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Abstract

We perform a systematic study of the Standard Model embedding in a D-brane configuration of
type | string theory at the TeV scale. We end up with an attractive model and we study several
phenomenological questions, such as gauge coupling unification, proton stability, fermion masses
and neutrino oscillations. At the string scale, the gauge grolf&color X U (2weak X U (1)1 X
U (D)puik- The corresponding gauge bosons are localized on three collections of branes; two of them
describe the strong and weak interactions, while the last Abelian factor lives on a brane which is
extended in two large extra dimensions with a size of a few microns. The hypercharge is a linear
combination of the first thre&/(1)’'s. All remaining U (1)’'s get masses at the TeV scale due to
anomalies, leaving the baryon and lepton numbers as (perturbatively) unbroken global symmetries
at low energies. The conservation of baryon number assures proton stability, while lepton number
symmetry guarantees light neutrino masses that involve a right-handed neutrino in the bulk. The
model predicts the value of the weak angle which is compatible with the experiment when the string
scale is in the TeV region. It also contains two Higgs doublets that provide tree-level masses to all
fermions of the heaviest generation, with calculable Yukawa couplings; one obtains a naturally heavy
top and the correct ratim,/m.. We also study neutrino masses and mixings in relation to recent
solar and atmospheric neutrino data.
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1. Introduction

In a previous work [1,2], a minimal embedding of the Standard Model (SM) was
proposed in a D-brane configuration of type | string theory with large internal dimensions
and low fundamental scale [3,4]. TI&J(3) color andSU(2) weak gauge fields were
confined on two different collections of branes. The model correctly accommodated the
right value of the weak angle for a choice of the string scale of a few TeV. It contained
two Higgs doublets and guaranteed proton stability. Among the issues, which were not
addressed, are the fermion masses, neutrino oscillations, and a natural suppression of
lepton number violating processes.

A generic feature of the models studied was that some of the SM states should
correspond to open strings with one end in the bulk, implying the existence of some extra
branes, in addition to the ones used above [1,2]. Starting from the last point, in the present
work we introduce an extra brane in the bulk with a correspondi(iy; bulk gauge group
[2]. This group is broken by anomalies, leaving behind an additional global symmetry that
will be identified with the lepton number. In order to give masses to the neutrinos, we
introduce a right-handed neutrino in the bulk [5] that carries non-trivial lepton number.
Large neutrino masses are then forbidden by symmetry, while the right-neutrino coupling
suppression required to explain the neutrino oscillation data, is achieved if the bulk has two
dimensions of submillimeter size.

More precisely, in the minimal case of one bulk neutrino, we show that solar
and atmospheric neutrino data can be accommodated using essentially the two lowest
frequencies of the neutrino mass matrix: the mass of the zero mode, arising via the
electroweak Higgs phenomenon, which is suppressed by the volume of the bulk, and
the mass of the first Kaluza—Klein (KK) excitation. The former is used to reproduce the
large mixing angle (LMA or even LOW) solution to the solar neutrino anomaly, through
v, < v, transitions. The later is used to explain atmospheric neutrino oscillations with an
amplitude which is enhanced due to logarithmic corrections of the two-dimensional bulk
[6]. Compatibility of the two conditions using one bulk right neutrino is possible only if one
introduces a non-orthogonal angle between the two compact bulk dimensions, that leads
simultaneously to a CP violation in the neutrino sector. Atmospheric oscillations contain
however a significant sterile component which seems to be in contradiction with recent
atmospheric data analyses.

We also compute the tree-level Yukawa couplings of the two higgses to the fermions
of the heaviest generation. They are given in terms of the gauge couplings and lead to a
naturally heavy top and a ratia; /m, compatible with the experimental data. Next, we
proceed to a systematic description of the main features that we will use in the following
sections.

The general framework is type | string theory. We shall restrict ourselves to models
in which the closed string sector is supersymmetric, while supersymmetry is generically
broken by the open strings at the string scale?[Within our framework, the minimal
ensemble of D-branes needed in our construction is the following mutually orthogonal

2 Recent progress in constructing type | vacua with structure close to the SM can be found in [8-10].
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stacks: a stack of three coincident branes to generate the color group, a second stack
of two coincident branes to describe the wedl#t(2); gauge bosons, and one more
brane to generate th€ (1), bulk discussed above. The resulting gauge group so far is
U x U2)L x U(1)p, with the threeU (1) generators denoted b@., O; and Qp,
respectively. To ensure proton stability, we require baryon number conservation with
generatorB = Q.. The hypercharg& cannot have a component alod,, since this

would lead to unrealistically small gauge coupling, and as explained in [1] the correct
assignment of SM quantum numbers requires the presence of an extra abelian factor, named
U (1)1 with generatoiQ1, living on an additional brane. This brane should lie on top of the
color or the weak stack of branes, as we argue below.

Since in our framework, supersymmetry is broken by combinations of (anti-)branes
and orientifolds which preserve different subsets of the bulk supesymmetries, any pair
of D-branes p and Dp’ satisfy p — p’ = O0mod4. It follows that a system with three
stacks of mutually orthogonal branes in the six-dimensional internal (compact) space
consists, up to T-dualities, of D9-branes with two different types of D5-branes, extended in
different directions. Specifically, th& (1), lives on the D9-brane, while th&(3), and
U(2); are confined on two stacks of 5-branes, the first along say the 012345 and the
other along the 012367 directions of ten-dimensional spacetime. Thus, the (submillimeter)
bulk is necessarily two-dimensional (extended along the 89 directions), and the additional
U (1)1 brane has to coincide with eithéf(3). or U(2),. The parameters of the model
are the string scal@/,, the string couplingg, and the volumesys, vg7 andvgg of the
corresponding subspaces, in string uita.terms of those, the four-dimensional Planck
massMp is given by

8
M5 = ?045067089Ms2 (1.1)
N
and the non-Abelian gauge couplings are
1 1 1 1
— = —Uss, — = — V67 (1.2)
g3 gS g2 gS
It follows that
2,
M% = ﬁvgng2 = vgngz, (1.3)
838> Q302

wherea; = g?/4r anddgg = vge/(27)? = RgRy for a rectangular torus of radRs, Ro.
The U (1)1 gauge coupling is equal togs (g2), if the U (1)1 brane is on top of th& (3),
U@)p).

Upon T-duality, one finds two additional realizations: (i) a set of D3-branes (along 0123)
describingU (3)., and two orthogonal sets of D7-branes along 01236789 and 01234567
describingU (1), and U (2)r, respectively; (ii) three sets of D5-branes along 012389,
012345 and 012367, giving rise ©@(1),, U(3), andU (2), respectively. In both cases,
relation (1.3) remains intact.

3 Using T-duality, we choose all internal volumes to be bigger than unity; 1.
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The gauge coupling, of the U (1), gauge boson which lives in the bulk is extremely
small since it is suppressed by the volume of the gtk For instance, in the case where
theU (1), lives on a D9-brane, its coupling is given by

1 1 g M3
—_— = — = ;—, 1.4
iy VASVETVB0 = g 72 (1.4)

where in the second equality we used Eq. (1.1). Using now the weak coupling condition
gs <1 and the inequalitg, > g§’2 following fromv;; > 1in Eq. (1.2), one finds

va M _ g < V8 M, :
Mp 83 Mp

which implies thatg, ~ 10161014 for M, ~ 1-10 TeV.
If the U (1), gauge boson is light, it will be subject to strong constraints coming from

supernova observations, since it would be copiously produced in various nuclear reactions

leading to supernova cooling through energy loss in the bulk of extra dimensions. The

corresponding process is much stronger than the production of gravitons because of the

non-derivative coupling of the gauge boson interaction [11]. In fact, in the caséaode

transverse dimensions of common radRyssatisfyingm 4, R~ < T with m 4 the gauge

boson mass anfl the supernova temperature, the production Fatés proportional to

(1.5)

Tn—2
T2 M!

Py~ g§ x [R(T —ma)]" : (1.6)
where the factof R(T — m4)]" counts the number of Kaluza—Klein (KK) excitations
of the U (1), gauge boson with mass less th@n This rate can be compared with the
corresponding graviton production

n

1

5 M;’l+2’
showing that fom = 2 (sub)millimeter extra dimensions, it is unacceptably large, unless
the bulk gauge boson acquires a mass=> 10 MeV.

The paper is organized in seven sections, of which this introduction is Section 1.
In Section 2, we perform a systematic search for models with four sets of branes
corresponding to the gauge grotf(3). x U(2)p x U(1)1 x U(1), with the minimal
standard model fermion spectrum and a Higgs sector that generates masses for all quarks
and leptons of the heaviest generation. We identify the hyperchiaflyg: combination
and in Section 3 we perform a renormalization group analysis of gauge couplings to
identify models with low string scale, where tli&1); is on top of either the color or
the weak branes. In Section 4, we select four models with string scale in the TeV region,
possessing in addition baryon and lepton number conservation, and we describe their main
phenomenological featurésThey all contain two Higgs doublets that can provide tree-
level masses to all fermions. Moreover, apart from the hypercharge, all other Abelian

4 Orientifold models with baryon and lepton number conservation were also constructed in Ref. [9].
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factors are broken by mixed gauge and gravitational anomalies and become massive at
the string scale. In Section 5, we compute the tree-level Yukawa couplings of the two
higgses to the fermions of the heaviest generation and study predictions for mass relations.
In Section 6, we introduce one right-handed neutrino in the bulk and study the generation
of neutrino masses and neutrino oscillations. Finally, Section 7 contains our summary and
conclusions.

