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Velocity perturbations which form in the wake of long straight strings moving at a relativistic
speed can generate significant large-scale structure in the Universe. With neutrinos as dark matter,
a considerable fraction of all galaxies forms in large-scale sheets. Here we study the dissipationless
clustering of neutrinos in cosmic-string-induced wakes using an analysis based on the Gilbert equa-
tion, i.e., taking into account the velocity dispersion of neutrinos. We compare the results with sim-

ple heuristic analyses.

I. INTRODUCTION

Recent observations indicate that there is much more
structure on large scales (scales of 25h ' Mpc and above)
than was initially expected. Clusters are seen to congre-
gate into superclusters filaments of the length larger
than 50h ' Mpc have been discovered; pencil surveys
have revealed voids of diameter 60h ' Mpc; and most
recently a systematic redshift survey has produced evi-
dence that a large fraction of galaxies is concentrated in
sheets of length and width 50h ' Mpc and thickness
5h ' Mpc. 4

These observations raise new questions for theoretical
models of large-scale structure. Are there mechanisms
which lead to sheetlike concentrations of galaxies, and if
yes, is there a distinguished scale for these structures?

In this paper we shall show that in a model in which
the energy-density perturbations are seeded by cosmic
strings and in which the dark matter is hot (e.g., 100h
eV neutrinos), there is an aSrmative answer to both ques-
tions. This may be an important advantage of the
cosmic-string model compared to other models such as
the "canonical cold-dark-matter model" based on linear
adiabatic density fluctuations with a flat Harrison-
Zel'dovich spectrum and cold dark matter.

Let us briefly compare the model discussed in this pa-
per, the cosmic-string model with hot dark matter, to
other theories. Any cosmological model needs to specify
the nature of the primordial energy-density perturbations
and the characteristics of the dark matter. Nonbaryonic
dark matter is either hot or cold depending on whether
the thermal velocity of the dark particles at the time t,q
of equal matter and radiation is large or negligible. Two
popular primordial energy-density perturbation spectra
are linear adiabatic perturbations with a Harrison-
Zel*dovich spectrum produced in an inflationary phase
and nonadiabatic seed perturbations due to cosmic
strings.

The current "standard model" of galaxy formation is
based on linear adiabatic perturbations and cold dark
matter. It gives some encouraging agreement with obser-

vations on the scale of galaxies and clusters. A model
with adiabatic perturbations and hot dark matter, on the
other hand, is very hard to reconcile with observation. It
predicts that galaxies should be younger than clusters, in
conflict with the data. In addition, the predicted
microwave-background anisotropies are barely compati-
ble with present observational upper bounds. Hence it
may be surprising that a model with hot dark matter and
cosmic strings can be a viable model for galaxy forma-
tion.

Before discussing large-scale structure formation in the
cosmic-string model with hot dark matter, we briefly re-
call why this model is viable whereas the hot-dark-matter
model with purely adiabatic perturbations has severe
problems. ' The crucial issue is neutrino free stream-
ing. " Since neutrinos have large thermal velocities, they
cannot clump at early times on small scales. The comov-
ing distance hot particles can move in one Hubble expan-
sion time is

k, (t) =3v(t)tz(t),

where v (t) is the thermal velocity of the hot particles and
z(t) is the redshift. This distance is called the neutrino
Jeans length. It attains a maximum at teq and decreases
as t ' for t ) t, . The maximal Jeans length is deter-
mined by v, , the mean velocity of the hot particles at t, .
v, is determined by the neutrino mass which in turn is
determined by demanding that neutrinos give the critical
energy density for an 0=1 universe. The result is

v, =T, /m, , =0.05

(where T, , is the neutrino temperature at t, ), which
leads to AJ(t, )=6h~&& Mpc, where hso is the Hubble
constant in units of 50 km s ' Mpc

In a model with hot dark matter and adiabatic density
perturbations, all primordial perturbations on scales
smaller than A,J(t,q) are erased. In particular, no pertur-
bations on the scale of galaxies survive. Hence all galax-
ies must form by fragmentation of larger objects. How-
ever, this conflicts with observations which indicate that
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clusters are younger than galaxies. In addition, in order
to form galaxies by a redshift 3, large-scale perturbations
must go nonlinear early and must therefore have a large
initial amplitude. . This is only marginally consistent with
the present upper bounds on microwave-background an-
isotropies.

With nonadiabatic seed perturbations, the above prob-
lems of the hot-dark-rnatter model disappear. The basic
point is that the seeds survive neutrino free streaming.
Seeds with mean separation d start accreting matter as
soon as XJ(t) drops below d. Hence, galaxies can form
independent of clusters.

In Refs. 8-10, accretion of hot dark matter about
cosmic-string loops was studied. It was found that spher-
ical accretion leads to Oat halo rotation curves. Also, as-
suming a one-loop-one-object correspondence, the re-
sulting mass function of galaxies is n (M) -M ' . These
issues were studied in more detail numerically in Refs. 12
and 13. For some related work on neutrino clustering see
also Ref. 14.

