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Abstract 

Motivated from unified models with string origin, we analyse the constraints from duality invariance on effective super- 
gravity models with intermediate gauge symmetry. Requiring vanishing vacuum energy and invariance of the superpotential 
couplings, the modular weights are subject to various constraints. Further, the intermediate gauge symmetry breaking scale 
Mu is related to the values of modular weights of the matter and Higgs fields. For certain regions of values of the latter, 
Mu can be close to the conventional unification scale of the minimal supersymmetric standard model. We also examine 
particular examples where the intermediate gauge symmetry breaks down to the standard gauge group radiatively. 

If one adopts the idea for unification of all 

forces, the minimal supersymmetric standard model 
(MSSM) is considered as the most natural exten- 

sion of the standard model (SM) of strong and 

electroweak interactions, since its spectrum allows 

the three gauge couplings to meet at an energy of 

#( 1Ol6 GeV) [ I]. Besides, unified supersymmetric 
models solve successfully the hierarchy problem [ 21 

of their corresponding non-supersymmetric versions. 
Yet, the MSSM has many arbitrary parameters and 

by no means can be considered as the ultimate theory 

of elementary particles. The only road beyond the 

MSSM which looks promising these days is N = 1 
supergravity [ 31 coupled to matter and gauge fields. 
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However, N = 1 supergravity still contains a lot of 
arbitrariness. One is free to choose the chiral multi- 
plets provided they transform consistently under the 

chosen gauge group, while Yukawa couplings in the 

superpotential are also arbitrary. Nowadays, string 

theory appears as the only serious candidate which 

could predict all the above arbitrary parameters. On 
the other hand, strings can have as a limit an effec- 

tive N = 1 supergravity theory. In addition, the gauge 

group of most of the string constructions, contrary to 

what was usually assumed in the old grand unified 

approach [ 41, is predicted to have a product structure, 

rather than being a single gauge group. Thus, if string 
theory really plays a role in particle physics, then 
one is left with an effective theory with the following 
summarized general characteristics. There is an ef- 
fective unification scale, namely the string scale M,&, 
where all couplings - up to threshold corrections - at- 
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tain a common value. At this point one is left with an 
effective N = 1 supergravity theory while the gauge 
group structure is of the form G = n, G,, which 
usually contains an “observable” and a “hidden” part. 
In general, the observable part has a rank larger than 
that of the MSSM symmetry. In such a case, we may 
say that G is an intermediate gauge symmetry (IGS) 
which breaks down to the SM-gauge group at an 
intermediate scale Mx, usually some two orders of 
magnitude below the string scale. Moreover, string 
symmetries give rather strong constraints on many of 
the parameters of the effective field theory model. For 
example, the kinetic term appears to have a certain 
structure, while the effective Lagrangian is in general 
invariant under certain duality symmetries which act 
on the space of the moduli [5]. The superpotential 
and the Yukawa couplings are also subject to similar 
constraints. In the present work, we would like to 
present an analysis of the modular invariance con- 
straints in effective models arising from the string. In 
particular, we have in mind models with an IGS scale 
which often appear in string constructions. We will 
examine the following issues. Using the constraints of 
modular invariance we will determine the properties 
of the effective potential in IGS models. Requiring 
also zero cosmological constant, we will correlate the 
vacuum expectation values of the Higgs fields break- 
ing the IGS group, with the modular weights. We 
will finally present a particular example where gauge 
symmetry may break radiatively. 