2. Model search

As shown in [1], the minimal D-brane configuration that can successfully accommodate
the Standard Model (SM) consists of three sets of branes with gauge synmim@ryx
U(2)r x U(1)1. The first set contains three coincident branes (“color” branes). An open
string with one end attached to this set transforms aSd(8),. triplet (or anti-triplet),
but also carries an additional(1). quantum number which can be identified with the
(gauged) baryon number. Similarlg,(2), is realized by a set of two coincident branes
(“weak” branes) and open strings attached to them from the one er®)&?¢; doublets
characterized by an additional(1); quantum number, the (gauged) weak “doublet”
number. Moreover, consistency of the SM embedding requires the presence of an additional
U (1)1 factor, generated by a single brane. This is needed for several reasons: TeV scale
unification, baryon number conservation, and mass generation for all quarks and leptons
of the heaviest generation. The hypercharge is then a linear combination of the three
Abelian factors,Y = k3Q. + k201 + k101, whereQ., O, Q1 are the charges under
U, U@L, U(L)1, respectively. It turns out [1] that there exist four possible “viable”
models that reproduce the weak mixing angle all low energies. They correspkmd:té

(k3= —3), ko= %3, k1 = 1 and require the Abelian brai&(1)1 to be on top of the color
(weak) branes, so thgt = g1 (g2 = g1).

In all the above brane configurations there exist states (e.g3Uki2); singlet anti-
quarks) which correspond to open strings with only one of their ends attached to one
of the three sets of D-branes. The other end is in the bulk, and requires the existence
of some additional branes extended in the bulk, carrying extra quantum numbers. In this
work, we consider a minimal extension of the models considered in [1] by introducing
one additional D-brane in the bulk giving rise to an extra Abelian gauge faotby,. As
we will see later, the requirement of baryon and lepton number conservation leads to four
possible models that we are going to study in the next section. However, in this section, we
do not impose this constraint and we systematically explore the possibility of reproducing
the SM spectrum, together with possibly additional Higgs scalars, as open strings stretched
between any two of the four sets of branes. The extension of the Higgs sector is required for
the realization of the electroweak symmetry breaking and mass generation for all fermions
of at least one (the heaviest) generation.

Thus, the total gauge group is

G=U@)x U@y x UL x UL,
=V xUD)xW2);, xUD);, xUDQ)1xUQ), (2.2)
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Table 1
SM particles with their generic charges under the Abelian part of the gauge gr@®p x U(2);, x U(1)1 x
UMDy

Particle U@, U@y Uy Uy
0(3.2. %) +1 w 0 0
u¢(3.1,-3) -1 0 ay az
d°(3.1,+3) -1 0 by ba
L(1.2.-3) 0 +1 c1 2
e“(1,1,+1) 0 dr d dy

and contains four Abelian factors. The assignment of the SM patrticles is partially fixed
from its non-Abelian structure. The quark doub{tcorresponds to an open string with
one end on the color and the other on the weak set of branes. The anti-gtiatksnust
have one of their ends attached to the color branes. The lepton doublet and possible Higgs
doublets must have one end on the weak branes. However, there is a freedom related to
the Abelian structure, since the hypercharge can arise as a linear combination of all four
Abelian factors. In a generic model, the Abelian charges can be expressed without loss of
generality in terms of ten parameters displayed in Table 1.

In a convenient parametrization, normalizing HéN) ~ SU(N) x U (1) generators
as TrreT? = %% /2, and measuring the corresponditigl) charges with respect to
the couplingg/«/ﬁ, the ten parameters are integetsy, b1.2,c12,d2 =0,£1, d1 =
0,+1,4+2,d; =0, +2, w = +1 satisfying

D lail= Y Ibil= ) lal=1, > ldil=2 (2.2)

i=12 i=12 i=12 i=1,2,L

The first three constraints in (2.2) correspond to the requirement that thedd¢ anti-
guarks, as well as the lepton doublet, must come from open strings with one end attached
to one of the Abelian D-brane sets. The fourth constraint forces the positapen string

to be stretched either between the two Abelian branes, or to have both ends attached to the
Abelian U (1); brane, or to the weak set of branes. In the latter case, ittiays;, charge

+2 and is arBU(2), singlet arising from the anti-symmetric product of two doublets. The
parametenw in Table 1 refers to thé/(1); charges of the quark-doublets, that we can
choose to bet1, since doublets are equivalent with anti-doublets. Note that a priori one
might also consider the case in which one of #fieandd® anti-quarks arises as a string

with both ends on the color brané3 x 3= 3+ 6), so that itsU (1) charges would be

+2. This, however, would invalidate the identification@f1). with the baryon number

and forbid the presence of quark mass terms, since one of the combin@iiéregd Qd*

would not be neutral undér(1).. Hence, this case will not be explored.

The hypercharge can in general be a linear combination of all four Abelian group
factors. However, we restrict ourselves to models in which the Bulk), does not
contribute to the hypercharge, in order to avoid an unrealistically small gauge coupling.
Hence,

Y =k3Qc+ k201 +k101. (2.3)
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The correct assignments for SM particles are reproduced, provided

k3 +kow =
w=—,
3 2 6

2
—k3+aiky = —3

—k3+ b1k1 =

’

|\>||—\oo||—\

kp +c1ky = —
kody + dik1 = 1. (2.4)

Notice that the second and third of the above equations implythat0.

The next step, after assigning the correct hypercharge to the SM particles, is to check
for the existence of candidate fermion mass terms. Here, we discuss only the question of
masses for one generation (the heaviest) and we do not address the general problem of
flavor. To lowest order, the mass terms are of the meHHT, Qu‘H, andLe”HeT where
Hy, H,, H, are scalar Higgs doublets with appropriate charges. In a generic model, there
are four different candidate Higgs scalar doublets (and their conjugdies). , Hs, with
UQ)r x U1 x U(L), charges:

{H1, Hp, H3, Ha} = {(1, 1,0),(1,0,1),(1,-1,0), (1,0, —1)}. (2.5)

It is easy to show that for any hypercharge embedding of the form (2.3) iwith O,

there are at most three of the above Higgs doublets that have the correct hypercharge.
Depending on the parameters of the model, they can be reduced to two. For the generic
charge assignments of Table 1, the required Higgs charges are

Hu = (1a 29 Oa —w, —ai, _a2)9
Hy=(1,2,0, +w, +b1, +b2),
H,=(1,2,0,14dL,c1+d1,c2+d2). (2.6)

Provided the constraints (2.2) are satisfied, bithand H; have the right charges of
(2.5) and correspond to strings stretched between the weak and one of the Abelian branes.
Thus, (2.2) guarantees the existence of tree-level quark masses. On the other hand, the
existence ofH, depends on the particular choice of parameters, e.gg¢ifar di = 2,
H, does not exist and a tree-level lepton mass tetef 1) is forbidden. The generic
constraint that guarantees tree-level lepton masses is

> lei+dil=14dL|=1 (2.7)

i=1,2
Given the smallness of the lepton mass compared to the masses of the quarks, of the
same generation, it would be reasonable to examine also the possibility that the lepton
mass is generated by a higher order term. The next order candidate lepton mass term
is of dimension six, proportional t%—Le "HTHTH. The constraint in this case is more

complicated and the method we are going to use is the following: for each configuration
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that satisfies all other constraints except (2.7), we derive explicitly the candidate Higgs
doublets and check the existence of possible fifth order mass ferms.
The hypercharge constraints (2.4) can be easily solved. They requ#®; and

ai + 2by

k3= ———, 2.8
*7 301 —ap) (28)
(a1+ b1)
ko= ————"— 2.9
2T 21 —apw (29)
b=t (2.10)
b1 —aq
bi—a1 (a1+b1)
=— 2.11
c1 T o (2.11)
b1)d
dlzbl—al+u. (2.12)

2w
The allowed values ofa1, b1) are{(—1,0), (—1,1), (0, —1), (0, 1), (1, —1), (1, 0)}. How-
ever, we notice that the solutions with parameteisb1, c1, d1, k1) and(—a1, —b1, —c1,
—d1, —ki1) are equivalent, since they correspond to a global change of&igh — Q1.
Thus, it is sufficient to search for solutions wiiy, 1) € {(—1, 0), (-1, 1), (0, 1)}. Solv-
ing for these choices, we get three allowed hypercharge embeddings:

1 1
(i) a1=-1bh=1 Y=6QC+EQ1, (2.13)
1
(i) a1=-1b1=0 ¥=-20c+20s+ 01 (2.14)
2
(i) a1=0 bi=1 Y=320c—=01+ 01 (2.15)

Case (i) leadsto; = —1,¢2 =0,d; = 2,d1 = dp = 0. This is a special solution where the

U (1), brane decouples from the model since no SM patrticles are attached to it. It satisfies
(2.7) and thus leads to tree level lepton masses. The solution exists foiwbeth-1,

as the value ofw does not play an important role whéa = 0. In case (ii), we have
c1=—14w)/2,dp =0,di=10rc1 = (1+w)/2,d;, = 2w, d1 = d2 = 0, while case (iii)
leadstoc1 = (w—1)/2,dp =0,di=10rc1 =1+ w)/2,dp =2w,d1 =d2=0.

