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We explore the stability of semilocal string numerically. Our results confirm the conclusions of
Hindmarsh and also show a range of asymptotic field configurations that will relax to the
semilocal string configuration rather than to the trivial vacuum. We also study field configura-
tions corresponding to two semilocal strings with different colours and find that the colour
rapidly equilibrates and has little effect on the dynamics of the strings. This result and its
limitations are discussed and implications for the evolution of the semilocal string network are
drawn. In addition, we construct models that contain monopoles labelled by colour indices.

1. Introduction

In a recent paper [1], it was shown that the simultaneous presence of global and
gauge symmetries in a field theory can result in the formation of a stable string-like
defects even when the first homotopy group of the vacuum is trivial. This new
variety of strings was called “semilocal”. In the present paper we shall study the
properties of semilocal strings in more detail and offer additional insight into the
existence and formation of these defects.

Specifically, in ref. [1], the generalization of the abelian Higgs model to an
SU@)giopa X U1,y symmetry was considered. The Higgs mechanism broke this
symmetry down to U(1),,,- The vacuum manifold V, which is the coset space
SU@)giopat X U gea1/ UMb is simply connected. Nevertheless, this model was
shown to admit vortex solutions which were found to be stable [2] for 8 < 1 where
B is the ratio of the square of the scalar to the vector mass. (For g =1 there is a
one-parameter family of configurations with the same energy and varying core
radius).
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Semilocal strings have two properties that make them unusual and interesting:

(i) If V is the vacuum manifold then 7 (V) =0 and hence, semilocal strings
provide a counterexample to the usual criterion for the formation of string-like
defects. In addition, since the strings are stable only for 8 < 1, it is clear that
topology is not sufficient to determine the stability of the string solution (which
exists for all values of B). Rather, the stability of the semilocal string is a
dynamical question.

(ii) Each string is labelled by continuous “colour’” parameters. While the colour
of an isolated string can be freely chosen, the relative colour of two strings is fixed.
Two strings of different colour may have a long-range interaction via the “colour”
field.

An added motivation for the study of semilocal strings comes from the recent
discovery [3] that the string solution exists even when the SU(2),,,, group is
gauged. But, in this case, the semilocal model is precisely the bosonic sector of the
Weinberg—Salam model! The stability of the strings in the Weinberg—Salam model
is currently under investigation by two of us [4].

In this paper, after reviewing the semilocal string solution, we numerically study
the formation of a single string for a range of the parameter 8. Our approach is
different from that of Hindmarsh [2]: rather than looking at the perturbation
equations, we lay down a configuration of fields that is close to the semilocal string
solution and simulate its evolution numerically to watch it evolve into or dissipate
away from the semilocal string solution. Our results confirm the findings in ref. [2]
that the string solutions are stable for 8 <1 and are unstable for 8> 1. An
advantage of our method is that we can also study the dynamics of a decaying
string solution or that of a string while it is forming. In fact, we have set up a class
of initial conditions that are at different “distances” (in functional space) from the
semilocal string configuration. This allows us to get an idea of the range of initial
conditions that will lead to strings. This study is essential if we are interested in the
cosmology of semilocal strings since the formation of a network of semilocal strings
is likely to be much more complicated than the formation of ordinary U(1) strings
[5].

In a cosmological setting, we expect some sort of network of semilocal strings to
form at a suitable phase transition [6]; different strings in the network will, in
general, have different colours. The question then is: what effect do colour
gradients have on the evolution of the semilocal string network. We shall take a
first step towards answering this question when we study the interaction of two
strings with different colour. Our results are negative in the sense that the colour
gradients smooth out very rapidly and have little effect on the dynamics of the
strings themselves. However, we cannot conclude from this that the evolution of
the semilocal string network will be similar to that of ordinary strings: the fact that
semilocal strings can terminate is likely to be a crucial difference, and will have to
be studied through three-dimensional simulations.
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In ref. [1], it was shown under some assumptions that semilocal monopoles
cannot exist. However, it is still of some interest to see whether we can construct
monopoles that are “coloured” in the same way that semilocal strings are coloured.
We give some examples of field-theoretic models containing coloured monopoles
in sect. 4. Here we also note that if the colour interaction between monopoles is
important for their dynamics then it could affect the annihilation rate of primor-
dial monopoles.

