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Dipole-Pomeron model in proton-proton inclusive and exclusive processes
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A model with a simple pole and a double pole for the inclusive Pomeranchuk singularity has been considered. The
factorization of this singularity together with the weak-coupling approximation leads to a two-component
mechanism for the production processes. Self-consistency of the dipole Pomeron leads to intercept one for this
singularity and a meson trajectory is generated in the exclusive process. Phenomenological implications of the
model concerning multiplicity distributions and rapidity two-particle exclusive distributions are examined and
a comparison with data is made.

I. INTRODUCTION

From the study of the hadronic phenomena at
high energies it has been established that the mul-
tiperipheral model constitutes a zero-order ap-
proximation to the hadronic world, at least for the
energy region covered by Fermilab and the CERN
ISB. The hierarchy of the dynamical mechanisms
which play a role in the production phenomena can
be easily generated in terms of Regge singularities,
by a systematic study of the Mueller diagrams in
the asymptotic region of rapidity differences of the
inclusively produced particles. In fact, the ex-
change of a simple, factorizable Begge pole with
intercept n(0) —= 1 (Pomeron) in the diagrams of
Fig. 1 leads to the Chew-Pignotti model for the
production amplitude. ' It corresponds to a Poisson
distribution for the partial inelastic cross sections,
which means that the particles are produced un-
correlated. On the other hand, the phenomenon of
rising cross sections suggests that the Pomeran-
chuck singularity has a hard component (more
singular than a simple pole) which may be a dou-
ble or triple pole at j = 1 leading to a lns or 1n's
behavior of the total cross section. In general,
the hard component of the Pomeranchuck singular-
ity may be a branch point at j = 1 leading to a (1ns)'
behavior of the total cross section (1&a&2). This
last behavior is suggested by the models of a re-
normalized Pomeron within the Gribov's Beggeon
calculus. ' This new component of the Pomeran-
chuck singularity is expected to play a role in the
production mechanism when it is exchanged in the
Mueller diagrams of Fig. 1. In fact a hard sin-
gularity is expected to be factorizable by a naive
generalization of the properties of Regge singular-
ities in the two-body amplitudes. Hence, the ef-
fect of such a Begge-Mueller singularity on the
production phenomena, could be easily studied owing

to factorization. However, we have shown in a
previous work' that in order that the factorization of
a hard singularity Btj = 1 in the Mueller diagrams be
not in conflict with positivity the self- coupling of such
a component in these diagrams has to be zero. With
this condition one can easily formulate the problem
of hadronic production at high energies using the
Bardeen-Peccei formalism which relies upon the
factorization in the Mueller diagrams. In this
paper we take as a good candidate for the hard
component of the Pomeranchuck singularity a dou-
ble pole at j = o&(0). This model is supported by
the phenomenological study of the ISB data on pp
elastic scattering which reveals the remarkable
property of geometrical scaling. ' In fa,ct, from
geometrical scaling o, -8'(s) plus logarithmic
shrinking due to a moving singularity (A -ins' '),
we obtain the dipole behavior, 0, -lns.

In the physically interesting approximation of a
weak coupling between the simple and the double
pole in the Mueller diagrams (Fig. 1) we find that
the hard component of the Mueller-Pomeranchuck
singularity (dipole Pomeron) generates a diffrac-
tive component in the production mechanism.
Hence, we arrive at the conclusion that the two
components of the Pomeranchuck singularity (sim-
ple and double poles) in the Mueller diagrams cor-
respond to the mell-known components of the pro-
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FIG. 1. The Mueller-Hegge diagram for the inclusive
production of i particles with simple and double Pomeron
exchanges.
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duction mechanism, the multiperipheral (short-
range} component and the diffractive component
which produces long-range correlations.

II. THE MODEL

p, (Y) =(n(n —1) ~ ~ (n —i +1))o,.,
In terms of the inclusive distributions

d'p, d'p; E, ~ ~ ~ E; do,.„
P' 8 E' d3p "d3p (4)

We consider the inclusive process A. +B
-C,C, ~ ~ C;X where the initial hadrons (protons)
4 and & produce inclusively 2 identical particles
(pions} with large rapidity differences. Following
Ref. 4 we write the generating function:

1 ~"I z,
(6)

Taking the derivatives of I(z, y) at z = —1 we have

I(z = —1, y) =a'„(Y},

where o'„(Y) is the partial cross section for the
production of n particles and F= Fb —Y, is the
rapidity difference of the initial hadrons A and B.