Combining the above three cases with the constraints (2.2) and (2.7), we get 9 distinct
configurations with tree-level quark and lepton masses, displayed in the upper part of
Table 2. Relaxing the constraint (2.7) with the requirement that lepton masses arise through
dimension six effective operators, leads to 6 more distinct models corresponding to the
cases 10-15 of Table 2. In deriving these configurations, we have eliminated all models
connected to the ones above by the global charge redefiition — Q).

As we mentioned before, in all the above configurations, we can define the baryon
numberB as

1

5 Here, we check only the conservation of all gauge quantum numbers. In the string context, there may be
additional selection rules for the non-vanishing of the corresponding couplings that are model dependent.



Table 2

Distinct models with lepton masses generated either at tree levay T (cases 1-9), or by dimension six effective operatersecHT(HTH>/M2 (cases 10-15). We

also display the lepton number combinatibriwhen it exists) and the number of Higgs doublets needed to generate quark and lepton masses

ay as b1 bo c1 c2 dy do dy, w Y L np
1 -1 0 1 0o -1 0 2 0 0 1 toc+iog - 2
2 -1 0 0o -1 0o -1 1 1 0o -1 -20.-10,+01  $oc+lor-101-30s 2
3 -1 0 0o -1 -1 0 1 1 0 1 -10c+30.+01 - 3
4 0 1 1 0 0o -1 1 1 0 1 30.-30.+01 ~30:+30L-301-30, 2
5 0 1 1 0o -1 0 1 1 0o -1 20.+301+01 - 3
6 -1 0 0o -1 0o -1 0 0 -2 -1 -30c-30.+01 30c+30.-301-30, 2
7 -1 0 0 1 0 -1 0 0o -2 -1 -10.-30.+01 - 3
8 0 1 1 0 0 1 0 0 -2 1 20.-30,+01 - 3
9 0 1 1 0 0o -1 0 0 -2 1 %0.-%0r+01 ~30c+30,-301-30, 2
10 -1 0 0 1 -1 0 0 0 2 1 -ioc+30.+01 - 3
11 0 1 1 0o -1 0 0 0 2 -1 20.+30,+01 - 3
12 -1 0 0 1 0 1 1 1 0 -1 -10.-30.+01 - 3
13 -1 0 0o -1 0 1 1 1 0o -1 -10.-30.+01 - 3
14 0 1 1 0 0 1 1 1 0 20.-30.+01 - 3
15 0 1 1 0 0 -1 1 -1 0 1 20.-301+01 - 3

STT-T8 (E002) 099 g SoIsAUL feajonN / “[e 1o SIpeILoY |

68
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As we will argue below,U (1), gauge invariance is broken by anomalies to a global
symmetry, implying baryon number conservationin type | string perturbation theory. Since
lepton number is also conserved at present energies, we can further examine which of the
above models possess also the lepton numib@&s a symmetry. In generdl, can also be
expressed as a linear combination of all Abelian factors,

L= Y no @17)

i=c,L,1,b

that satisfies

pe+pLw=0,

—pc +aip1+azpp, =0,

—pc +bip1+b2pp =0,

pL+cipiteapp =1,

drpL +dip1+d2py =—1. (2.18)

Inspection of (2.18), in conjunction with (2.4) that requitas# b1, implies that lepton
number can only be defined for, # 0, i.e., only in the presence of the bulk(1);.

This is of course expected, since the models withdut), have no lepton number [1].
Solving explicitly (2.18) for each one of the cases of Table 2, we find that only four
models, namely 24, 6,9, incorporate the lepton number as a (gauged) Abelian symmetry.
Its precise definition for each of these models is also presented in Table 2.

3. Theweak angleand the string scale

We now come to the determination of the string scale consistent with the low energy
SM data. Following the hypercharge definition (2.3), the low energy data depend on the
couplingsgs, g2 andg; of the three brane seté(3)., U(2);, andU(1);. These couplings
are in principle independent, but, as already explained in the introduction, in order to lower
the string scale we have to consider configurations wherd/itig, brane is on top of
either theU (3). or theU (2); stacks. Hence, we have two possible coupling relations at
the string scale

(D: ga=g1 or (i) g2=g1. (3.1)
In our normalizations, the hypercharge couplingat the string scale is expressed as

2 2 2
163w A

(3.2)

& & & &
Following the one loop coupling evolution (= gi2/471),
1 1 bi . A'M; 3.3)

ai(My)  o;i(Mz) 4m Mz
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wherebs = —7,bp = —10/3 + ny /6, by = 20/3 + n;, /6 andn;, is the number of scalar
Higgs doublets. The constasf corresponds to a model independent piece of the type |
string thresholds, entering in the identification of the string scale with the ultraviolet cutoff
of the effective field theory. Its value was computed in Ref. [12] tatde= 1//e? ~
0.4, wherey is the Euler's constant. When the string scale is very high compared to
present energies, this represents a small correction compared to the dominant logarithmic
contribution coming from the renormalization group evolution. On the other hand, when
the string scale is low, such a correction becomes important, as it effectively changes
the string scale by roughly a factor of two, and should be taken with caution since it
is of the same order with the (unknown) model dependent part of threshold corrections.
Consequently, we will leaver! as a parameter and discuss its possible effects on our
results case by case.

Solving the one-loop renormalization group equations (RGE) for the coupling evolu-
tion, the values of the weak mixing angle %ty and of the strong couplings at the
Z-massM  are related to the couplings at the string scale:

1 dem(Mz) (kyby —by) , A M

Sirt O (Mz) = 1+ky or Atk My
aem(Mz) 2( 1 1 )
&7 6k _
T [ \a o)~ winy)
1 1
2k? - , 3.4
* 1<aL(Ms> oq(M»)] (3.4)
11 1 _ibz—}-by—bg(l—}-ky)lo A'M;
a3(Mz)  aemMz) 1+ ky  2r Tty 971,
+i[(4k2+1)( t ! )
T+ky [ 2 ap(My)  as(M;)
1 1
—2k2( - )} 3.5
NapMy)  a1(My) (35)

whereky = 6k3 + 4k5 + 2k? andaem is the electromagnetic coupling.

Given a coupling relation of (3.1), we can use Egs. (3.4) and (3.5) to determine the string
scaleM; that correctly reproduces the low energy data. Clearly, the solution depends on
|k3|, |k2| and|ky1|. According to our previous analysis, there are three classes of models,
which correspond to the three possible hypercharge embeddings (2.13), (2.14) and (2.15):

OF Ikl—1 k2| =0 Ikl—1
. 3 _67 2| =Y, 1 _27
(iD): Ikl—1 Ikl—1 lkail=1
. 3 _37 2 _27 1l=4,
2 1
i) |k3]== ko| = = k1| =1. 3.6
(i):  fks| = =, kol =5, kil (3.6)

Using (3.4) and (3.5), for each of the embeddings (3.6) and the unification conditions (3.1),
we computed the corresponding string “unification” scille = A' M. In our calculation
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Table 3
The string unification scaleM;; and the two independent gauge couplings for the two possible brane
configurations and the various hypercharge embeddings

lk3] lk2] Ikl My (TeV) g2(My)/g3(My) 82(My)g3(My)
81=2g3 2 0 3 4.6 x 1070 11 0.21
: 3 1 24x10° 0.76 0.48
Z 3 1 7.2 0.65 0.61
81=282 z 0 ] 15x 1072 11 0.26
3 3 1 032 057 0.73

we have used the following values for the low energy quantitigg/,) = 0.119,
si? Oy = 0.231,aem(Myz) = 1/127.934. The results are presented in Table 3.

In the above calculations we have assumed that the number of doupléssthe
minimumn;, = 2 required by the model. Of course, one can consider models with more
doublets which can be for instance replicas of these two. It would be thus interesting to
examine the dependence of the above results on the number of doublets. To this end we
can extract analytic formulas regarding the unification sddje For the case; = g3,
taking for simplicityk; = 1 andk; = :i:%, we find

3(4+ 7k2
SEH Y g M 1 = @)
MZ O{em(MZ) O{3(MZ)

which implies that at the one-loaWy, is independent of the number of doublets. Similarly,
for g1 = g2 andk1 = 1, k;, = £3, we have

(1 2sirfw (Mz)) — 2(1 + 3k3)

50+ 126k2 —ny My 1 : 1

= 8 log—=————(1—4sif 0y (Mz)) —6k3———, (3.8
6 Y47 = i) WMD) =Sk oy GO

where we find a very weak dependence. Obviously, the number of doublets affects the

value of the weak gauge couplingt; and thus the volume of the bulk through (1.3).

4. The models

So far, we have classified all possililg3). x U(2);, x U (1)1 x U(1), brane models
that can successfully accommodate the SM spectrum. The quantum numbers of each
model as well as the hypercharge embedding are summarized in Table 2. Furthermore,
compatibility with type | string theory with string scale in the TeV region, requires the bulk
to be two-dimensional of (sub)millimeter size, and leads to two possible configurations:
place the/ (1)1 brane on top of the weak (2); stack of branes or on top of the colgx3),.
branes. These impose two different brane coupling relations at the string (unification) scale:
g1 = g2 Or g1 = g3, respectively. For every model, using the hypercharge embedding
of Table 2, the one loop gauge coupling evolution and one of the above brane coupling
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conditions, we can determine the unification (string) scale that reproduces the weak angle
at low energies. The results are summarized in Table 3.