The scaling solution' describing the scale-invariant
distribution of cosmic strings states that the network of
cosmic strings consists of both loops and infinite strings.
So far, most work on cosmic strings and hot dark matter
has concentrated on the effects of loops. However, in
Ref. 16 it was pointed out that wakes which form behind
long, straight, rapidly moving strings can also give rise to
structure. In Ref. 17 it was suggested that this mecha-
nism may explain some of the recent observations of
large-scale structure. In the context of cold dark matter,
the formation of structure in cosmic-string-induced
wakes was studied in detail in Ref. 18. This model was
studied numerically in Ref. 19. It was discovered that ac-
cretion of matter onto wakes gives rise to planar density
perturbations. The most numerous, most prominent, and
most stable of these have a planar extent of about 40X40
Mpc . However, with cold dark matter only a small frac-
tion of the total nonlinear mass in the Universe ends up
in wakes; most clusters about small loops.

With hot dark matter, accretion onto small loops is
suppressed by neutrino free streaming. Hence, it is possi-
ble that wakes are much more important. In order to ad-
dress this issue it is necessary to study the accretion of
neutrinos in the wakes induced by long moving strings.
In this paper we study this problem and show that, pro-
vided the mass per unit length IM exceeds a limiting value

late the thickness of the wakes and the conditions on GIM

which must be satisfied for any nonlinear structures to
form. In Sec. IV we analyze the stability of wakes. Our
conclusions are summarized in Sec. V.

Throughout the paper we use units in which
c =k~=4=1. G is Newton's constant, to denotes the
present time, t

q
is the time of equal matter and radia-

tion, and z(t) is the redshift at time t. h is the present
Hubble expansion parameter in units of 100
kms 'Mpc '. We shall in general take h =

—,
' and for

convenience use h 50
=2h. a ( t ) is the scale factor of the

Universe, and for convenience we use 0,=1.

II. ACCRETION ONTO WAKES:
THE ZEL'DOVICH APPROXIMATION

The network of cosmic strings at time t consists of a
collection of infinite strings with mean curvature radius
c, t and mean separation c2t, where c& and c2 are con-
stants of the order 1 whose precise value must be deter-
mined in numerical simulations, ' and of a distribu-
tion of loops with radii 8 (t. Here we shall focus on the
effects of the infinite strings.

Since the infinite strings are approximately straight
when viewed on a distance scale (&t, there is no local
gravitational force. However, globally, the hypersurface
perpendicular to the tangent vector along the string is
not a Aat plane but a cone or, when unwrapped onto the
plane, R g(wedge). The angle of the wedge (the "missing
angle" ) is 8nGp (Re.f. 24) [Fig. 1(a)).

The long strings typically move at relativistic speeds
and form velocity perturbations in their wake as indicat-
ed in Fig. 1(b). For t t,q, the velocity perturbations will

induce density perturbations. We present here an analyt-
ical toy model to calculate the growth of these pertur-
bations. The analysis is based on the Zel'dovich ap-
proximation.

Gp) 5X10 (1.3)

the neutrino perturbations become nonlinear in the
wakes. We show that in this model, a substantial fraction
of all nonlinear mass ends up in wakes.

The outline of this paper is as follows. In Sec. II we ex-
plain the formation of wakes and present an analytical
toy model to study the induced growth of neutrino per-
turbations. The model is an adaptation of the Zel'dovich
approximation to hot dark matter. In Sec. III we sum-
marize an improved calculation which takes into account
the fact that the initial perturbation is a velocity rather
than a density perturbation and which includes the
finite-velocity dispersion of the dark particles. We calcu-

V

(b)

(c)

FIG. 1. (a) The deficit angle of a long straight cosmic string.
(b) The formation of the velocity perturbations. (c) The induced
density perturbations.
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As indicated in Fig. 1(c), the velocity perturbations in-
duce density perturbations in the wake of the moving
strings. For t ) teq a wedge with opening angle 8+Gp
and twice the background energy density p(t} forms. Our
approximation will consist of treating the perturbation as
a planar density perturbation with surface density cr(t).
For a wake formed at t; from a string moving with veloci-

ty v„wehave
2/3

o(t)=4nGpt;u, y, — p(t) .
I

(2. 1)

y, is the relativistic y factor corresponding to U, .
(4rtGp, t, u, y, is the mean thickness of the wedge. ) It can
be shown that this method gives the same contribution to
the growing mode of density perturbations as could be
obtained by setting o =0 and using the initial displace-
ment P(t, )=5vt, z(t, )=4nGpv, y, t z(t;).

The aim of the calculation is to determine if any mass
goes nonlinear about the wakes (obviously a necessary
condition for galaxies to form), and if the answer to this
question is affirmative, to calculate the thickness of the
resulting nonlinear sheets.