2. Semilocal string review

Let us briefly review the Nielsen—Olesen [7] string solutions. They are cylindri-
cally symmetric, topologically stable solutions of the abelian Higgs model. This
model is described by the lagrangian density

Lan=|(8,+ tied, ) o[~ 3F,, ¥~ A(6%6 — tn’)’. (2.1)

For static solutions where the string lies on the z-axis, the energy functional
obtained from the lagrangian (2.1) is

EA,,=f dzx[ﬁ(a,Aj—ajA,)er’(aﬁ%ieA,)¢[2+)\(¢*¢—gnz)z]. (2.2)

The Nielsen—Olesen solution that extremizes the energy functional (2.2) is of the
form

dno =frnolr) €™, Ano = — €y, (2.3)
where (r, #) are cylindrical coordinates in the xy-plane and m is the winding
number of the string which we will henceforth take to be one. For m =1, the
Nielsen—Olesen solution is a minimum of the energy for any value of A. The
functions f(r) and t¢(r), are not known in closed form and are solutions of the
following differential equations:

el gty —an- iy (249)

r

’

v
v’ — — +e(l—-zer)f?=0, (2.5)
¥
with boundary conditions

n

2
f(0)=0=0(0),  f(x)= 7 v(w) =— (2.6)
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(primes denote differential with respect to r). These solutions have been the focus
of extensive investigation in the literature. Some of the relevant papers are given in
ref. [8].

Following Bogomol’'nyi (9], we rescale fields and coordinates as follows:

en V2 A__\/i
A b b b= A (2.7)

With this rescaling the number of parameters in the model is reduced to one:

3
» N
o0
>

B=s—=—7, (2.8)

~N

<

where the mass of the scalar field is given by m2 = 2An? and the mass of the vector
field by m? =e?’n?/4.

The semilocal string [1] may be viewed as a generalization of the Nielsen—Olesen
string. The semilocal model, in terms of the rescaled, dimensionless variables and
coordinates, is given by the lagrangian

2 2
€n
o[

where we have dropped the bars over the coordinates and variables for notational
simplicity. Notice that @ is now a complex doublet of fields and 1 is the 2 X 2 unit
matrix. The symmetry breaking described by the lagrangian (2.11) is SU(2), X
U(1), —» U(1), and the vacuum manifold is SU(2), x U(1),/U(1), =S with a
distinguished gauged S' embedded in it. Since 7 (S*) = 1 there are no topological
string solutions. However, it may be seen that there are still stable vortex solutions
for semi-topological reasons. It we only look at the gauged part of the symmetry,
the breaking is identical to that of the abelian Higgs model and this tells us that we
should have local strings.

The important effect of the global symmetry is to eliminate the topological
reason for the existence of the string. The stability of the string now depends on
the dynamics: if the Nielsen—Olesen string is weakly stable, the global symmetry
will be effective in destabilizing it. If, on the other hand, the Nielsen—Olesen string
is strongly stable, the global symmetry will not be able to destabilize it and the
semilocal model will continue to have stable string solutions in spite of the absence
of (non-trivial) topology. Therefore the stability of the semilocal string solution
depends on the single parameter 8 that enters into the model.

The energy functional for the semilocal model can be written down from the

(3, +id)1®| — LF, F* — 1g(d'® — 1)°|,  (2.11)
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lagrangian. For static, translationally invariant configurations, the rescaled (dimen-
sionless) energy per unit length is

Ey= [ dx[H@,4,-54,) +](3,+ i4) 18] + ip@'e-1)], (212)
The (unit winding) semilocal solution that minimizes E is

= Ao (2.13)

sl

P, =fno ei"([)(), P, = ((1)), A
Note that the choice of the constant doublet @, is arbitrary since we can always
(globally) rotate it to a different value by performing a global SU(2) rotation. By
having chosen a certain @, the semilocal string solution is such that @, is
constant in space. Hindmarsh [2] has shown that the semilocal string is stable to
perturbations in the direction orthogonal to ®, when g8 < 1.

The choice of @, is arbitrary for an isolated string and one value of ®, can be
rotated into another value without any cost in energy. However, if these are two or
more strings with different values of @, then a global transformation cannot
eliminate this difference. That is, the relative value of ®,, is significant while the
absolute value is not. Hence, we must label each string by its value of ®, or its
“colour”. Multi-vortex solutions corresponding to parallel semilocal strings with
the same colour have been studied by Gibbons et al. [10].

Another property of semilocal strings is that they can end in a “cloud” of energy
or what has also been called a global monopole [2]. This is because there is no
topological index that forces the string to continue indefinitely or form a closed
loop. However, the energy barrier that stabilizes the semilocal string also provides
an energy barrier to ending the string [11].

The motion of a string end is also related to the notion of colour. It may happen
that a string ends in a cloud of energy from which a string of a different colour
might emerge. In other words, strings of different colour could have junctions at
which the change in colour carries energy. It is still not clear to us if such colour
junctions have any consequences for the dynamics of a network of semilocal
strings.

3. Numerical simulations

In this section we use numerical simulations to

(1) Test the stability of semilocal strings as a function of the parameter S.

(2) Find the sector of S® such that initial conditions starting asymptotically in
that sector relax to a semilocal string configuration rather than to the vacuum. We
also find the dependence on B of that sector.
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(3) Study the evolution of a pair of semilocal strings with nonzero relative

SU(2)opa Phase.