According to the results of Section 2, there are three distinct hypercharge embeddings
that correspond tQks|, |k2|, |k1]) = {(1/6,0,1/2), (1/3,1/2,1), (2/3,1/2, 1)}. Since we
wish to restrict ourselves to models in which supersymmetry is broken at the string scale
(M), we would like M, to be low, at the TeV scale, to protect the mass hierarchy.
Thus, model 1 of Table 2, with hypercharge embeddihgg, 0, 1/2), is rejected for
both U (1)1 brane arrangements, since the resulting string scale is too high. Furthermore,
models with hypercharge embeddinty3, 1/2, 1) lead to M; ~ 10° TeV for g1 = gs.

This scale, although much lower than the traditional GUT scale, is rather high for the
stabilization of hierarchy. On the contrary, for= g>, we find M; ~ O(1) TeV (when the
universal threshold correction' is taken into account) that lies at the edge of the present
experimental limits. The third embeddirt@/3, 1/2, 1) reproduces successfully the low
energy data only fog; = g3 and a string scal#/; ~ O(10) TeV.

In all configurations of Table 2, the baryon number appears as a gauged Abelian
symmetry. This symmetry is broken due to mixed gauge and gravitational anomalies
leaving behind a global symmetry. Baryon number conservation is essential for low string
scale models, since one needs to eliminate effective operators to very high accuracy in
order to avoid fast proton decay, starting with dimension six operators of thedap@ L
which are not sufficiently suppressed [13]. In addition to baryon number, one should also
assure that the lepton number is a good symmetry of the low energy theory. Lepton number
conservation is also essential for preservation of acceptable neutrino masses, as it forbids
for instance the presence of the dimension 5 operafoH H. Such an operator would
lead to large Majorana neutrino masses, of the order of a few GeV, in models where
the string scale, typically a few TeV, is too low for the operation of an effective sea-saw
mechanism. Hence, we shall be interested only in models in which the lepton number is
a good symmetry. Indeed, as seen in Table 2, only in four models, nan#lg 2nd 9,
lepton number appears as a (gauged) Abelian symmetry. Being anomalous, this symmetry
will be broken, but lepton number will survive as a global symmetry of the effective theory.

In fact, these four models can be derived in a straightforward way by simple
considerations of the quantum numbers. The quark doublét fixed by non-Abelian
gauge symmetries, while existence of baryon number implies that the anti-quiatks
correspond to strings stretched between the color branes and one each of the Abelian branes
U (1)1 andU (1),. Thus, one has two possibilities leading to models that we call’Aas
one end in the bulk) and B:f sees the bulk). Existence of lepton number fixes the lepton
doublet as a string stretched between the weak branes abt thgbrane, while for each
of the models A and B there are two possibilities for the anti-leptoto emerge as a
string stretched between the two Abelian branes, or to have both ends on the weak branes.
Thus, we obtain two additional models that we cdllafd B. As it can also be seen in the
table, all these models have tree-level quark and lepton masses and make use of only two
Higgs doublets. They also require low energy string scale for some of the brane coupling
conditions. We now proceed to a detailed study of these four models and to an analysis of
their main phenomenological characteristics.

Notice from Table 3 that in both classes of models A and B, the coupling constant
ratio is g2/g3 >~ 0.6 at the string scale, implying through the relations of Section 1 that



94 |. Antoniadis et al. / Nuclear Physics B 660 (2003) 81-115

at least one of the internal compact dimensions along the world-volume of the weak set
of branes must be larger than the string length, by at least a factor of two (in the case of
two large dimensions, or by a factor of four in the case of one). The relevant experimental
signal would be the production of Kaluza—Klein excitations for #i& bosons and the
other mediators of the electroweak interactions but not of gluons, providing one of the first
indications of new physics [14].

4.1. Models A and A

We consider here the models 2 and 6 of Table 2, hereafter referred as models A and A
respectively. They are characterized by the common hypercharge embedding

1 1
Y:_ch_EQL'i‘Ql (41)

but they differ slightly in their spectra. The spectrum of model A is

0(3,2,+1,-1,0,0),
u°(3,1,-1,0,—1,0),
d“(3,1,-1,0,0, - 1),
L(1,2,0,+1,0,-1),

¢“(1,1,0,0, 41, +1),

H,(1,2,0,+1,+1,0),
Hy(1,2,0,-1,0,-1),

while in model A the right-handed electrasi is replaced by an open string with both ends
on the weak brane stack, and thtis= (1, 1, 0, —2, 0, 0). The two models are presented
pictorially in Fig. 1.

Apart from the hypercharge combination (4.1) all remaining Abelian factors are
anomalous. Indeed, for every Abelian generafgr, I = (¢, L, 1, b), we can calculate
the mixed gauge anomal§f;; = TrQ; TJ2 with J = U (3), U(2), Y, and gravitational

u@), U@2), u@), u@),

Fig. 1. Pictorial representation of models A,.A
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anomalyK ;4 = Tr Q; for both models A and A

1 1 1 1

0 -1 -3 —3 0 -1 -3 -3

3 1 3 1

3 1 o0 -1 : 3 1 o -1

A) _ 2 2 (A _ 2 2

K7=15% 1+ 1 1 K=l 5% s a4 s (4.2

2 3 3 6 2 3 3 6

0 -4 -2 -4 0 -6 -3 -5

It is easy to check that the matricd§ K" for both models have only one zero
eigenvalue corresponding to the hypercharge combination (4.1) and three non-vanishing
ones corresponding to the orthogoria{l) anomalous combinations. In the context

of type | string theory, these anomalies are canceled by a generalized Green—Schwarz
mechanism which makes use of three axions that are shifted under the corresgéd¢iding
anomalous gauge transformations [15]. As a result, the three extra gauge bosons become
massive, leaving behind the corresponding global symmetries unbroken in perturbation
theory [16]. The three extré (1)'s can be expressed in terms of known SM symmetries:

1
Baryon number B = §QC,
1
Lepton number L = E(Qc + 01— 01— 0,

. . 1
Peccei-Quinn  Qpo= _E(QC — 01 —301—-30). (4.3)

Thus, our effective SM inherits baryon and lepton number as well as Peccei—Quinn (PQ)
global symmetries from the anomaly cancellation mechanism. Note however that PQ is the
original Peccei—Quinn symmetry only in model, Such that all fermions have charges
+1, while H, and H; have charges-2 and+2, respectively. In model A, the global

PQ symmetry defined in (4.3) is similar but with lepton charg® The reason is that

in model A the fermion-Higgs Yukawa couplings are different, and leptons get masses
from H, and not fromH,.

The general one-loop string computation of the masses of anomalglsgauge
bosons, as well as their localization properties in the internal compactified space, was
performed recently for generic orientifold vacua [17]. It was shown that orbifold sectors
preservingN = 1 supersymmetry yield four-dimensional (4d) contributions, localized in
the whole six-dimensional (6d) internal space, while= 2 supersymmetric sectors give
6d contributions localized only in four internal dimensions. The later are related to 6d
anomalies. Thus, eveti(1)s which are apparently anomaly free may acquire non-zero
masses at the one-loop level, as a consequence of 6d anomalies. These results have the
following implications in our case:

(1) ThetwoU (1) combinations, orthogonal to the hypercharge and localized on the strong
and weak D-brane sets, acquire in general masses of the order of the string scale from
contributions ofN = 1 sectors, in agreement with effective field theory expectations
based on 4d anomalies.

(2) Such contributions are not sufficient though to make heavy thethitgl propagating
in the bulk, since the resulting mass terms are localized and suppressed by the
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volume of the bulk. In order to give string scale mass, one needs indfead?
contributions associated to 6d anomalies along the two large bulk directions. In our
models such contributions are indeed in general present and arise from mixed 6d
gauge-gravitational anomalies of two different sources: (i) the generic presence of a
neutral 6d Weyl fermion on the bulk brane which coincides either withiilg),
gaugino (in the supersymmetric case) or the goldstino of the non-linearly realized
supersymmetry (in the brane SUSY breaking case [7]); (ii) the contribution of the
right-handed neutrino which arises from a six-dimensional Weyl spinor. As a result,
the third Abelian gauge fieltl (1), acquires also a mass of the order of the string scale,
although its gauge coupling is tiny due to the volume suppression (see Eq. (1.5)).

(3) Special care is needed to guarantee that the hypercharge remains massless despite the
fact that it is anomaly free, along the lines of Ref. [17].

The presence of massive gauge bosons associated to anomalous Abelian gauge symmetries
is generic. Their mass is given b),yf1 ~ gsMSZ, up to a numerical model dependent factor

and is somewhat smaller that the string scale. When the latter is low, they can affect low
energy measurable data, suchgas 2 for leptons [18] and the-parameter [19], leading

to additional bounds on the string scale.

Note that the global PQ symmetry leftover frdif{1), is spontaneously broken by the
Higgs expectation value giving rise to an unwanted electroweak axion. A possible way out
was suggested in Ref. [1], using an appropriate departure away from the orientifold point.

A plausible extension of the model is the introduction of a right-handed neutrino in the
bulk. A natural candidate state would be an open string ending o/ tg, brane. Its
charge is then fixed te-2 by the requirement of existence of the single possible neutrino
mass termL Hyvg. The suppression of the brane-bulk couplings due to the wave function
of vg would thus provide a natural explanation for the smallness of neutrino masses. Note
that if the zero mode of this bulk neutrino state is chiral, the anomaly structure of the model
changesB — L becomes anomaly free and as a consequence the associated gauge boson
remains in principle massless. However, as we discussed above, this is not in general true
because of 6d anomalies [17]. In any case, this problem is absent if we introduce a vector-
like bulk neutrino pair

VR (1? 17 07 07 07 +2) + U; (1? 17 07 07 07 _2)

that leaves the anomalies (4.2) intact. Note tijatloes not play any role in the subsequent
discussion of neutrino masses and oscillations.