From the definition (1) we obtain

(2)

where

The knowledge of the generating function I(z, F)
leads through Eqs. (5} and (6) to the determination
of the multiplicity distribution o„(Y).

The basic assumption in our model is that the
inclusive distribution is dominated by the Regge-
Mueller diagrams of Fig. 1, where the two com-
ponents of the Pomeranchuk singularity (simple
pole and double pole) are exchanged and the self-
coupling of the double pole is zero, g« = 0.' Then
Eq. (4) is written as follows:

p (F}=e dz
Y-z l

dz ~ ~ ~

2

where g' is the row matrix of the external cou-
plings of the exchanged factor izable singularities,
G is the square matrix of the internal couplings,
and S(z) is the square matrix of the propagators
of these singularities at j= o~(0).' In our model,
these matrices are

I(z, F) = pa(Y)+z AP.(S) GI(z, 1'-y), (9)

where

following integral equation4:

ass ~~s~

G=

Rsu 0

rl 0)
S(z) =

~

eznp(o)

(0 z
(8)

I(z, Y) =g'I(z, Y)g,

p ( y} = g'p (y}g

p, (F}=e "S(y} .
The solution of (9) is

C+t ~

7t'2 C-

(10)

g = (gs~ k"~)

Then the generating function I(z, Y) satisfies the

where P,(8) is the Laplace transform of the ma-
trix p,(Y). Using the matrices (8) of our model
we find

1 g, '(8+1 —a~)' 2g+, g~g, „z+g~'(8+1 —o.'~ —zg„)g
p, '(8) —zG g (8+1—a~ —zg„) (1+8- o.~)'-z'g„' (12)

It is expected that the coupling g, „ is small since it is responsible for the scaling-breaking effect in the
one-particle inclusive distribution. In fact the rising of the plateau due to the dipole exchange in this mod-
el is given by a term proportional to g„lns. Hence, the weak-coupling g„approximation is justified since
the scaling-breaking effect is a small perturbation to the basic phenomenon observed at the ISB. There-
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fore, keeping only linear terms in g, d, we obtain from (11) and (12)

(13)

In this approximation (small g, d) the elastic cross section is given by the following equation:

(p i(& )) (
J4) ) e ) —) )" ) -) ) d2

0'ci — ~ —— — A 2 +s-
ss &ss ~ss

(14)

The total cross section is correspondingly

D, (Y) =l(Z =0) =g, 2+gd2F . (15)

On the other hand, the total inelastic cross section
is given by the following equation:

k=n
dgdg'dodd 1 e d„Y g (&»-)+ g„ k!

4=0
. (18)

The dynamical origin of the three terms in Eq.
(14) can be easily recognized by the fact that the
elastic cross section receives contributions from
the two components of the Pomeranchuck singular-
ityand from the exchange of a typical. meson trajec-
tory. In fact the first two terms of (14) are iden-
tified with the two components of the Pomeron
(simple pole and double pole) whereas the third
one is due to the exchange of a meson trajectory
n„. Moreover, it is plausible to assume that there
is no interference between the meson and the Pom-
eron since in our model the meson contribution is
real at t=0 whereas the Pomeron is predominantly
imaginary in the high energy domain. This means
that the third term in Eq. (14) is a pure meson
contribution and therefore one obtains the follow-
ing self-consistency relations, ignoring logarithms
in the meson exchange:

a2, (0) —1=2'(0) -2 and u~(0) —1 —g„=2o„(0)—2

(16)
From (16) we obtain

o.~(0) =1 and n~(0) =1 ——2'g„.
This result shows that the two-component inclus-
ive Pomeron generates in a self-consistent way
the exclusive Pomeron with o~(0) = l. It also leads
to an exclusive meson trajectory with o.„(0)
= 1 —

& g„. These remarks lead to a plausible val-
ue for the coupling g„=1,' whereas the external
couplings g, and g~ may be fixed from the total
cross section which rises at the ISR consistently
with Eq. (15) and gives for the couplings g, =5.3
mb'~' and g~=1.4 mb' '. Thereforeweare leftwith
only one parameter, g~, which gives the fine struc-
ture of the generating function (13)and the deviation of
o„(F) from the Poisson distribution. In fact, for
the inelastic cross sections o„(Y) (n) 0) we obtain
from Eqs. (6) and (13)

( F) 2 e-d»Y (Zss
n -gs n!