In N = 1 supergravity one introduces a real gauge 
invariant K%hler function whose general form is [6] 

G(z,Z) =n(z,a +logIW(z)12 (1) 

where K( z, 2) is the K&hler potential whose second 
derivatives determine the kinetic terms for the various 
fields in the chiral supermultiplets (we are using the 
standard supergravity mass units). W is the superpo- 
tential which is a holomorphic function of the chit-al 
superfields. Denoting z = (a, Q) , where Cp stands for 
the dilaton field S and other moduli ‘I;: while Q for the 
chiral superfields, we may expand the Kahler potential 
as follows 

K(@,&,Q,Q) = K(@,6) + Z7j(@,&)@2vQj 

+ . f . (2) 

At the tree level K(@, 6) is written 

K,(av@) = -log(S+S) + K*(T,F) (3) 

Higher terms are proportional to inverse powers of 
(S+S)* 

(4) 

while the kinetic energy matrix assumes a similar ex- 
pansion [ 7,6] 

(5) 

In the above expansions, only the combination S + 3 
of the dilaton field appears, as a Peccei-Quinn (PQ) 
symmetry holds to all orders of perturbation theory. 

The superpotential W( z ) is a holomorphic function 
of the chiral superfields Qi and at the tree level is given 

by 

W(@, Q> = i&jk(@)QiQjQk + ipij(@)QiQj +". 
(6) 

where {. . .} stand for possible non-renormalisable 
contributions. Terms bilinear in the fields Qi refer in 
fact to an effective Higgs mixing term [ 8,9]. Pertur- 
bative effects may allow dilaton contributions to the 
superpotential of the form 0: e -82s, thus breaking 
the original PQ symmetry which allowed only S + 3 
dilaton combinations to appear. 

In the following we will assume that the tree level 
K2hler potential Ko( T, F) can take the following gen- 
eral factorizable form [ 10,111: 

Ko(T,P) = -C,h,log(T, + T,,) (7) 

which implies the following form for the gravitino 
mass 

m3/2( z, Z> = 
IW(z)l 

(I-MT” + ~rzP(S + s))“* 
(8) 

Now under the modular symmetries, the moduli trans- 
form as 

#T--lb 
T+- 

ccT+d 
(9) 
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where a, b, c, d constitute the entries of the SL( 2, Z) 
group elements with a, b, c, d E Z and ad - bc = 1. 
Next, applying the Kahler transformation, 

Ic-X’=n+J(T)+J*(T) (10) 

W -+ W’ = VVexp{-J(T)} (11) 

Eqs. (7), (9) imply that J(T) has the specific form 

J(T) = c h, log(lc,T,, + d,) 
II 

(12) 

Following the same procedure, we may obtain the 
transformation properties of the tree level matrix 
Zr’ (T, T) in the expansion of Eq. (5). ZF’ is given 

by the formula [ 12,131 

z!j = sg H(T, + TJ -4: (13) 
n 

where the exponents are in general rational numbers. 
Applying the SL( 2, Z) transformation, Eq. (9)) to 

the tree level mass term Z$QiQj we conclude that the 

matter fields should transform as follows: 

Q; + SijQi n t,” (14) 
n 

where, to simplify the subsequent formulae, we have 
introduced the notation 

tn = G,T,, + d,, 

The obtained formulae in Eqs. (12), (14) may give 
further restrictions to the transformation properties of 
the superpotential. Thus, the Kahler transformations 
Eq. ( 11) and the J(T) form in Eq. ( 12) imply that the 
perturbative superpotential is transformed as follows 

w --+ n t,%v (15) 
n 

We consider in the following the various terms in the 
superpotential separately. In fact we are interested in 
the two types of terms of the perturbative tree level 
superpotential exhibited in Eq. (6). Thus, the trans- 
formation property Eq. ( 15) together with that of the 
fields Qi in E!q. ( 14), imply that the ,z parameter is 
transformed as follows 

Lc;j = pij lJ t;h’ I-J t$ n $ (16) 
1 nt n 

A similar expression is expected to hold for the Aijk 
parameters of the superpotential. 