Coming to the issue of gauge couplings and the string scale, as already explained
we have two different realizations for each model. The first is with= g3 at M, that
corresponds to a configuration where tél)1 brane is placed on top of the color branes.
According to Table 3, this leads to an intermediate string s8éle~ 10° GeV, which
appears too high to guarantee the stabilization of hierarchy. The second possibility is to take
theU (1)1 brane on top of the weak branes, leadingie= g2. The required string scale is
now low M; ~ O(500 GeV (300-800 GeV, depending on the threshold corrections), and
could account for the stability of the hierarchy.
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4.2. ModelsB and B/

Another phenomenologically promising pair of models consists of solutions 4 and 9 of
Table 2, named hereafter B and Bhich corresponds to the hypercharge embedding

Y= 2Q 1Q +0 (4.4)
= 3 c 2 L 1. .
The spectrum is

0(3,2,+1,+1,0,0),
u(3,1,-1,0,0,1),
d“(3,1,-1,0,1,0),
L(1,2,0,+1,0,-1),
¢“(1,1,0,0, 41, +1),
H,(1,2,0,—1,0,—1),
Hy(1,2,0,+1,+1,0),

for model B, while in B ¢¢ is replaced bye‘(1, 1,0, —2,0,0). The two models are
represented pictorially in Fig. 2. The four Abelian gauge factors are anomalous. Proceeding
as in the analysis (4.2) of models A and e mixed gauge and gravitational anomalies
are

1 1 1 1

o 11 1 o 1 1 1

3 1 3 1

3 2 0 -1 , 3 2 o -4

(B) _ 2 2 (B _ 2 2

K B2 oult KUl S a1 s (45)

2 3 3 6 2 3 3 6

0 8 4 2 o 6 3 1

It is easy to see that the only anomaly free combination is the hypercharge (4.4) which
survives at low energies. All other Abelian gauge factors are anomalous and will be broken
by the generalized Green—Schwarz anomaly cancellation mechanism, leaving behind
global symmetries. They can be expressed in terms of the usual SM global symmetries

u(l), u(),

., v, ue 2 e,

Fig. 2. Pictorial representation of models B and B
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as the followingl (1) combinations:

Baryon number B = %QC, (4.6)

Lepton number L = —%(Qc — Q01+ 01+ 0»), (4.7)
. . 1

Peccei-Quinn  Qpg= E(_Qc +301 + 01+ Op). (4.8)

Similarly to the analysis of models A and’,Athe PQ charges defined above are the
traditional ones only for model B. In model Bhe lepton charge is-3, as a result of

the Higgs—Yukawa couplings to the fermions (see below). The right handed neutrino can
also be accommodated as an open string with both ends on the bulk Abelian brane:

vr(1,1,0,0,0,42) + v5(1,1,0,0,0, —2). (4.9)

According to the RGE running results of Table 3, there is only one brane configuration,
for the models under discussion, that reproduces the weak mixing angle at low energies.
This consists of placing th& (1)1 brane on the top of the color branes, so that g3,
which leads taVl; ~ O(10) TeV (7-17 TeV, depending on the threshold corrections).

5. Fermion masses

Although the general question of quark and lepton masses goes beyond the scope of
this paper, we would like to make here some comments in the context of our constructions.
The Yukawa couplings relevant to fermion masses are constrained by the vEribus
symmetries and can present interesting patterns.

Model A. The relevant Yukawa couplings are

Mp =, Qu¢ Hy + 4 Qd°H) + ), Le H + A, LHyvg. (5.1)

Here, charged leptons and up quarks (of the heaviest generation) obtain masses from the
same Higgs,).

When all Yukawa couplings arise at the lowest (disk) order, it is easy to check that in the
simplest case (absence of discrete selection rules, etc), they satisfy the following relations:

Au :)\e:\/igZa )\d:\/2gm )\v:\/igh (52)
The top and bottom quark masses are given by
m; = govsing, mp = /g, vCOSp, (5.3)

where tar8 = v, /vy, with v, andv, the vacuum expectation values (VEVSs) of the two

higgsesH, and Hy, respectively, and = ,/v2 + vg = 246 GeV. Note that in the case
where the color branes are identified with D3 branes, onefi@gs= g3, and in any case

g5 = g%. Note also that since the string scale in this model is relatively dw< 1 TeV,

there is no much evolution of the low energy couplings from the electroweak to the string
scale. Thus, using the known value of the bottom mags- 4 GeV, one obtains for the
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top quark mass:; >~ 162 GeV which is less than 5% below its experimental valﬁé”:
1743+ 5.1 GeV. In addition, the Higgs VEYV ratio turns out to be large,gan 100. Note

that such a large value is not in principle problematic as in the supersymmetric case, but it
can lead to important higher order corrections.

On the other hand the-mass is of the same order as the top mass, which is unrealistic.
However, there is still the possibility that the lepton Yukawa couplingvanishes to
lowest order due to additional string discrete selection rules, and is generated by a higher-
dimensional operator of the forme”(HuTHTH) providing the appropriate suppressfn.

Model A’. The Yukawa couplings here are

Mpr =4y QuE Hy + 2g Qd°H) + A LeC H) + A, LHyvg (5.4)

with the same relation for the tree-level couplings as in (5.2). Using the parametrization in
(5.3) we see that the relation af; to m;, is the same as in model A and the same remarks
apply. Since here the lepton and down quark acquire their masses from the same Higgs,
one obtains the phenomenologically interesting relatigyy.m, = ./g5/g2 = g3/g2, when
strong interactions are on D3-branes. Thus, from Table,3m, >~ 1.75 at the (string)
unification scale, which is in the upper edge of the experimentally allowed region at
the Z-mass, 146 < my/m<|exp S 1.75. This relation could replace the successful GUT
predictionm; = m, of the conventional unification framework, in low scale string models.
In conclusion model Aseems to be able to generate the required hierarchy of masses for
the third generation.

Model B. The relevant trilinear Yukawa couplings are,

Mg =4y QuEHy + 2g Qd°H) + i Le*H) + i, LH,vg. (5.5)
The tree-level Yukawa couplings satisfy

he=lu=\28,  ra=+2gs  r=+v2g (5.6)
and we have

m; = /g, vsing, mp = g3v COSP. (5.7)

The first relation implies again a heavy top, while the bottom to tau mass ratio is
now predicted, with a valuen,/m. = g3/./gs < 1 which is apparently far from its
experimental value. However, in this case, the string scale is relatively high and therefore
one should take into account the renormalization group evolution above the weak scale.
Solving the associated RGEs with the boundary conditions (5.7) and assggning/gy,
we obtain acceptabke, andm, masses fol,; ~ 3 x 10° TeV and tarB ~ 80. Note that
the successful prediction ef, andm. is related to the conditiom;, = m, at the (string)
unification scale, which in the case of hon-supersymmetric Standard Model is obtained at
relatively low energies [20]. Indeed, in Fig. 3, we plot the mass ragjpm, as a function
of the energy, within the non-supersymmetric Standard Model with two Higgs doublets.
Nevertheless, the resulting value &f; is still significantly higher than the unification

6 Models with similar properties have been considered in the past in the perturbative heterotic string
framework.
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log,,

Fig. 3. Evolution of the ratian;, /m as a function of the energy for tang = 2 and tar8 = 80. We have used as
low energy parameters;, = 4 GeV,miop = 174 GeVaz(M;) =0.12, sirf Ow = 0.23113.

scale required from the analysis of gauge couplings in Section 3. Moreover, the top quark
mass turns out to be rather high, ~ 220 GeV. It is an open question whether this
discrepancy can be attributed to threshold corrections that can be important in the case
of two-dimensional bulk [6].

Model B’. The relevant Higgs couplings are given by

Mg =7, Qu Hy + g Qd°H] + ) Le H + 3, L H,vg (5.8)
while the tree-level Yukawa couplings by
Ay =+/2gs, Aa = \/Egs, Ay = \/Egb and A, = \/Egz. (5.9)

Here, as in model A, the and top mass are of the same order and thus in conflict with
experiment. As in model A, vanishing leading order coupling could be a way out.

In the above analysis we have also assumed that only the heaviest generation acquires
masses at the lowest order. The other two are considered to have vanishing trilinear Yukawa
couplings. This property does not follow from the gauge symmetries we considered and
should be attributed either to discrete string symmetries or to additional gauge symmetries
by enlarging the modél

6. Neutrino physics

One of the challenges of Standard Model extensions is the justification of the smallness
of neutrino masses. The favorite scenario used to rely upon the introduction of right-handed
neutrinos (SM singlets) and their mixing with some extra massive singlets. The suppression
of the neutrino masses is then obtained as a result of the structure of the full mass matrix
(“see-saw” mechanism). In order for this mechanism to work effectively, the extra singlet
mass should be about ten orders of magnitude higher than the electroweak scale.
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Among the promising features of D-brane models is a novel scenario to account for
neutrino masses: right-handed neutrinos are assumed to propagate in the bulk while left-
handed neutrinos, being a part of the lepton doublet, live on the brane. As a result, the
Dirac neutrino mass is naturally suppressed by the bulk volume. Adjusting this volume, so
that the string scale lies in the TeV range, leads to tiny neutrino masses compatible with
current experimental data.