D;.(F) =D...(F) -D.|(y)
2gsAg'su ~ 2 8'sgg8'su2

s 2
gss gss

2g'sR'd gs d 2 -ass~
gss

From Eq. (18) it follows that the coupling g, d,

namely the contribution of the inclusive dipole,
generates a diffractive component in the cross
section a„(Y) which is a correction to the basic
component coming from the exchange of the inclu-
sive simple pole and corresponding to a Poisson
distribution. The diffractive nature of the second
component of D'„(F) in Eq. (18) can be easily rec-
ognized from the fact that for fixed n and F-~,
its contribution to &x„( Y) has a constant nonzero
value D„(~)=2g, gdg, d/g„2, whereas the nondif-
fractive component goes to zero faster than any
power of P. With this interpretation of the two
components in Eq. (18) we may write for the dif-
fractive and nondiffractive parts of D'„(F) the fol-
lowing equations:

&D( gsgd sldl &
d»Y -(gss~ &2

2g„k!0=0
(20)

n

ND(I ) 2 -2 Y (g»
n s n

(21)

For the total inelastic cross section we have cor-
re spondingly

(HAND( y) g 2(1 e d»)Y

DD(p) ZsldZsd y (1 e dssY)2 1

Ass — gss

(22)

(23)

From the last two equations it follows that the
rising of the inelastic cross section is entirely
due to the diffractive component, whereas the non-
diffractive component goes to a constant value for
Y-~ and it saturates the constant background of
the total cross section g, . The logarithmic rise
of D (Y) is consistent with a nonzero value of the
triple Pomeron coupling G„,(0) provided that in the
diffractive excitation process and in the Pomeron-
proton cross section the only component of the
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Pomeron which contributes is the simple pole. The
dipole cannot excite diffractively the initial hadrons
since this would lead to the usual disease 0 &0, .
For the same reason the dipole cannot contribute
to the Pomeron-proton total cross section for both
components of the Pomeron (simple and double).
Moreover, the simple pole must be fixed since a
moving simple pole would lead to the asymptotic
behavior o;„(Y) -ln Y in contrast to Eq. (23).

We observe that the smallness of the coupling
g, d may guarantee the smallness of the diffractive
component even at high energies. In fact, from Eq.
(23) we find thai for a typical ISR energy, Y=7.5,
the diffractive cross section is 25% of the total
inelastic cross section for g, d

= 0.1.
On the other hand, the rise of the inelastic cross

section, bo;„=(2g, g„g„/g„)6Y, is at the ISR 3 mb
(6Y= 2). Finally, the rise of the plateau in the
one-particle inclusive spectrum is given, in our
model, by 6(d&/dy) =g,g„g,„hY, and for the above
values of the parameters we find a rise of 1.5 mb
at the ISR. Although this latter value is somewhat
smaller than the experimental one, the over-all
picture is in reasonable agreement with the data.
It follows that the internal inclusive dipole coupling
of the Pomeron, gsd, leads to a remarkable cor-
relation among the following features of high-ener-
gy proton-proton scattering'.

(a) the smallness of the diffractive cross section,
(b) the small rise of the plateau,
(c) the small rise of the inelastic cross section.
Although the nondiffractive component is dom-

inant at ISR and even higher energies, in the ex-
treme asymptotic region ( Y-~) the diffractive
component dominates the production mechanism.
In fact the multiplicity distribution in this energy
region can be determined from the asymptotic
form of the quantities p, (Y) (q = 1, 2, . . . ) given by
Eqs. (2) and (13).

We find

(n(n —1) (n —q + 1))

g'g..' 'Y'(g.g.,+[2/(q+I)]gsg, s Y]
(24)

From (24) follows

(n') 2 g„g,
„' „(n&' q+1 g„g, (25)

Equation (25) shows that in the approximation of
weak g, d coupling the model satisfies Koba-Niel-.
sen-Glesen (KNO) scaling in the limit Y-~.

From the KNO moment equations

2 q-1
x'P(x) dx= gss s

+1 gsdC s
(26)

where x =n/(n) and P(x) =(n) o„/o;.„we find

0' 2s gsSgs f ( gssgs (n)
2

(n) g gs g sg
(27)0'„—"=0

0'g
for n~ " ' (n)

Zsd Zs

This is a typical form of a diffractive multiplicity
distribution in which the average multiplicity ( n)
increases with energy because the cutoff n, =g„Y
in the number of the produced particles increases
logarithmically with energy, whereas the cross
section o„(Y}remains constant.