The calculation proceeds by considering the physical
distance h (q, t) of a dark-matter particle above the wake
(Fig. 2). q is the initial comoving distance. Initially,
h (q, t) will be increasing as a (t) as a consequence of the
expansion of the Universe. Gradually, however, as a
consequence of gravitational attraction, a comoving dis-
placement g(q, t) will develop:

h(q, t)=a(t)[q —g(q, t)] . (2.2)

h= —V„4, (2.3)

Eventually, the dark particle will "turn around, "
h(q, t)=0, and start to collapse onto the wake. The
thickness of the nonlinear sheet is determined by the
maximal q for which "turn around" has occurred by the
present time.

We analyze the evolution of g(q, t) using the
Zel'dovich approximation which means linearizing the
gravitational perturbation equations in P and treating the
source in the Newtonian limit:

(using coordinates with the center of the wake at h=0).
The linearized equation for g becomes

0 ~

/+2 g—+3 $=—4vrGa 'o 8(z) .
a a

(2.5)

1/2
'~p Ueq~eq teq

we obtain

z(t, )=
Xp

2

(2.6)

(2.7)

There is a maximal q, q,„(t;), for which (2.7) applies: t,
cannot be earlier than the time t, when the wake is
formed. From (2.7),

q,„(t,) =Aoz(t, )'" (2.g)

and t, (q) =t; for q & q,„.Hence, for hot dark matter we

shall use (2.5) with initial conditions

g(t, (q) ) =1((t,(q) ) =0 . (2.9)

Again the use of an explicit surface density can be
avoided by using 0.=0 and the nonvanishing initial dis-
placement g(t, ) =5u t;z(t, )(t, lt, ) . Equation (2.5) with

initial conditions (2.9) can be solved by the Green's func-
tion method. %e obtain

' 2/3
18mGf(t}= cT(t, )

5 '
tp tp

2/3

tp
2 (2.10)

for t » t, From .(2.2), (2.10), and (2.1) it follows that the
comoving coordinate q„i(t)which is turning around at
time t is given by

This approach works, strictly speaking, only for cold
particles, since no thermal velocities are included. For
cold particles, the initial conditions for (2.5) would be

p(t; ) =1(t(t; ) =0. We adapt the method to hot dark
matter by a simple trick. On the average, the dark parti-
cles will only start to respond to the gravitational attrac-
tion caused by the wake once the neutrino Jeans length
AJ(t) has fallen below q. We shall denote this time by

t, (q). From (1.1) and introducing the variable Ao,

where the Newtonian potential 4 satisfies Poisson's equa-
tion

- 2/3

q„i(t)=go
S

(2.11)

V&%=4m.G [p+cr5(h)] (2.4)

with

24776p
S S t (2.12)

wake

h(q, t)
For cold dark matter, t, (q) = t;, and hence we get the ex-
pected result that the thickness of the nonlinear sheet
seeded by the wake grows monotonically as o (t). For hot
dark matter, (2.11) is an implicit equation for q„tsince for
q (,q„(t;),t, depends on q. From (2.7) and (2.11) we
obtain

FIG. 2. The physical height of a dark particle above the
wake.

(2.13)
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This implies that with hot dark matter, the nonlinear
structure does not grow monotonically. In fact, nothing
goes nonlinear until the redshift

z,„(t,) =z(q,„(t,) }, (2.14)

l -C, teqzeq C]40h 5O MpC; (2. 1 5)

their width is determined by the string velocity (which
typically obeys v, y, —1)

Uz teqzeq C
~
40h 5O MpC (2.16)

(c, enters since the velocity of the long string is only
coherent over the time scale c

& t,q ) and their thickness is
given by q,„,for Gp equal to the critical value, deter-
mined by (2.19):

—2
~max eq teq eq 5O p (2.17)

The typical separation of sheets is determined by c2..

S C 2 teqZeq C 240h 50 MPC (2.18)

Note, in particular, that none of these dimensions de-
pends on Gp. However, the time when the nonlinear
structures form does depend on Gp. In order for any

where z (q) is given by (2.13). At that time, the sheet with

q =q,„(t,) turns around. According to (2.13), sheets
with smaller q would only turn around later. However,
as soon as an outer sheet turns around, nonlinear and hy-
drodynamical effects will become important for smaller
q's. We expect that at z,„(t, ) the entire layer
0&q &q,„(t;)will become nonlinear. From then on,
the region of nonlinearity will expand outward as de-
scribed by (2.11) with t, =t, & t, Not. e that for t; & t, ,
z ax is independent of t, . This means that the onset of
nonlinearity is independent of t; (as was already noted in

Ref. 18). However, the thickness of the wakes decreases
as t; increases.