The extra-dimensional neutrino mass suppression mechanism described above can be
destabilized by the presence of a large Majorana neutrino mass term. As already mentioned
in Section 3, the lepton-number violating dimension five effective opefatdd H leads,
in the case of TeV string scale models, to a Majorana mass term of the order of a few GeV.
Even if we manage to eliminate this operator in some particular model, higher order
operators would also give unacceptably large contributions, as we focus on models in
which the ratio between the Higgs vacuum expectation value (VEV) and the string scale is
just of order®(1/10). The best way to protect tiny neutrino masses from such contributions
is to impose lepton number conservation. As we have seen in Section 2, we can find
models which successfully accommodate all SM particles and preserve lepton number as
an effective global symmetry in perturbation theory. These are the modelsand®B, B
described in detail in Section 3.

Apart from neutrino masses these theories contain also the ingredients to explain
neutrino oscillations. The right-handed neutrino, being a bulk state, has a tower of Kaluza—
Klein (KK) excitations. Their mixing with the ordinary (left-handed) neutrino leads to
oscillation patterns that have to be compared with present solar and atmospheric neutrino
data. There exist extended discussions in the literature [5] regarding the neutrino mass
and oscillation problems in the context of extra-dimensional theories. Among the common
results of these works is that an explanation of the solar neutrino anomaly is possible
provided the small mixing angle (SMA) solution is acceptable. However, recent SNO
results in conjunction with SuperKamiokande data [21-24] strongly disfavor the SMA
solution and thus render this higher-dimensional oscillation mechanism problematic,
at least as far as solar neutrino oscillations are concerned. A possible way out is to
introduce three bulk neutrinos and explain the oscillations in the traditional way [25].
The effect of the KK mixing can be eliminated by appropriately decreasing the size
of the extra dimensions and thus increasing the value of the string scale. However, all
these discussions are restricted to the case of effectively one-dimensional bulk. Besides
these phenomenological difficulties, there is also a serious theoretical problem, since one-
dimensional propagation of massless bulk states gives rise to linearly growing fluctuations
which yield in general large corrections to all couplings of the effective field theory,
destabilizing the hierarchy [6].

Two-dimensional scenarios have not been considered in detail. We will see below
how the above problems can be resolved and discover that a two-dimensional bulk has
enough structure to describe both the solar and atmospheric neutrino oscillations by
introducing a single bulk neutrino pair. On the other hand, recent experiments are also able
to differentiate between the contributions of active and sterile neutrinos to the neutrino
anomaly problems. From this point of view, the KK excitations do not carry any Standard
Model charges and are thus considered as sterile. It is then important to examine if all these
constraints are compatible with our model.
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As explained in the introduction, our setup incorporates a two-dimensional bulk and we
are going to assume hereby that neutrinos propagate in the full bulk volume which is a two-
dimensional space. Among the common features of the models considered in Section 3, one
finds tree-level neutrino couplings and mass-terms of the form:

3 3
Z/\iLiHivR — Z/\iviviLvR, (6.1)
i=1 i=1

wherei is a generation index and for each generalioH; is one of the available Higgs
doubletsH,; or H,, providing masses to down quarks (modelsA4) or to up quarks
(models BB’), respectively, withy; = (H;) the corresponding VEV. The above couplings
provide a mass to one linear combination ) of the weak eigenstates;( ), while the

other two remain massless. Note, that it would be possible to generate masses for all left-
handed neutrinos by introducing additional bulk neutrino pairs. In this case the number of
free parameters is increased and predictability is lost. Thus, here, we will study the case of
a single bulk neutrino pair. Defininyz = (v, vor, 1), ) the mass eigenstates, the weak
eigenstates can be written as

ViL :ZUijNLja (6.2)
J

whereU is a 3x 3 unitary matrix withU*, = (U~1)1,; = Ajv; /mp andm?s = Y3 | 1202

is the mass-square of the massive combinatign).(Being of brane-bulk type, the
couplingsa; are naturally suppressed by the bulk volume (see Section 1) and lead
to a tiny Dirac neutrino mass

o 2V2 M
mp = =——0, 6.3
Vvsg  g3g2 Mp ©3
where v = /32 h2v? with h;, i = 1,2,3, the associated dimensionless Yukawa

couplings and; the corresponding Higgs VEW = (Hy), (H,)) depending on the model.
Using typical values for the gauge couplings (see Table 3 of Sectian )y = 246 GeV

andh; /4r = O(1), we obtainmp < 6 x 1073 eV for M, < 10 TeV. This provides an
explanation for the smallness of neutrino masses and is actually the extra-dimensional
version of the see-saw mechanism.

The above picture is simplified because we have neglected the contributions of the tower
of KK neutrino states. Taking them into account, and assuming for simplicity that the two
bulk radii are equakRg = Rg = R and form an angle /2 — 6, where—z/2 < 6 < /2, the
mass terms become

202 (T N (T
Ly, =mpvr Zﬁ m/M vl(,ek) + Zm,;ng(k)vg{) +c.c., (6.4)
k P
wherevg = V1(eo) and the summation over extends over all KK momenta. Byz]% we
denote the mass-square of the KK excitation labeled by monieﬂtekl, k2)
1

2 _ 2 2 ;
m = g gs (ki + K3 — 2kakasing). (6.5)
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We also use the notatiom,f for the mass-square of th¢h KK level. § is a model dependent
constant bigger than one, associated to the coupling of two Neumann-DirichleZND)
twisted strings to an untwisted (NN or DD) string [26]. In our models, there areZgur
twisted coordinates, implying= 16. M plays the role of an ultraviolet (UV) cutoff, which

is normally the string scaldf,, but we prefer using the symbal because in certain
processes there exists an induced cutoff that can be a few orders of magnitudéhelow
For instance, this is the case of solar neutrinos, where the production energy is of order of
a few MeV, and thus heavier KK modes are effectively cut off.

The mass terms (6.4) lead to a mixture of the usual left-handed neutrino with the
infinite tower of its KK excitations. A detailed analysis of the eigenstate problem in our
framework is presented in Appendix A where we derive the basic formulas for neutrino
masses and transition probabilities. Due to its complexity, the problem can be either
treated numerically in the general case or analytically using some approximation. The first
approach has the disadvantage of being rather tedious as it involves summations over a
very large number of KK modes, so we will adopt here an analytic perturbative approach.
Concerning the interpretation of neutrino anomalies, there are also two possible treatments:
the first is a direct fit of neutrino data to the transition probability formulas obtained in
our framework. The second is to try to simulate the standard solutions to the solar and
atmospheric neutrino anomaly problems. We will use here the second method, as it is
sufficient for demonstrating the basic features of our model.

Following Appendix A, the mass spectrum of the full system, in the case of two bulk
dimensions, is

m,%—mk—}—rkm 52/ M? A1—A)+-- (6.6)
wherery is the multiplicity of thekth KK level and
Ar =nm?(R*cosd) {log(M?R? cosd l0gs?) + sk}, (6.7)

with s; a volume independent constant. Our solution is based on the assumptions that
mpR « 1, as justified by (6.3) and\,, < 1 that simplifies the formulas involved. Under
these assumptions, and following the analysis in Appendix A, the survival probability for
a neutrino of flavoi is given by

Py 1 — Au?(1— )sm2< ) 32u2AOS|n2<R24LE> (6.8)

wherem3 = m%(1 — Ao) andu; = |U;1| satisfying the unitarity relatiory"; u? = 1;
L is the distance that the neutrino travels before being detected é&nthe beam energy.
According to the discussion in Appendix A, the survival probability takes this form only

for specific values of the angte

_q@B+ (=1
2(q?—p?

wherep, g are relatively prime integers and= 1 for p = 0. In our approximation, the

2
survival probability (6.8) is a superposition of two modes with l‘requencfllg%)‘.;é and
These two frequencies can be considered as independent parameters, as the first

sing = B, p,.q €Z, |pl<gq, (6.9)
q

4R2E
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depends on the Yukawa couplings and the Higgs VEVs, while the second depends on
the compactification radius or equivalently on the string scale. The existence of these two
frequencies provides us with the opportunity to fit both solar and atmospheric oscillations
using (6.8). Furthermore, the amplitudes of the two modes dependand Ag defined in
(6.7). These parameters can be used in order to fit the oscillation amplitudes.

In the standard neutrino (two flavor) scenario, one usually explains the solar neutrino
anomaly byv. — v, oscillations and the atmospheric neutrino deficit gy — v,
oscillations. The formula for the transition probability is:

2

Ams; [,
Pui_)vjzsinZZOijsinz( 4” E)’ (6.10)

WhereAmiZj = ml2 — mf is the neutrino mass difference in the case of two states mixing.
ExpressingL in km, E in GeV andAm? in eV, the frequenC)Amizj& takes the form
1.27 % Am,?jL/E.

Recent analysis of atmospheric neutrino data [23pat 3 gives 1x 1073 < AmZ,,, <
6x 103 eV2 and Q7 < Sin? 20atm < 1. Regarding solar data, the situation has dramatically
changed after the latest SNO results: only the LMA and LOW MSW solutions are
acceptable at theo3c.l. with 2.3x 107 < Am?,, <3.7x107%eV2, 0.6 < sir* 20 ya <
1 and 35 x 108 < Am?,,, < 1.2 x 1077 eV?, 0.8 < sir’ 20 ow < 1. Moreover, the
LMA gives a much better fit. The region of the SMA solution (with best fit values
AmZya ~ 5 x 1076 eV2, si20gua ~ 2 x 1072) is acceptable only at the. %> level
and is thus practically excluded [22].