The discussion so far has been concerned with
the implications of our model for the integrated
quantities of the production process in the rapidity
space such as the partial cross sections o'„( Y) and
the total inelastic cross section &r,„(Y). However,
knowledge of the rapidity distribution of the inclu-
sively produced particles allows determination of
the rapidity distribution of the exclusively produced
particles and therefore allows the detailed study of
the features of our model.

Using the well-known formula'

d"o',„"(-1)'
dy, dy„~ I ! dy, ~ ~ ~ dy„dy„'+, ~ ~ dy„'+,

(28)

we find for the cases of one- and two-particle production in terms of the rapidities y„yd in the lab system
d0' &s«&s

I 2e-~ss (29)

d 0'
—g sg s e sssr g g g [2e sssr e sss~r sc! e sssss ]dy dy S SS S d S d (30)

for y, &yd.
Equation (29) shows that the exclusive one-par-

ticle distribution is enhanced near the walls as
expected from the diffractive mechanism. This is

due to the second term of Eq. (29), whereas the
first term represents the constant background in
the central region (pionization).

In general for the n-particle production we get
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d ff 0'
tl 2 -&ss ~

gsgss (Zskss Zdksd)

g
" 2 [e gss& &1~ + e gsssn]

TABLE I. Correlation integrals and some quantities
of interest pertaining to multiplicity distributions at
10 TeV. (g =1; g d

=0.1.)

Experiment Theory

The first term represents the multiperipheral
component, whereas the other two terms represent
the diffractive excitations of projectile and target,
r espectively.

One can examine in more detail the diffractive
excitation mechanism by isolating the correspond-
ing diffractive term in (31). In fact the missing-
mass distribution for fixed n for the diffractive
process is

gsgdksd (AssinM ) (~2)-1-gs,
dM' g„(n—1)! (32)

Equation (32) represents" the single excitation of
the proton by a fixed simple Pomeron with inter-
cept 1.

The n particles produced in this diffractive dis-
sociation are distributed according to a Poisson
law arising from a multiperipheral mechanism.
The meson trajectory exchanged along the multi-
peripheral chain is the one determined by the self-
consistency relations (16).

More details on the calculation of (29), (30), and

(31) are given in the Appendix.

III. PHENOMENOLOGICAL IMPLICATIONS

In this section we compare the results of our
model with existing data on both inclusive and ex-
clusive processes. The comparison is based on
the values

g, =5.3 mb' ' g =1.4 mb' ' g„=l, g, ~=0.1

discussed in the previous section.
We first compare the correlation integrals of PP

reactions with the latest cosmic-ray data at 10
TeV." From (24) we calculate the quantities

(n)

(n) /D

g4
fp
f3
f4

7.1 +0.5
3.9 + 0.4

1.81 + 0.2
59+11

602+ 185
(7.2 + 3.1)x 103

8.4+ 4.1
57~29

173~138

7.43
4.60
1.62
68.9

661.4
6.4 x 103

13.7
-54.24
-97.7

gf ——(n), g2 ——(n (n —1}),g3 ——(n (n —1)(n —2)),

g4 = (n (n - 1)(n —2) (n —3)),
D =- ((n') —(n)')'"

fi =A f2 =g2 -g~ f 3 =g3 —3g2%+2A

f4 =g4-4g3g&+12g& g2 —3g, —6g

the energy 10 TeV given by Eq. (18) is plotted in
Fig. 2 along with the experimental data. " We ob-
serve that even at this extremely high energy the
nondiffractive component is still dominant. It is
also worth noting that the expected dip" has not
yet appeared in this energy region either in ex-
perimental data or in our model.

Finally, a comparison is made of the exclusive
two-particle distribution as given by formula (30)
with experimental data for ~'m production at 205
GeV/c. " In Fig. 3 the dependence of the exclusive
differential cross section on the rapidity difference
of the produced particles is plotted with the data.
The expression obtained for this cross section
after integrating formula (30) with respect to the
sum of the secondary-particle rapidities,
S+-pc+Su~ zs

d(x" ' y) =(g.'g-' —2a.gd a.d) e '-'(F —X)

g, =f, = (n), g2 = ( n(n —1)), g3 = ( n(n —1) (n —2)),

g, =& ( —1)( —2)( —3)), D=(& ') -(n)')'~' 8'sgd g'sd -g„s -g„r)2.

gss
(34)

&n)
t f2 g2 gl 9 f3 73 3glg2 281

(33)

fs =gd —48'18'3 + 12%~Ã2 38~ —6k"1

Table I shows the results of the calculations and
the corresponding experimental values. We ob-
serve that there is a good agreement with data
for the moments and f, but the correlations f,
and f, deviate from the experimental values be-
cause of violent cancellations in their expressions.