In Fig. 3 we sketch the thickness of the nonlinear sheet
at a fixed time as a function of t, . Velocity perturbations
for t & t, damp out due to the ambient pressure (in addi-
tion velocity perturbations in neutrinos dissipate by free
streaming). Hence, long strings do not generate wakes
for t, ( t, . Thus, the most prominent and most
numerous nonlinearities were formed at t, . Their length
is determined by the long string curvature radius

nonlinearities to form by redshift 1, Gp must exceed a
certain bound determined by (2.14). We obtain

Gp& v, (v y) 'z, ' —5X10 (v },) 'h~&24~'q ''
(2.19)

III. AN IMPROVED ANALYSIS USING
THE GILBERT EQUATION

A more exact calculation of accretion onto wakes is
based on the Gilbert equation. ' ' We will follow the
derivation of Ref. 9. The starting point is the observation
that since neutrinos interact very weakly, their phase-
space density f (r, p) is conserved (r and p are physical
distance and momentum, respectively). Thus, f(r, p)
obeys the collisionless Boltzmann equation

8 +r Vf+p 7 f =0. (3.1)

In order to determine the density perturbation 5p(x) in
the wake of a long straight-moving string, we solve the
collisionless Boltzmann equation for the initial velocity
perturbation induced by the string. The velocity pertur-
bation corresponds to an initial phase-space density per-
turbation f, . By integrating over momenta we obtain a
differential equation for the energy-density perturbation
5p. It proves useful to go to Fourier space where we

eventually obtain a simple integral equation for 5p, the
Gilbert equation.

We now briefly review the derivation of the Gilbert
equation and adapt its form to our context. First we note
that p is given by the Newtonian gravitational potential

This bound is consistent with the initial scenario of clus-
ter formation with cosmic strings based on the one-

loop —one-cluster approximation. The compatibility of
(2.19) with other constraints on the cosmic-string model
will be discussed in Sec. V.

As mentioned before, the model presented in this sec-
tion is incomplete in that it treats the seed perturbation
as a density rather than as a velocity perturbation. It also
neglects the free streaming of the particles which make
up the initial wake, and neglects the velocity dispersion of
the neutrinos which are accreting onto the wake. Never-
theless, most of the important physical concepts are con-
tained in the model. In the following section we present
an analysis which includes the three points mentioned
above. We shall see that even quantitatively the toy mod-
el results are fairly close to the real ones.

q (tt)
qnl *' p= —m V4, (3.2)

where N obeys the Poisson equation

V„N=4aGp . (3.3)

I

Bq

The first step in the derivation is to rewrite the collision-
less Boltzmann equation in comoving coordinates x and
q:

FIG. 3. The first scale that goes nonlinear at a fixed time t, as
a function of the wake formation time t, . x=a r, q=a mx=ap —amr .

—
1 2 (3.4)
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t d ]L'=L ——( —'maax ),
dt

where

(3.5)

L =
—,'r —m@(r, t) . (3.6)

Since the equations of motion are unchanged when add-

ing a time derivative to the Lagrangian L, we can work
with

, a
1

a ' +a m 'qV f,
4mGma V„(5p+35p)Vqfo=0 . (3.14)

Since for neutrinos in the matter-dominated era 5p ((6p,
we shall drop 5p in the following.

In Fourier space we obtain an ordinary first-order
differential equation

We can introduce an effective potential 4,s(x, t) by

~fi ik q — , tk V,fo
a + f, = —4~Gma 5p

Br m
(3.15)

L'= —,'ma~x —m4, tt(x) .

From (3.5) and (3.7),

(3.7) It proves convenient to change the time variable to A,

given by a dX=dv. It is also a useful trick to combine
the first two terms as

4,s{x)=(4+—,'aiix ) . (3.8)

df . df ~@etr df
dt Bx

™
Bx Bq

or, equivalently, in comoving time ~ given by d v =a 'dt,

(3.9)

Hence, the collisionless Boltzmann equation in comoving
coordinates is

. kq d k q~
exp i —

A, exp i A, j&
m d Pl

We can then integrate (3.15) to obtain

exp i A 7 (A)~&
t

(3.16)

a ' +x —m —maiix =0 .
Br Bx Bx Bq Bq

(3.10)
4n G—

2
k V~fom f d A, '5pa (R')exp i

t

and

f (x~q)= fo(q)+f i(x q) (3.1 1)

We now consider small perturbations from a homo-
geneous configuration:

(3.17)

When integrating over q, (3.17) becomes an integral equa-
tion for 5p(x), the Gilbert equation.

The unperturbed neutrino phase-space density is

fo(q)=(e' "+1) (3.18)
4(x) =Co(x)+C&,(x) .

Using

V„@o= G(p+3p)a x,

(3.12)

(3.13)

q~ = T a is the characteristic value of the neutrino
momentum. The comoving distance A.(t) traveled by a
neutrino in an unperturbed universe is proportional to k:

it follows immediately that for f, =4,=0, (3.10) is
satisfied. To first order, (3.10) becomes

A,(t) = A, (t) .
m

In terms of A, ,

(3.19)

f ~
(A) =exp i (A, ——I,;) f&(A, ; ) 4miGk—

'2

f dA, 'a (A. ')5p(A, ')foexp —i (A, —A, ')
q

(3.20)

5p(x, A) =
3 f d q f &

(x,q, A ) .
(2ma)

(3.21)

where fo is the derivative of fo with respect to its argu-
ment q/q, .