The atmospheric neutrino oscillation frequency is higher than solar soluno;m§m >
Amgol, and thus we have to use the lowest frequency in (6.8) Qhé),to simulate
solar neutrino oscillations. Formula (6.8) contains four independent parameters, namely
mp, R, My and u, (assumingu, = 0 and thu5u§ + uﬁ = 1). Fitting both solar and
atmospheric oscillations requires to leading ordeAin

w

=7 = AmZ, (6.11)
mf = AmZy, (6.12)
4u?(1 — u?) = sir? 2659, (6.13)
3.2u% Ao = Sir? 20atm (6.14)

Neglecting the constant tersg in the expression (6.7) alg, in the limit MR > 1, and
assuming = 16, Ag can be written in terms af/; andm p as

2 172
Ao~ 1 m4M3 log Mp [logs azzﬁ (6.15)
2ma? M4 raMs VN 2 )’ 8382’ '

where we have assumed that the cutoff is equal to the string sdate ¥/,). This choice

of the cutoff is suitable for the atmospheric neutrino data, where the oscillation amplitude
is proportional toAg. In any case, the exact value of the cutoff plays a minor role in
our calculation, due to the fact that it appears always logarithmically. Furthermore, the
expectation value is related to the rest of the parameters through Eq. (6.3), while the
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angled enters in the Plank mass definition (1.3)

1 M3

R2 COY) = ———.
4722 M*

(6.16)

In terms of the integerp, ¢ that have been introduced in (6.9), we can rewrite the last
equation as

3+ (-7 Am2,M3

W, = = £ 6.17
or equivalently
3+ (=17
cosY = L (6.18)
2W, 49

Thus, the four conditions (6.11)—(6.14) together with (6.15) and (6.3), (6.16) fix all four
parameters of the model. Therefore, fitting the atmospheric neutrino frequency (6.11), one
determines the compactification radius

1x 1073 < % <6x 1073V, (6.19)

or 3< R <6 um forw ~ 1. Choosing for the solar neutrino deficit the preferred LMA
solution, we get from the second condition (6.12) the neutrino mass range

48x 102 <mp <7.7x 102 eV. (6.20)

The third condition (6.13) fixes the mixing coefficie;ﬁ and has two possible solutions,
namely, 018 < u? < 0.5 or 05 < u2 < 0.82. Choosing:Z ~ 0.18 andu? ~ 0.82 (u =0),

Eq. (6.14) leads tadp ~ 0.27 (in the case we choose the lowest allowed value of
Sir? 2044m), Which lies at the edge of the validity of our perturbative approach. Any other
choice ofu; compatible with the constraints leads to bigger valuesAgr This justifies
also the choice, = 0 in order to minimizeAg in (6.14)” From (6.14) we get the string
scale

8< M; $13TeV, (6.21)

while compatibility with (6.3) requiresD(1) values for the Yukawa couplings. It is
interesting that this range for the string scale coincides with the values we found from
the analysis of gauge couplings in Section 3, for the models B dn€@ming to the
angle, we get from (6.17).02.<S W, , < 0.2 for the allowed range cmmgtm and we can
easily verify that there exist integeps g that satisfy (6.17).

Let us now consider the LOW solution to the solar neutrino deficit. Following similar
steps, the four constraints (6.11)—(6.14) in this case give

19x10%<mp <35x103eV, (6.22)

7 Normally, one should repeat the eigenstate analysis of Appendix A numerically in the non-perturbative
region, but from a preliminary analysis we do not expect significant change of our results.
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with uZ ~ 0.28 and thus2 ~ 0.72 andAo ~ 0.30. The string scale turns out to be slightly
lower in this case:

18I My $2.2TeV, (6.23)

while for the angled we get 20S W, , < 200. Note that the range of string scale is now
compatible with the values found from the analysis of gauge couplings in models A and
A’. In this solution, the left-handed neutrino Yukawa couplings do not have to ®¢1f

Moreover, the practically excluded SMA solution can also be obtained in this
framework. The associated parameters in this case/@re:5 x 1073, u2 =1 —u2 ~ 1,
Ag~0.2,mp~2x10"3eV, M; ~6 TeV, 02 < W, , < 1.2. Note that the case = 0
corresponds tp = 0,4 =1 and thusW, , = 1. As seen from our results, only the SMA
solution includes this value in the allowé#d-range and this is the reason why only this
solution could be reproduced in the case of an orthogonal torus. The LMA and LOW
solutions require a bulk forming a non-orthogonal lattice, corresponding to non-trivial
values off. It is also worth noticing that such non-trivial valueséinduce CP violation
in the neutrino sector, which is interesting to be further explored.

The mixing of the neutrino zero mode with its KK excitations can lead to a decay of the
left-handed neutrino to these KK modes, considered as sterile from the SM point of view.
In our framework, and to leading order in thg expansion, the average conversion rate of
a neutrino of flavoi to sterile is given by (A.19)

Py, s ~ 2u?Ao. (6.24)

Constraints (6.12) and (6.14) fix both the above probabilities. Assuming the LMA solution
to the solar neutrino deficit, we get

P,, s ~0.44 (6.25)
for atmospheric and

Py,—s ~0.05 (6.26)

for solar neutrinos, where in the second case we have assumed aMutos0 MeV. For

the LOW solution, the transition probabilities are simil&y;, ., ~ 0.32, P,,_.; ~ 0.08.

Note that the decay rate to sterile neutrinos is significant in the case of atmospheric
neutrinos and is negligible in the case of solar neutrinos. This is related to the structure
of our model for neutrino oscillations. The atmospheric neutrino deficit is simulated using
the lightest KK neutrino excitation (which is interpreted from the SM point of view as a
sterile neutrino), while the solar data are explained using the (active form the SM point of
view) zero mode.

Constraints for the conversion of active to sterile neutrinos have been recently examined
in reference [25]. Following their analysis in the case of the LMA solution, the constraint to
the average decay rates for solar neutrindgjs, ,, < 0.40 at 90% c.l. which is obviously
satisfied by our model. For atmospheric neutrinos the relative constraint takes the form

AP =P, ., — Py, <0.17. (6.27)



|. Antoniadis et al. / Nuclear Physics B 660 (2003) 81-115 107

Evaluating this constraint in our framework, one fil® = 0.44 — 0.10= 0.34 (where

Py, v, = 0.10in the case of atmospheric due to the higher cutaffgrof Eq. (6.7)) which

is by a factor of two higher than the experimental bound. However, one should take into
consideration that our perturbative analysis, focusing on explicitly revealing oscillations,
does not allow to access the regidp ~ 1 where in principle the above rates could
change. As mentioned earlier this region could be studied only numerically. This requires
summation over a huge number of KK modes and at present it appears insoluble even
numerically.

In any case the exact nature of atmospheric neutrino oscillations is expected to be
further examined in the K2K [27] experiment. In case the predictive scenario of a single
bulk neutrino presented here fails to satisfy the sterile production constraints, one should
proceed in the introduction of additional bulk neutrinos and explain oscillations in the
traditional way, that is by zero mode mass difference and not by mixing with the KKs.
Their presence can still lead to sterile production which can be reduced by appropriately
raising the string scale and thus decoupling the KKs [25].

7. Summary and conclusions

In conclusion, we performed a systematic study of the Standard Model embedding
in type | string theory at the TeV scale. We found that the minimum configuration with
interesting phenomenological features requires three sets of D-branes, so that all SM
particles are obtained as open strings stretched among these brane stacks. Two of them
describe respectively the strong and weak interactions, while the third one contains a single
Abelian brane that extends in a two-dimensional bulk of submillimeter size.

The model predicts the correct value of the weak angle for a string scale of a few TeV. It
also contains baryon and lepton number as perturbative global symmetries, ensuring proton
stability and absence of large (Majorana) neutrino masses. On the other hand, it uses two
Higgs doublets that can provide masses to all quarks and leptons. Concentrating on the
heaviest generation, we computed all trilinear Yukawa couplings and studied the resulting
mass relations. We found a naturally heavy top and the mass ratio of bottom quark to tau
lepton close to its experimental value.

Finally, we have studied neutrino masses and oscillations by introducing a single right-
handed neutrino state in the bulk. We found that both solar and atmospheric neutrino data
can be explained if the bulk is a non-orthogonal torus forming a non-trivial angle. Solar
oscillations are then explained using the zero-mode, which obtains a tiny mass from the
electroweak Higgs, while atmospheric oscillations use its first KK excitation. However, in
the cases of atmospheric data, it seems to be an excess in sterile production with respect to
current atmospheric data analyses.

Overall, the model looks very promising and deserves further investigation. Particular
directions that have not been discussed are the masses and mixing angles of the two lightest
generations, possible important threshold corrections related to the two-dimensional bulk,
supersymmetry breaking effects in models with brane supersymmetry breaking, as well as
explicit type | string realizations.
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Appendix A. Neutrino masses and oscillations

We consider the neutrino mass eigenvalue problem that arises when the usual left-
handed neutrino localized on the “brane” mixes with one pair of right-handed neutrinos
propagating in a two-dimensional bulk. The solution of this problem in the case of one-
dimensional bulk has already been studied in the literature [5]. A new feature of the
two-dimensional bulk is that the associated KK sums are divergent and a masd/fscale
playing the role of the UV cutoff, normally identified with/,, appears in the mass and
eigenstate expressions. Moreover, we consider neutrino oscillations and derive formulas
for the transition rates of both active and sterile neutrinos.

