate the average probabilities for a neutrino of flavori to survive

(A.17) Pνi→νi =
(
1− u2

i

)2+ u2
i ζ

2,

or to be converted to flavorj

(A.18) Pνi→νj = u2
i u

2
j

(
1+ ζ 2), i �= j,

or to decay into sterile
(A.19) Pνi→s = u2
i

(
1− ζ 2),
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where

(A.20)ζ 2≡
∑
n

1

N4
n

and we have averaged over all frequency modes.
FormD = 0, the eigenvalues of the matrixmm† form the usual KK tower with masse

m�n given by Eq. (A.1). FormDR� 1, it is natural to assume that the KK levels are sligh
shifted:

(A.21)m̃2
n =m2

n + δm2
n.

Inserting (A.21) into (A.3) and expanding forδm2
n�m2

n−m2
@ , ∀n �= @, we obtain to lowes

order:

(A.22)δm2
n =

rnm
2
Dδ

−2m2
n

1+∆n ,

where

(A.23)∆n =m2
D

∑
@ �=n

r@δ
−2m2

@

m2
@ −m2

n

=m2
D

∑
�@∈Z

2

m�@ �=mn

δ
−2m2

�@

m2
�@ −m2

n

.

Due to the presence of the factorδ−2m2
n/M

2
(after restoring theM units), we haveδm2

n ∼ 0
for mn >M, implying that KK levels above the cutoffM are not shifted. We notice als

that in (A.1) we have 1
R2 cosθ

∼ M4
s

M2
P

�M2
s . In this limit, we can calculate the leading term

in ∆n:

(A.24)∆n = πm2
D

(
R2 cosθ

){
log

(
M2R2 cosθ logδ2)+ sn},

wheresn is a constant term independent of the cutoff. Specifically,s0 = C and sn�=0 =
− log|n2

1 + n2
2 − 2n1n2 sinθ | + C, with C a constant of order one. Similarly, for th

normalization coefficients we get to the lowest order inδm2
n

(A.25)
1

N2
0

= δm2
0

m2
D

+ · · · ,

(A.26)
1

N2
n

= (δm2
n)

2

m2
Dm

2
nrnδ

−2m2
n

+ · · · .

The infinite KK sumsF2,F1 in (A.14), (A.15) can in principle be calculated numerica
using (A.3) and (A.6). However, this requires summation over a huge number o
modes. A convenient approximation is to assume∆n� 1 for n > 0. In this region

(A.27)F2∼m2
D

∑
n�=0

rnδ
−2m2

n

m2
n

sin2
(
m2
n

4

L

E

)
=m2

D

∑
�n∈Z

2

�n�=(0,0)

δ−2m2
�n

m2
�n

sin2
(
m2
�n

4

L

E

)
,

and thus,F2 can be expressed in terms of theta-functions using the formula
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∑
�n∈Z2

δ−2m2
�n
sin2(βm2

�n)
m2
�n

(A.28)

= Im

β∫
0

dx

{
ϑ3

(
− 4(x logδ+ i)
π(1− sinθ)R2

)
ϑ3

(
− 4(x logδ+ i)
π(1+ sinθ)R2

)

+ ϑ2

(
− 4(x logδ+ i)
π(1− sinθ)R2

)
ϑ2

(
− 4(x logδ+ i)
π(1+ sinθ)R2

)}
,

whereϑ3(τ )=∑
n∈Z

eiπτn
2

andϑ2(τ )=∑
n∈Z

eiπτ(n+1/2)2. In the case of an orthogon
torus (θ = 0), F is periodic underL4E → L

4E + πR2. However, this property is lost fo
arbitrary values ofθ . The periodicity, of the survival probability (A.10), is necessary
interpreting the neutrino anomaly through neutrino oscillations and is in general re
for rational values of the angleθ

(A.29)sinθ = p

q
, |p|< q,

wherep,q are relatively prime integers, andq = 1 for p = 0. Restrictingθ to this
subspace,F becomes periodic underL4E → L

4E + τp,qπR2, where

(A.30)τp,q =

q2−p2

q
for q = odd,

q2−p2

2q for q = even.

SinceF2 is a periodic function, the next question is to compute the correspon
amplitude. To get an estimation of the amplitude we can evaluate the sum (A.27)
half period. We get

(A.31)F
1/2
2 =m2

D

∑
�n∈Z̃2

δ−2m2
�n

m2
�n
= κ∆0,

whereZ̃
2 is one of the sets of (even, odd) and/or (odd, odd) integers ofZ

2, depending on
the choice ofq . More particularly, forq = 4@ with @ integer,Z̃2 is the set of (odd, odd
pairs, forq = 2@+ 1, Z̃2 is the set of (odd, even) and (even, odd) pairs and forq = 4@+ 2,
Z̃

2 is the union of the two previous sets. The constantκ takes approximately the value
κ ∈ (1/4,1/2,3/4) for each of the three cases, respectively. Moreover, an upper bou
the amplitude ofF can be derived by replacing the “sin2” terms with unity

(A.32)Fmax
2 =m2

D

∑
�n∈Z2

δ−2m2
�n

m2
�n
=∆0.

Hence, the oscillation amplitudeρ lies in the rangeF 1/2
2 < ρ < Fmax

2 , that isκ∆0< ρ <

∆0 with κ ∈ (1/4,1/2,3/4). Furthermore, we can proceed to a numerical evaluatio
F for given sinθ andMR. An explicit example is presented in Fig. 4, where we h

L 2 2 4 119
calculatedF as a function of
4ER2 in the caseM R = 10 , δ = 16, sinθ = 120. In the

same figure, we have also plotted the function sin2(240
239

L
4ER2

)
(gray line) with amplitude
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Fig. 4. Plot of the infinite two-dimensional sum
∑
�n∈Z2

(
δ
− 2h�n
M2R2 /h�n

)
sin2(

L
4E

h�n
R2

)
with h�n = cos−2 θ ×

(n2
1+ n2

2− 2n1n2 sinθ) in the caseM2R2= 106, δ = 16 and sinθ = 119
120. The gray line represents the domina

frequency modeρ sin2(
L

4E
240

239R2

)
with amplitudeρ = 0.8π cosθ log(M2R2 cosθ logδ2).

arising from the fit to the numerical sum data. The numerical evaluation of the sum s
that the amplitudeρ can in general be approximated byρ ≈ 0.8∆0. Taking into accoun
these results, we will assume in Section 6 that the KK sumF can be simulated by th
dominant frequency mode

(A.33)F2≈ 0.8∆0sin2
(
ωpq

R2

L

4E

)
, ωpq = q(3+ (−1)q)

2(q2− p2)
,

where∆0 is given in (A.24) andθ is given in (A.29).
Assuming∆0� 1, we can drop the termsF 2

2 andF 2
1 <F

2
2 in (A.15). Putting togethe

(A.12), (A.27) and (A.33), we obtain an approximate expression for the survival proba

(A.34)Pνi→νi ≈ 1− 4u2
i (1− u2

i )(1−∆0)sin2 m
2
0L

4E
− 3.2u2

i ∆0 sin2
(
ωpq

R2

L

4E

)
,

where

(A.35)m2
0=m2

D(1−∆0).

Moreover, for the parameterζ 2 that enters in the average transition probability formu
(A.17)–(A.19), we have

(A.36)ζ 2∼ 1 = 1− 2∆0+ · · · .

N4

0
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