The corresponding multiplicity distribution for

One can easily verify that the
integrated Eq. (34) agrees with Eq. (18) for n=2.
We observe that both the size of the cross section
and its rapid drop for increasing rapidity differ-
ences are borne out by our model.

IV. CONCLUSIONS

We have considered a model in which, together
with a simple Pomeron, a dipole Pomeron is ex-
changed in the Regge-Mueller diagrams. Fac-
torization was assumed by imposing the necessary
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FIG. 2. The multiplicity distribution for g»= 1, g, q
= 0.1 plotted along with the data for charged particles at 10 TeV.

condition of a zero self-coupling of the dipole
component.

%e have shown that this model in the weak-cou-
pling approximation is equivalent to a two-com-
ponent model for the production mechanism, which
leads to the following results:

(1) The dipole structure of the inclusive factor-
izable Pomeron generates in a self-consistent way
the exclusive Pomeron with op(0) =1. lt also leads
to an exclusive meson trajectory with n„(0) =1
——,R„(A,=1).

(2) The total, the elastic, and the inelastic cross
sections grow logarithmically with energy, in
agreement with geometrical scaling and a logarith-
mic shrinking of the diffraction peak.

(3) The diffractive component of the inelastic
cross sections in the ISB region and for g, & =O. l
is about 25/0 of the total inelastic cross section,
in agreement with the data. In fact for K=7.5 we
find

(2)—~(mt)
dp

1.0

0.1—

0„,=42.8 mb, &;„=37.7 mb,
0~ =28 mb, o;„=9.7 mb. 0.01 I

0 3 4
= y=lyd-y I

(4) The rise of the inelastic cross section and
of the plateau is due to the diffractive component
of the production mechanism, which in our model
comes from the dipole component of the inclusive
Pome ron.

FIG. 3. The two-particle-production differential cross
section versus the rapidity difference plotted vrith the
~+7( data at 205 GeV/c (g„=1, g, ~ =0.1). The cross-
section values given by Eq. (34) are multiplied by 3 to
account for the production of x+~" pairs only.
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(5) Asymptotically (y'-~) the model is purely
diffractive and satisfies KNO scaling.

(6) The multiplicity distribution predicted by
the model is compatible with the existing data at
ultrahigh energies.

(7) The exclusive production cross sections
predicted in this model reveal the two-component
structure (diffractive and nondiffractive) of the
model. Moreover, the diffraction mechanism fav-
ored in this model is of the multiperipheral type.

(8) Comparison of the exclusive differential
cross section for w', n production with Fermilab
data at 205 GeV/c is made and the agreement is
satisfactory.
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APPENDIX

Consider the Mueller diagram of Fig. 1 for l inclusively produced secondaries. In the weak g, „ limit
there can be no dipole Pomeron coupled to a secondary-particle pair, since such an arrangement leads to
an O(g, „)contribution to the differential exclusive cross sections.

The nondipole (ND) contribution to do, /dy, is given [see Eq. (28)] by

d( ND ~ l Y go+
= Q ( ) g R' Q ytP(y-3't)''' A gP(7+2 —7+g)P(p;~, —y)

Xc ~c ~c

xf d,
"'

0
A, P(S. —y, ) P(X,), (A1)

where P(y) = e'.
The same equation is used to obtain do, /dy„except that the factor P( F- y, ) [or P(y, )] is replaced by

&(&-X~) [or D(y, ) =y,e"], and g, 'g„' by g, g~g, „g„' '. Taking the Laplace transform of the convolution
integrals in (Al) one obtains do', /dy, = doND/dy, +do', /dy, as given in the text [Eq. (29)].

The Mueller diagrams which build up the d o,/dy„. . . , dy, for l -2 are similarly divided into two classes,
diffractive and nondiffractive. The same procedure is then followed to prove Eq. (30) or in general (31).
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