We will assume for simplicity that the two bulk radii are equ$,= Rg = R, but we
will allow for the possibility that the anglé between the two compactified directions
is arbitrary—n/2 < 6 < /2. The masses of the KK excitations, labelled by momenta
i = (n1,n2), are:

m% = W]c-)sz@(n%—l—n% — annzsiné). (A1)

The KK modes can be ordered according to their mass and labelled by a unique level
numberk. Massive levels have in general degeneracy four, apart from particular points that
have higher degeneracy for special valueg.dh any case, only the direct sum of the states

of each degenerate level couples to the left-handed neutrino. Hence, we can diagonalize in
the degenerate subspace and choose one of the eigenstates, which corresponds to the sum
of the degenerate KK modes. In this basis, the relevant neutrino mass terms take the form

2
_ Mk .
L, =mpvy, E Jrid M2 a},{‘)+ E mkﬁ;;k)f);ek)+c.c.+decoupled
k k

~ (k) 1 0) ~c(k) 1 .(0) . .
where” = —3 v’ and ™ = =35, v, £=1,.... ri, with r the multiplicity

of the KK level with massn;. The mass terms can be written in matrix form{@nNR +
c.c) with Ny = (vL,ﬁ;(l),...), Nr = (ﬁl(eo),ﬁ;(l),...) and m an infinite-dimensional
matrix.

In order to determine the left-handed neutrino mass eigenstates, we consider
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m

N

mimp /r187

e

+ momp J728

JT—img_imps M2
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My

[Tk mkszfW

%A mimp. /71

‘ 3
INZIN)

momp /12

M2 mkmpﬁéim
0
0
>
0
mg

(A.2)

whereA=3", rga_z’"f/MZ. In the sequel we will assume that all masses are measured in
string units, which we restore only at the end of our calculations.
The exact eigenvalue equation for the mass ofitheKK level iz, can be written in the

form

DZ red” me

and the associated eigenstates

Vi = Ni(l, i, e, .. )

n
with

mpmg 2
C;zl:ﬁ(s e
ma —mj

and

) N
pm ( _mg

(A.3)

(A.4)

(A.5)

(A.6)

The above results can be used to exptgsm the basis of the mass eigenstates

(A7)

(A.8)
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where E is the neutrino beam energy atidis the distance from the source. Therefore,
using (6.2) we can derive the time evolution of the weak eigenstates

viL(t) = Uirve (1) + Uizvor + Uizvgy - (A.9)

The transition rateP,, . ,,;, that gives the probability for a neutrino of a specific flawor
produced in the source to be detected as flaviorthe detector, is

11— u?+ulT|? i=,

A.10
wiFIL=TP2,  i#], A0

Py, = |(viL(0)|ij(t))|2= {

whereu; = |U;1| and

1 im2L
T = —e n . A.11
O xp( " ) (A11)

The formulas for the transition probabilities to active neutrinos are

2 . .
Py = { (A= uf)” +uf(L—uf)(T +T*) +ulITIZ. i =), (A.12)

w?u?(1— (T +T%) +1T1?), i #J.
Therefore, the transition rate for a neutrino of flavdo decay into a sterile neutrino is:

3
Pyos=1-Y Py, =u?(1-|TP). (A.13)
j=1

Using (A.11) we obtain

x 27,
T +2 T —smsz — 2F(2), (A.14)
ITPP=1- 4Fz(mn) +AFZ (2 — m3) + F2(m2), (A.15)

where

o o 1 miL
Fp(mn) _né(:) N2 AE (A-16)

We can now calculate the average probabilities for a neutrino of fiamsurvive

= 2

Pooy = (1—u?)" +u?c?, (A.17)
or to be converted to flavgr

f_)v,-%v,—u u; (1‘}‘; ) L # ], (A.18)
or to decay into sterile

Pyys =u?(1—¢2), (A.19)



|. Antoniadis et al. / Nuclear Physics B 660 (2003) 81-115 111

where
1

and we have averaged over all frequency modes.

Formp = 0, the eigenvalues of the matnixm ' form the usual KK tower with masses
mj; given by Eq. (A.1). FompR « 1, itis natural to assume that the KK levels are slightly
shifted:

m2 =m; —|—8m (A.21)

Inserting (A.21) into (A.3) and expanding fém2 < m2 —m?, ¥n # ¢, we obtain to lowest
order:

2m
rpm 25
sm2 = Di, A.22
mh =" (A.22)
where

2m —2m?

red ¢ S 7
Ay =m s =mh ), (A.23)

m, —m m-=—m

t#n L n le7? ¢
m27émn

Due to the presence of the factor2m/M? (after restoring théf units), we havémﬁ ~0
for m,, > M, implying that KK levels above the cutof are not shifted. We notice also

4

thatin (A.1) we havem M§ < Msz. In this limit, we can calculate the leading terms
P

in A,:

Ay = wm% (R? cosp) {log(M?R? cosf log8?) + s, (A.24)

wheres, is a constant term independent of the cutoff. Specificaly= C and s,.0 =
—Iog|n% + n% — 2n1npsind| + C, with C a constant of order one. Similarly, for the

normalization coefficients we get to the lowest ordesitf,

1 Sm?
=0 (A.25)
0 D
1 £ 2\2
Om)” ... (A.26)

an m2m2r,8=2m;

The infinite KK sumsFy, Fy in (A.14), (A.15) can in principle be calculated numerically
using (A.3) and (A.6). However, this requires summation over a huge number of KK
modes. A convenient approximation is to assume 1 forn > 0. In this region

Famnty st (" L) = s o 2’" Coit("t). a2

n#0 "

n#(O 0)
and thus F» can be expressed in terms of theta-functions using the formula
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) 5-2m? sinf(Bm2)

neZz? ’n%
f 4(xlogs +1i) 4(xlogs +1)
X 1 X 1
Zlm/dx{03'(_71(1—sine)R2>ﬁ3<_n(1+sin9)R2>
0
4(xlogs +1i) 4(xlogs +1i)
+02<_7r(1—sin@)R2>§2<_n(l+sin9)R2>}’ (A.28)

whereds(t) = Y, ;e andda(t) = Y, o, ¢ 7T In the case of an orthogonal
torus @ = 0), F is periodic unders- — & + 7 R2. However, this property is lost for
arbitrary values of. The periodicity, of the survival probability (A.10), is necessary for
interpreting the neutrino anomaly through neutrino oscillations and is in general restored
for rational values of the angte

sing = B, lpl <q, (A.29)
q

where p, g are relatively prime integers, angd= 1 for p = 0. Restrictingd to this
subspacef becomes periodic undgf- — £ + 7, o7 R?, where
2 2
4 ;” for ¢ = odd
Tha=13 o (A.30)

2
q9—pr —
% for ¢ = even.

Since F» is a periodic function, the next question is to compute the corresponding
amplitude. To get an estimation of the amplitude we can evaluate the sum (A.27) at the
half period. We get

—2m2
1/2 g
F2/ =m2D E — =KAo, (A.31)
neZ? i

whereZ?2 is one of the sets of (even, odd) and/or (odd, odd) intege?& pflepending on

the choice ofy. More particularly, forg = 4¢ with ¢ integer,Z? is the set of (odd, odd)
pairs, forg =2¢ + 1, 72 is the set of (odd, even) and (even, odd) pairs and fer4¢ + 2,

72 is the union of the two previous sets. The consiaidakes approximately the values

k € (1/4,1/2,3/4) for each of the three cases, respectively. Moreover, an upper bound to
the amplitude ofF can be derived by replacing the “$frterms with unity

2
max_ 2 52 A.32
Ff®=mp ) — =40 (A32)
neZz? 7

Hence, the oscillation amplitugelies in the rangevzl/2 < p < F*® thatisk Ag < p <
Ao with k € (1/4,1/2,3/4). Furthermore, we can proceed to a numerical evaluation of
F for given sird and M R. An explicit example is presented in Fig. 4, where we have
calculatedF as a function of-L in the caseM?R? = 10%, § = 16, sid = 122, In the

4E R?
same figure, we have also plotted the functiorf 84ELT) (gray line) with amplitude
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n 2 3n A
L/(4E B
2]1-
Fig. 4. Plot of the infinite two-dimensional U ;_;2(5 WZR? /hy) Si? (£ —'72) with h; = cos 26 x
(n2 +n3 — 2n1nysind) in the caseM?R? = 10F, 5 = 16 and siW = 133. The gray line represents the dominant

frequency mode sin?( £ 253132) with amplitudep = 0.87 cosd log(M2R? cosd log §2).

arising from the fit to the numerical sum data. The numerical evaluation of the sum shows
that the amplitude can in general be approximated py~ 0.84¢. Taking into account
these results, we will assume in Section 6 that the KK daroan be simulated by the
dominant frequency mode

(A.33)

F2~08Aosm2( L) wpqzw

2 4E 2(g2—p?» "’

whereAg is given in (A.24) and is given in (A.29).
AssumingAg < 1, we can drop the term&? and FZ < FZ in (A.15). Putting together

(A.12), (A.27) and (A.33), we obtain an approximate expression for the survival probability

L
Py 21— (1 —u?)(1— Ao)smz — _3.2u%A0 S|n2< 2 4E> (A.34)
where
2__ 2
mg=m%(1— Ag). (A.35)

Moreover, for the parameter that enters in the average transition probability formulas
(A.17)—(A.19), we have

1
gzwmzl—ZAo-}-“-. (A.36)
0
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