Thus far, the above procedure gives us no further 
constraints on the superpotential terms, Yukawa cou- 
plings and mass parameters. However, we may im- 
pose the constraint that the latter remain invariant un- 
der transformations implied by the symmetries of the 
string. Therefore, we assume the tree level Yukawa 
couplings and the ,u parameter to be invariant (up to a 
moduli-independent phase) scalar functions under the 
action of the modular transformations 3 . Thus, if we 
demand invariance of the p-term - ignoring for sim- 
plicity the possible existence of a T-independent phase 
- we obtain the following relation of modular weights 

(17) 
1 m n 

A similar reasoning for the case of the Yukawa mass 
term for the chiral fields Qi leads to the following 
general condition for the modular weights, 

(18) 
1 m n r 

Eqs. ( 17), ( 18) are obtained by the simultaneous 
action of the SL( 2, Z) modular invariance constraints 
and the invariance of the superpotential parameters of 
the effective field theory model. In fact they provide 
specific relations among the modular weights whose 
role is decisive for the initial conditions of the scalar 
fields, as can be seen from the form of the tree level 
scalar matrix Z$. 

The parameters of the theory may further be re- 
stricted if one imposes the cosmological constant con- 
straint. In order for our procedure to be more transpar- 
ent, let us simplify the subsequent analysis, assuming 
that there is a flat direction where Tl = T2 = . . . = 
TN E T which means that the potential depends on a 
single modulus T. In this case setting h, = 3/N we 
can simply write, Ka = -3 log( T + T) , to ensure zero 
vacuum energy. Returning now to the constraint ( 17)) 
assuming that this is for a Higgs mixing term ,uHt Hz, 
we may obtain the following simple relation between 

’ Actually in 72~ x Z2 orbifold construction, the Yukawa couplings 
are constants, while in Calabi-Yau manifolds they approach a 
constant value in the large volume limit of the moduli they depend 
on [6]. 
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the modular weights for the two standard model Higgs 
fields, 

41 + q2 = h (19) 

where h = N . h, = 3 for the simple example pre- 
sented here. Furthermore, if the relation ( 18) has been 
obtained, say, for a trilinear coupling of the up-type 
quark mass matrix QH#, a similar constraint may 
emerge for the corresponding modular weights too, 
i.e., qQ + q2 + quc = h. These constraints can be easily 
generalised in the case of models with couplings trans- 
forming covariantly under the modular symmetries. 

Let us see how this type of constraints may give 
information about the scalar masses at the unification 
scale. Consider the simple case of untwisted sectors 
where modular weights are integers. From relation 
( 19) we may obtain for example q1 = 1, q2 = 2 or 
q2 = 1, q1 = 2 leading to two distinct cases for the ini- 
tial conditions for the scalar masses rnf&, , m&. In the 
MSSM for example, such a distinction is welcome; in 
fact, it implies non-universal boundary conditions for 
the two Higgs doublets which is essential in particu- 
lar for cases with large tan /3, i.e., with approximately 
equal top and bottom Yukawa couplings at the unifica- 
tion scale. Thus, from the two sets of 41,~ values above, 
one may choose the phenomenologically viable case 
which finally drives the one (mass) 2 parameter nega- 
tive at a low scale so that radiative symmetry breaking 
of the SU(2) x U( 1) occurs. If Higgs particles arise 
from twisted sectors then 41, q2 can be any rational 
number and many solutions can exist even under the 
apparently restrictive relation ( 19). 

The above discussion presumes that the SU( 3) x 

N(2) x (I( 1) symmetry arises at the string scale. 
It is rather difficult however to obtain correct values 
of the low energy coupling constants with the ordi- 
nary matter fields in the massless spectrum. Indeed, it 
is well known that using only the MSSM spectrum, 
unification of the gauge couplings occurs naturally at 
MU nJ 10 I6 GeV [ 11, i.e. almost two orders lower 
than the string scale. This is rather suggestive for the 
existence of an IGS. Models with IGS have appeared 
in a string context [ 14-161. Thus, in the following 
we wish to extend our previous analysis in these lat- 
ter cases. In fact, our main motivation for this analysis 
are string derived models based on SU(4) x O(4), 
SU(5) x U( 1) and SU(3)3 symmetries. Thus in what 

follows, we will assume that there is at least one pair 
of Higgs fields, HI,~, having the required group prop- 
erties, and obtaining large vacuum expectation val- 
ues (vevs) which break the intermediate gauge group 
down to the MSSM symmetry. For example, in the 
case of SU(4) x O(4) N SU(4) x Sum x Sum 
these may be HI = (4,1,2) and H2 = (3, 1,2). In 
SU( 5) x U( 1) these are 5,s and 10, l?O. (A particular 
application will be presented in the subsequent anal- 
ysis.) We will also perform our computation in the 
context of our previous simplification, i.e., consider- 
ing only one modulus T and the dilaton field S. 