The neutrino energy density perturbation in physical
space is given by

5„(k,A, )=

iom m

k q,

f d q exp i ( A. ——A, , ) f, ( k, q, A, ; )
q,

4~ dqq o q

2

f dA, 'a(A, ')5 (A, ')I(k(k —
A, '))

The relative neutrino energy density perturbation 5„(x,A, )

is obtained by dividing by the neutrino background ener-

gy density:
with

(3.23)

, fd'ufo(e) .
(2ma)

(3.22) I{k (A, —k') ) = f d q foexp i (k —k')—
kq

' q,

From (3.20) we obtain the integral equation for 5„(k,A, ): (3.24)
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Using an approximation which preserves the number
of neutrinos,

—q/q+
fo ——t)3e

q,
(3.25)

with

dx x (e"+1) '=0.9,2 0
(3.26}

we can evaluate I analytically (see Appendix) and obtain

1I(P}=8nirt3q, 13 2 2
8n—i—g3q, H(P) .

( I+P )
(3.27)

The approximation (3.25) overestimates the number of
neutrinos with small momenta relative to the "hotter"
ones. Consequently we slightly overestimate the number
of neutrinos that fall into the wake. By evaluating (3.27)
numerically for P=1 using the Fermi-Dirac distribution,
we conclude that the error is smaller than 1.2 (for smaller

P the error is smaller and for larger /3 the contribution is
suppressed [see (3.33)]).

Equation (3.27) inserted into (3.23) gives the general
form of the Gilbert equation. It differs from the equation
derived in Ref. 9 in that there is an initial phase-space
density perturbation f &

(x, q, A, ) but no external density
perturbation. Thus (3.23) applies in the case of initial ve-

5v = —4~G p, v, y, sgn(z)z (3.28)

toward the plane of the wake. y, =(1—v, )
' is the

usual relativistic y factor. Hence, a long string at time t;
induces a comoving momentum perturbation

5q=a(t;)m5v . (3.29)

Thus, the initial phase-space density perturbation
f, ( x, qA, , ) is

1 q5qf&q
q, q q~

(3.30)

or, Fourier transforming,

locity perturbations.
Let us now consider the specific case of velocity pertur-

bations due to string wakes. We will restrict ourselves to
perturbations close enough to the wake so that curvature
as well as acceleration or deceleration of the long strings
are not important. In this case the string may be approx-
imated as sweeping out a plane (which we take to be the
x-y plane) as it moves with constant velocity v, . It is
sufficient to assume that the neutrinos rernai. n stationary
as the string passes by. In this approximation each neu-
trino is given a velocity impulse

1)(k,q, A,;)= fv (2m)'i 5(k„)5(k ) 2n5(k, )
— 5q,

q, ' q, X
z

(3.31)

where 5q is the magnitude of 5q.
Since I(0)=0 we may ignore the first term in (3.31) and evaluate the q integral in (3.23) which we denote by J(k, A, ):

J(k, A, )=— (2m)'~ 5(k„)5(k )2i I(k, (A, —A, , )) .
8~g3q, q, k,

(3.32)

Combining (3.23), (3.27), and (3.32) we finally obtain

5„(A,)=2(2n)' 5(k„)5(k ) H(k, (A, —A. , ))+—Gm q, 7)3
—J dA'a(A, ')5,lA, ')H(k(A, —

A, ')) .
7T

(3.33)

Obviously, no modes with k, @0 or k %0 get excited.
Hence we define 5(k„A,) by

q~7~ F (g', g)
m

(3.37)

5„(k,A, )=2m5(k„)5(k )5(k„A,) . (3 34) with

In order to eliminate some of the constants from (3.33) it
proves convenient to introduce as the time variable the
rescaled conformal time g,

—1/2

F(g', g)=ln 1+—, —ln 1+—1 1

Finally, combining (3.33), (3.34), and (3.37) we obtain

(3.38)

8~G
with ~, = p~,q3

and to normalize the scale factor at t, :

a(t, )=1.

(3.35)

(3.36)

25(k„g)=, 5vr, a (t; )g (k„g;,g)
)
1/2

+6I dg'5(k„g')g (k„g',g)

with

(3.39)

A, =(q„/m )A, can be expressed in terms of g, taking into
account the smooth transition between the radiation-
dominated era to the matter-dominated phase. From
Ref. 9 we have

F(g', g)
'2 2

q~7 ~1+ k, F(g' g')
m

(3.40)
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Equations (3.39) and (3.40) will now be applied to study
the growth of nonlinear structures seeded by wakes.
From the denominator in (3.40) it follows that modes
with

k, =k,L —=a(k, )) 1 (3.41)
m

will initially be heavily damped. This is a consequence of
neutrino free streaming. The comoving length scale I.
hence plays the role of the maximal neutrino Jeans length
for our problem.

Equation (3.39) can be solved numerically. With
co =2(2m. )

' 5ur, a (t, ), and g)) 1 the solution can be fit
to

5M(h)/M(h) =1, (3.43)

For 10 &(, &10, n(g, )=4. Note that this power is
different from the value n =2 obtained using a planar sta-
tionary density perturbation. The reason for this
difFerence is that any perturbation which builds up in the
center of the wake is itself subject to free streaming. In
Fig. 4 we plot the (, dependence of the constants A and
B.

We can now calculate the height h of the nonlinear
sheet seeded by the wake. In linear perturbation theory h

is determined by

5(k„g)=cog~
A (g;)

B (g; )+a(k, )

(3.42) where 5M(h) is the mass perturbation per unit area a dis-
tance h from the center of the wake:

(g)= f dh'5„(h', g) =(2n) '~'f dh'f dk, e * 5(k„g)

=(2m') '
cog A (g;)f dh' f dk, e' ' 1 1

B(g;) +a( k)"' ' h

(3.44)

where

sink, h a(k, )

B(g;)
(3.45)

lim (h, g =
—,'z, )=15M

h-0 M

«r ~akes formed at t
q

With U
q

defined

(3.46)

The condition for anything to go nonlinear by the
present time is

T„(t,)=U, m

(this gives U, q
=0.05) we obtain the condition

A (g;)

(3.47)

0.50

0.25 =

—0.20

O. ls

—U, y, G)ttz, qv, q'f (g;) ) 1 (3.48)v'2
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FIG. 4. The g, dependence of the constants A and 8
FIG. 5. The g, dependence of the function

f(g, )= A (g, )a, /8(g, )'".
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2.5

2.0

l. 5

I.Q

or

Gp& (u, y, ) 'u„z,,'f(g;)

=2(u, y ) 'h f (g ) '10 (3.49)

In Fig. 5 we plot f (g; ) as a function of f; As pre.dicted,
f (g, ) peaks for g, =0.25—:g, for t, = t,q

From (3.49) we see that long strings seed nonlinear
structures only if Gp is sufficiently large:

Gp )2 X 10 h q() (3.50)

If this condition is satisfied, then nonlinearities form from
wakes with g;=g,q. From (3.45) it follows that their
thickness at the time the nonlinearity first appears rapid-
ly grows to

h -L-2h502 Mpc . (3.51)

To render this statement more precise we have evaluated
(3.45) numerically. In Fig. 6 we plot I(h)h . Using
(3.44) we can obtain the time t(h) when the nonlinear
structure extends to height h. We can also combine Fig.
6 and (3.44) to obtain the thickness of a wake at a fixed
time as a function of g, (Fig. 7). This gives us the range

05 I I I II I I I I l I I I I I I I I I I I I I I

I 2 3 4 5
h

FIG. 6. The h dependence of the function I(h, g, )/h. To
avoid picking a specific g; in this graph we have used a rescaled
version of h: h'=(h/L)B(g, ). This resealing factors out the g,
dependence of I(h, g, )/h and allows this dependence to be in-

cluded in f(g; ).

of sizes of the sheets which we predict in the cosmic
string model with hot dark matter. The bound (3.50) is
stricter than the bound obtained by the modified
Zel'dovich approximation by a factor of about 4. This
may be the effect of the free streaming of the initial per-
turbation. For h 50

= 1 this lower bound is uncomfortably
close to the upper bounds from the microwave back-
ground anisotropies and gravitational radiation

IV. STABILITY OF WAKES

5h =h =A&(t, )=u, toz, '/ (4.1)

The displacement toward a loop of radius R a distance
d (R ) from the test particle 5d, can also be determined in
linear theory. The linear perturbation theory growth of
the mass about a loop viewed from distance d (R ) is

5M =PpRz(ttt ), (4.2)

where z ( t„)is the redshift when A,J ( t) =d, when the loop
is formed, or zeq whichever is smaller. Then, 5M is given
by

5M =4m.pd (R) 5d . (4.3)

Hence,

Rt0
5d =T3PG pz ( ttt )

d(R)
(4.4)

For d(R) we use the mean separation of loops at radius
R. The scaling density of loops is'

We have seen in the previous section that wakes pro-
duced at about t, are the thickest and also most
numerous ones. Their planar dimension is about 40hso
Mpc, the comoving horizon at t, . Here we shall demon-
strate that these wakes are stable towards disruption by
loops.

To analyze the stability of wakes toward the disruptive
effect of close loops we can compare the comoving dis-
placement of a test particle an initial (cotnoving) distance
q above the wake toward the wake (from Sec. III) and to-
ward the loop (frotn Ref. 9). For q we choose the edge of
the wake h determined by 5M/M= 1, and hence the dis-
placement toward the wake is

n(R, to)=vR to 2 (4.5)

4.50
W

4.25-.