With respect to the fields z: = (ZS, ZO, ZI, 22) z 
(S, T, HI, HZ), the scalar potential V( z > is given by 

V = e’(l) 
( 
G,G;!Gj - 3 

> 
+ 1Dl2 (20) 

where 1Dl2 represents the contribution of the D-terms 
in the potential. Also, with GI, we denote the deriva- 
tives of G with respect to the fields ZI, i.e., 

G, EZ ;D,W (21) 

where D,W = &W + W8lK: is the K&ler derivative. 
Thus, with respect to the moduli T, we have for ex- 
ample 

(T+~)arK:=-h-qiZi(T,~)HiEji (22) 

and analogously for +Lfi. In the above basis ZI, the 
K&ler metric has the following block diagonal form 

(23) 

where the subscripts denote differentiation with re- 
spect to the fields ZI while Xi,; is a 3 @ 3 matrix with 
the indices i, j taking the values 0, I,2 for the fields 
T, HI, H2 respectively. 

In order to calculate the potential (20)) we need the 
inverse Ktiler metric G;j’ . In particular, XL;’ is given 

by 

xc_’ = 1 

( 

1 7jl fi2 

J 
71 

p2 772 

@‘P2 + 1771 I2 r117i2 

751112 @P2 + 17?212 1 

(24) 

where we have introduced the convenient notation 
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with r = T + i=, while 

4iHi _ 4iHi 
rli=T+t= i= 1,2 

(25) 

The scalar potential can now be obtained by comput- 
ing the quantities GIGI I G’C.yjG’. In order now 
to examine in detail the propertres of the scalar po- 
tential, we need the specific knowledge of the super- 
potential couplings and in particular that part related 
to the Higgs sector. However, for illustrative purposes 
let us ignore derivative terms and collect only terms 
independent of [WI*. In terms of the unrenormalized 
field vevs vi = (Hi) we obtain at the minimum 

(27) 

where Q* is obtained from Eq. (25) by substituting 
vi = (Hi). Hq. (27) determines the two vevs ~1.2 of 
the IGS breaking Higgs fields. Assuming that the po- 
tential at the minimum is zero and equal renormalised 
vevs (so that the flatness of the effective potential is 
ensured), we can express the vev as a function of h 
and the sum q1 + q2 z q. For h close to 3 and the ad- 
ditional constraint q = 3, we can get a sensible result 
of vev N lo-*M,. The terms dropped out of the po- 
tential could allow for a wider range of q and h giving 
vev in the desired region. This will be discussed in a 
future work. 

Up to now, we have analysed how one can deter- 
mine the Higgs vevs which break the IGS and we have 
expressed their magnitudes as a function of the mod- 
ular weights. However, we have not yet referred to 
the mechanism triggering the IGS breaking down to 
the standard model. In the following, we would like 
to examine the possibility of breaking the IGS radia- 
tively, pretty much the same way as this happens in 
the MSSM [ 171. Now, the question we would like 
to ask is if a similar phenomenon may occur in the 
case of an intermediate symmetry. In a string uni- 
fied model with IGS, as is the case we are examining 
here, there are mainly two large scales involved. The 
first is the string scale Msh - 5 x lOI7 GeV, where 
one is left with a string spectrum having transforma- 
tion properties under the intermediate gauge group 
(SU(4) x 0(4),SU(5) x U(l), etc.). The second 

large scale is the one where the IGS breaks down to 
the standard model and it is usually assumed to be 
approximately two orders of magnitude less than the 
string scale MS&, i.e., it usually coincides with the scale 
Mu. The more interesting cases arise in particular IGS 
models where a much lower intermediate scale is pos- 
sible, so that negative radiative corrections can grow 
up enough to turn a Higgs (mass) 2-pammeter nega- 
tive. This will be the case for the example we will 
present in the subsequent example. 

From the KWer potential one may obtain through 
the 2 (Z’, F) matrix soft mass parameters for the 
IGS Higgs multiple& discussed in detail previously. 
Their magnitude is controlled by the supersymmetry 
breaking scale, so their initial values may well be 
0( 2 1 TeV). The question which now arises is 
whether one of these (mass)2-parameters turns neg- 
ative at the right scale so that the IGS breaks down 
radiatively. Now, in the case of MSSM, there are two 
basic ingredients whose role is decisive: i) the huge 
gap of the MU. Mz scales which allows radiative cor- 
rections to grow up and, ii) the large top-Yukawa cou- 
pling. Instead, here we first note that the gap between 
the two scales Mst, and the conventional supersymmet- 
tic unification scale MU is rather short, M,@/M" N 
102, and at first sight, it looks rather unlikely that 
radiative corrections can do the job. Second, a large 
Yukawa coupling is needed to mimic the role of the 
top-Yukawa one, in the low energy case. In order to 
see if the scenario of radiative intermediate symmetry 
breaking (RISB) can occur, we will take as an exam- 
ple the W(4) x O(4) N W(4) x W(2) x W(2) 
model. Here, left and right handed fermions (includ- 
ing the right handed neutrino) are accommodated in 
the F = (4,2,1) , F = (4, 1,2) representations re- 
spectively. The SM symmetry breaking occurs due to 
the presence of the two standard doublet Higgs fields 
which are found in the h = ( 1,2,2) representation of 
the original symmetry of the model. (The decomposi- 
tion of the h under the SU( 3) x SU( 2) x V( 1) gauge 
group is h(1,2,2) -+ h,(1,2,$> + hd( 1,2, -i).) 
The W(4) x W(~)R --) W(3) x U(1) symmetry 
breaking is realized at a high scale, [ 181 with the 
introduction of a Higgs pair belonging to H -I- fi = 
(4,1,2) + (4,1,2) representations. Sextets fields 
D = (6,1,1> appear also in the model. The gauge in- 
variant tree level super-potential which is of relevance 
to our discussion here is [ 191 
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+ A3HDD + A$RD + A&,hh (28) 

From the terms shown in Eq. (28)) one can easily fig- 
ure out that an essential role in the evolution of the 
soft mass terms 4 of the Higgs fields is played by the 
couplings A3 HHD and AbARD. According to our dis- 
cussion, these couplings should be chosen sufficiently 
large if they are supposed to play the role of the top 
Yukawa coupling in the minimal case. Such a require- 
ment is welcome here since the same couplings de- 
termine the masses of the Higgs colour triplets living 
in D, H, i?Z which should acquire large masses in or- 
der to avoid fast proton decay. In fact, under the SM 
gauge group the decomposition of the above represen- 
tations gives D (6,1,1) --+ D3+D3 and H(4,1,2) + 
dH + Ed + @ and similarly for a(a, 1,2) -+ an + 
eA + p. Now, down quark type colour triplets will 
acquire large masses [ 191 after the symmetry break- 
ing, proportional to A3.4, while eH, eA will be eaten 
by the Higgs mechanism. 

To make clear how the couplings A3.4 are involved 
in the evolution of the soft mass parameters for the 
neutral Higgs components, let us write the correspond- 
ing renormalization group equations. We simplify the 
analysis by ignoring all other Yukawas. We obtain (re- 
naming Z? = HI and @’ = H2) [ 181 

dh _ iA, (4A:: + A$ - $gi - ;g;> 
dt - 8n” 

dA4 _ LA4 (A: + 4A; - yg: - ;g;) 
dt - 87~~ 

dm2H, _ 1 
-z--s 

- 3g;M; 
1 

- 3g;M; 
I 

dm2, _ - - -!- [A: (2mi + 4m&) + Af (2mi + 4m&) 
dt 8~~ 

- lOg2,M; 
3 

(29) 

where Mi stands for the gaugino mass of the corre- 
sponding group factor. In the following we perform a 

4 In this letter, we will not discuss the origin of super-symmetry 
breaking. For an attempt in the context of this model see however 
[201. 