—4.00—

375-

3.50—

s

5.00 '

0.2 0.3 0.4 0.5 0.6

d(R)=(n(R to)R) ' =v ' R' t (4.6)

For loops formed after t, , z (tz ) = t o/ R / and hence

3 PG +2/3R I/3t 4/3
0 (4.7)

For loops formed before t, , 5d is largest for the largest
R, namely, R - t, . For these

for loops created after t, . v is a constant whose value is
uncertain by at least a factor of 10: '

FIG. 7. The g, dependence of the wake thickness for
Gp=2(Gp)„normalized by the maximum free streaming
length L.

5d —10 P,o(Gp)6v 2u, q
h so,2/3 —1 2 (4.8)

where P&o is P in units of 10, (GP)6 is GP in units of 10
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40
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FIG. 8. The ratio of displacements toward the wake (5h) and
toward the closest loop of radius R(5d(R)). The amplitude A

is given in (4.8).

v 2 is v in units of 10, and v,q
is U,q

in units of 0.05.'qo os

We conclude that for the "standard" values of the string
parameters, wakes are stable toward the disruptive effects
of large loops.

For loops formed before t,q
(but while their mean sepa-

ration at the time of formation is larger than the Jeans
length at the t, ), z(t11 )=z, , d(R)-R', and hence
5d/5h is independent of R. Thus, small loops do not
have any disruptive effects on wakes, either. In fact, for
very small R [so small that d(R) is smaller than s(J at
t,q], z(t„)starts to decrease as R decreases: using d (R)
for loops created in the radiation-dominated era and the
time dependence of A,J(t) we find

p„(t)=cpt (5.1)

where p„is the energy density in long strings and c is a
constant, and

lation length of about —,
' of the horizon. ' lt would be

very interesting to compare the detailed statistics of sizes
and shapes of the wakes with those of the observed
large-scale structures in the Universe.

Our calculations are based on the Gilbert equation, an
equation for the energy density of neutrinos which fol-
lows from the Boltzmann equation for collisionless parti-
cles. This approach correctly describes the initial pertur-
bation in the wake of a long moving string as a velocity
perturbation. It also takes into account the velocity
dispersion of neutrinos. However, as we demonstrate in
this paper, most of the results are described correctly us-
ing a naive model based on a modification of the
Zel'dovich approximation.

An important result of our analysis is that, provided
Gp exceeds the lower bound mentioned above, the result-
ing wakes in the hot dark matter are very similar, both in
planar extent and thickness, to those in the cold-dark-
matter model. Since in the cold-dark-matter model
wakes forming from strings at t )&t,„areunstable to dis-
ruption, even the statistics will be similar. However, the
relative importance of loops and wakes is very different in
the two models. If we assume a scaling solution for the
distribution of loops, then we can compare the energy
density p of wakes and p of matter accreted onto loops.
We shall parametrize the scaling solution as

( )=,R, ' I. -R. (4.9)
n(R t)=vR

eq (5.2)
Thus, very small loops have a negligible effect on wake
disruption. In Fig. 8 we plot 5d (R)/5h as function R.

An equivalent way to study disruption would be to
compare the forces toward the wake and toward the loop
at a distance h from the wake and d(R) from the loop.
The displacement toward the loop could also be calculat-
ed using the Zel'dovich approximation. We have done
this calculation and the result is essentially identical.

for loops produced before z, . v is given by the level c of
the scaling solution and by the mean radius of the loop
Rf at the time of its formation tf. Assuming a delta
function loop produced function with Rf =at& we get

p
—1a 1/2 (5.3)

The energy density p in wakes can be determined from
the equations in Sec. II. For hot dark matter we obtain

V. DISCUSSION AND CONCLUSIONS
8 —2P~(t )=0CK sVUs 1SPzeqt0 (5.4)

We have studied the accretion of hot dark matter in
wakes triggered by the velocity perturbations due to long
moving strings. We find that, provided Gp exceeds a
lower bound which is about 10 [the exact formula is
given in (3.49)], nonlinear sheet perturbations form which
will correspond to regions of high galaxy number density.
Long strings present at teq give rise to the thickest wakes.
Strings at a much later or much earlier time do not have
the strength to produce nonlinear structures. Hence,
there is a distinguished scale for these sheets, namely, the
correlation length of the string at teq which is roughly the
comoving horizon at teq7 40k 50 Mpc.

Thus, we predict that (provided Gp exceeds the lower
bound mentioned above) wakes will give rise to a network
of overdense sheets of galaxies. The mean planar size and
separation of the wakes can be determined by the results
from the cosmic-string evolution simulations. These indi-
cate that the scaling solution is characterized by a corre-

p, (t )= 6vPpu z, ( '—PGp)' t— (5.5)

where pR is the mean length of a loop with radius R.
Thus

U p 1/2V3/2Z —1/2( 9pG )
—1/2

S S eq Zeq
PI

(5.6)

With u, y, = 1, a=10 a2, P=10, and u, =0.05 we ob-
tain

PI

—1/2h —
1

( G )
—1/2a2 50 I 65

(5.7)

For cold dark matter, p is similar to (5.4). p, , however,

where the correlation length of an infinite string is
g(t)=gt The energ. y density pt has been determined in
Ref. 20:
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is much larger,

p, (t )=ca' (yGp) ', pt

and hence

(5.g)

~ —S („y —1/2(yG )1/2
15 S S

—1/2(G )1/2 1 (5.9)

where y =50 (Ref. 30).
We conclude that with hot dark matter, the relative

contribution of the energy density in nonlinear matter
from wakes is larger by a factor of about 10 than with
cold dark matter. According to the first numerical simu-
lations by Albrecht and Turok, ' c —1 and a-1. There-
fore, with cold dark matter wakes would have been unim-
portant for structure formation compared to wakes. '

Even with hot dark rnatter, only a small fraction of the
mass would have been accreted onto wakes.

At the present time all cosmic-string simulations agree
with c )) 1 and a « 1 (if there is a scaling solution at all).
Hence, wakes are much more important. Evidence from
the Bennett and Bouchet and Allen and Shellard
simulations suggest that a ( 10 . Bennett and
Bouchet ' in fact find no evidence that a is above the
gravitational cutoff limit y Gp -10

To be specific we shall use a=10 . In this case, with
hot-dark-matter wakes are predicted to give about half
the nonlinear mass, whereas with cold dark matter the
contributions from loops dominates. For a ((10
loops are unimportant both with hot and cold dark
matter.

For c —10 (Refs. 22 and 23), a large fraction of the
mass of the Universe accretes onto wakes. To get
significant bias, i.e., 0 in wakes ((1,we need Gp (10
or (&1.

The cosmic-string model with hot dark matter might
run into problems in explaining galaxy formation. If
there is no loop scaling solution, then it might be difficult

I

to form galaxies isolated from the large-scale structure, at
least in the one-loop —one-object scenario. However,
galaxies might form from concentrations of small loops in
a way suggested in Ref. 32. We note that if all galaxies
form by fragmentation of the wakes, we may recover the
age problem of the standard hot-dark-matter model.

If there is a scaling solution of loops with a-10, it
might still be difficult to get sufficient power on galaxy
sca1es due to loop motion and rocket e8'ect. These is-
sues deserve further study.

We have not incorporated baryons into our analysis.
This will be crucial in order to understand the fragmenta-
tion of wakes. Dark baryon perturbations created in
these wakes may allow the formation of dwarf galaxies
with dark haloes having a high phase-space density (see,
e.g., Ref. 35).

The main upshot of this analysis is that the cosmic-
string model with hot dark matter produces a lot of
structure on large scales and seems to fit large-scale struc-
ture data better than the standard cold-dark-matter mod-
el. However the model has these nice features only in a
very narrow range of values of Gp. If Gp(2X10
then no nonlinear structures form from wakes, but if
Gp & 5 X 10, then observable step discontinuities in the
microwave background are predicted, and if
Gp & 8 X 10, then cosmic strings would give observable
timing residuals for the millisecond pulsar.

APPENDIX: EVALUATION OF
THE INTEGRAL I(k ()1,—A ') )

Here we analytically evaluate the integral I(k(A, —A, '))
of (3.24):

I(k(A, —)1,'})=fd q exp i (—)1,
—

A, ') fo(q) .

(Al)

Let 9 be the angle spanned by the vectors k and q. Then

I(k(A, —A, '})=2~f dq q fo(q) f d cos8cos8exp i ()1.——A. ')cos8
0 —1 q,

(A2)

With u =cos8 and 111—:(kqlq, )(k —
A, ') this becomes

3

I(k (A, —A, ') ) =2~ f "do2to'fo *, f "du ue-'"" .
0 k )1,—k' (A3)

We can evaluate the u integral explicitly:
+1 ; „

+1
du ue ' "= i du u—sintou =2ito (cocos' —since) .—1 —1

Thus
3

oo q co
I(k (A, —A. '))=4', den(to costs —simo) fok (A. —A,

'
o k (A, —)1.')

(A4)

(A5)

Using the approximation (3.25) for fo(q) we obtain

3
q,I(k (A. —A.') )= 4@i2)3— dao(co costs —since)e

k ()1,—)1.') o
(A6)
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1B)= dxxe
0 a

(A7)

Let us denote the integrand by B. To evaluate B we
reduce it to a combination of terms of the form

I(k (k —k'))
3

1 1 1+
a a

(AS)
1

2L

1 1

where W(a) ~0 was assumed. In our case

—1

k (k —A. ')

Thus

Combining the coefficients involving a+ we find

I(k (A, —A, ') )= 8miq, r13H(k (X—k') )

(A9)
with

H(x)=
(I+x )

(A10)

(A11)
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