14 15 16 17 

14 15 16 17 

Logw) 

Fig. 1. Plot of the Higgs mass-parameters for Q/Z = 100 GeV, 
a) qZ=l/4,ql=11/4andb)qz=l,ql=2asafunctionofthe 
scale log,0 M. For convenience - treating properly the negative 
sign - we show here the WZH,, mH2, instead of the squared masses. 

numerical investigation of the above set of equations 
in order to find whether it is possible to obtain a neg- 
ative (mass)2. First we determine the initial values 
of the soft Higgs mass parameters from the potential. 
Taking the derivatives of the potential, the soft masses 
can in general be of the form [ 13 ] 

2 - 2 
msoft - m3/2 + VO + modular weight dependent terms 

(30) 

where VO is essentially the cosmological constant. 
Thus, in our case, after resealing to obtain correct 
normalized fields, while assuming zero cosmological 
constant, we get 

m$=m$,(l +qi), i= 1,2 (31) 

Obviously, the initial conditions of the two Higgs 
fields depend crucially on the modular weights 91,~ 
which are in general not equal to each other. In the 
case of untwisted fields, they are integer numbers oth- 
erwise they can be any rational number. In any case, 
according to our assumptions qi’s should satisfy the 
constraint ( 19). In order to present an illustrative ex- 
ample, we take h = 3, q1 = 11/4, q2 = l/4 and rn3/2 = 
100 GeV. We assume further, large initial values for 
the Yukawa couplings A3,4 N c3( 1). In Fig. la the 
two Higgs mass-parameters are depicted as a function 
of the scale log,, M. It can be seen that one of them 
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Fig. 2. Plot of the Hz-Higgs mass-parameter for three (41, qz)- 
pairs and tn3i2 = I16 GeV. 

turns negative at a scale Mx N 2 x 10” GeV, not far 
from the conventional unification scale Mu. All other 
soft squared mass parameters are positive at that scale. 
In the model under consideration, the IGS breaking 
scale Mx can be even lower, without running into phe- 
nomenological troubles as the gauge bosons mediat- 
ing fast proton decay are absent in this model. Another 
example is presented in Fig. lb. Here we consider in- 
teger modular weights, q1 = 2, q2 = 1, while again we 
take rn3/2 = 100 GeV. As expected, rn$ is driven now 
negative at a lower scale. The maximum IGS break- 
ing scale is of course obtained when q1 = 3,q2 = 0 
so that the initial mass parameters have the maximum 

gap, mHz/mH, = l/a. For comparison, we show the 
mHz-plot for the three selective (41, q2) pairs in Fig. 
2. In all the above figures, we choose for convenience 
to plot IltH,‘s instead of rns, parameters. After the scale 

where rn& < 0, we define mH, + - 
J- 

-m&. From 

these figures we conclude that the IGS symmetry can 
break down radiatively naturally, provided that the two 
modular weights are different in order to create a hier- 
archy for the two Higgs mass parameters at M,@, while 
the scale rn3/2 should not exceed ( 120-130) GeV. 

In this letter, we have analysed the modular invari- 
ance constraints on effective supergravity models with 
intermediate gauge symmetry which usually arise in 
four dimensional string constructions. We find that re- 
quirements for invariance of Yukawa terms in the su- 
perpotential lead to specific relations for the modu- 
lar weights of the massless spectrum of a particular 
model. Further constraints for the soft mass parame- 
ters are obtained, in particular for the neutral Higgs 
bosons associated with the symmetry breaking, It is 
found that in particular cases the intermediate gauge 

symmetry breaks down to the standard model radia- 
tively. 
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