The simulations are performed by numerically solving the equations of motion
for the fields ® and A4, obtained by varying the lagrangian (2.11). In the temporal
gauge A, =0 these equations are of the form:

& V2P +BO(ODPT— 1) —2i4- VO — i®VA + 42D =0, (3.1)

— 395 A; +0F,; — 2 Im(®9,®) —24,®'® =0. (3.2)

The condition A4, = 0 implies the constraint

(Sl
‘\

(a)

Fig. 1. The evolution of an isolated string @ =(g{(r), f(r)e™), for B =0.9. The energy density. (a)
T=0,(b)T=100,() T =400 and (d) T = 500.
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Y14 ()

Fig. 1. Continued.

2Im(®PT) +3,.A4,=0. (3.3)

The conservation of the constraint (3.3), in addition to energy conservation, was
used as a test during the evolution. The algorithm used for the solution of egs.
(3.1), (3.2) was a second-order accurate staggered leapfrog scheme on an 80 X 80
lattice with spacing dx = 0.6 and timestep d¢ = 0.2. The ratio df/dx was slightly
smaller than the Courant number 1/\/5 thus enhancing stability at the cost of
introducing a small numerical viscosity which however had no significant effects for
the evolution timescales considered. The boundary conditions we used were to set
the field derivatives across the boundaries to zero, thus smoothing the field
configurations there.

In order to test the stability of semilocal strings we perturb the semilocal string
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Fig. 2. The evolution of an isolated string @ = (g(r), f(r) e'?), for B =0.9. The function f(r). (@) T =0
(b) T =100, (c) T = 400 and (d) T = 500.



A. Achucarro et al. / Semilocal strings 443

solution and evolve the perturbed configuration for different values of the parame-
ter 8. The unperturbed semilocal string solution may be written as:

vo(r)

® = (0, fo(r) e”’), A, = o 8,0 (3.5)
where f,(r) has the asymptotic behaviour:
fo(r<<1) ~r, vo(r<<1) ~r?, (3.6)
for>1)~1,  oy(r=1)~1. (3.7)
The perturbed configuration whose evolution we considered here is:
D =(g(r), f(r) e?), (3.8)
A, = li:)ﬁu,, (3.9)

with the initial ansatz [2] f(r)=r/(1+r®)'/2 g(r)=1/01+r>)"? and v(r)=
r2/(1 + r?). We evolved the above configuration for several different values of the
parameter 8. A critical change in the evolution occured at 8 = 1. In fig. 1 we show
the evolution of the energy density for 8 =0.9. The energy maximum which is
associated with the semilocal string persists during the whole evolution while the
perturbation g(r) rapidly decreases and oscillates around zero (fig. 3). The
corresponding evolution of the lower component is shown in fig. 2. The fact that

0.8+

0.6+

gl

0.2+

0.0 y T N —
0 10 20 30 40

r

Fig. 3. The evolution of an isolated string @ =(g(r), f(r)e"®), for 3=09. The function | g(r)| for
7 =10, 60 and 100.
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our initial conditions are not exact solutions of the equations of motion explains
the observed oscillations of the maximum of the energy density associated with the
string. Similar evolution was obtained for several values of 8 between 0 and 1.

Fig. 4 shows the evolution of the energy density for 8 = 1.1. In this case the
semilocal string maximum rapidly dissipates while the perturbation g(r) increases
and tends to relax around the value 1 (fig. 6). The bottom component shows the
increase in the string width (fig. 5). This type of evolution proceeds from smaller to
larger r. The configuration eventually relaxes to the vacuum. Similar evolution was
seen for several g > 1.

This behaviour implies stability (instability) of semilocal strings for 8 <1(8> 1)
thus confirming the conclusion of ref. [2]. As mentioned in ref. [2] this result may
be obtained alternatively by looking for negative eigenvalues of the fluctuation

2 4 (a)

Fig. 4. The evolution of an isolated string & =(g(r), f(r)e”"), for B=1.1. The energy density. (a)
T=0,(b) T=100, (c) T =400 and (d) T = 500.
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lb’i (c)

Fig. 4. Continued.

operator (—D?+ V(®)")|,_o. We have pursued this eigenvalue method in the
more general case of electroweak strings. The results, when reduced to the special
case of semilocal strings, are in good agreement with the ones presented here [4].

After having verified that there is a parameter region for which semilocal strings
are stable we address the question of string formation. In particular we look for a
sector of S? such that any initial condition starting asymptotically in that sector
leads to semilocal string formation rather than relaxation to the vacuum. In order
to address this issue we evolve the following configuration for several values of SB:

®= (0, f(r)e?), (3.10)
e(r)

er

A =

”n

o

(3.11)

[
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Fig. 5. The evolution of an isolated string @ = (g(r), f(r)e'®), for = 1.1. The function f(r). @) T=0,
(b) T =100, (c) T = 400 and (d) T = 500.
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Fig. 6. The evolution of an isolated string @ =(g(r), f(r)e'), for B=1.1. The function |g(r)| for

T =0, 60 and 100.

with f(r) and ©(r) same as above and w a constant parametrizing the distance of
the asymptotic value of the initial configuration from the circle of S? spanned by
U(1) o~ Clearly, the configuration (3.10) has diverging energy and will relax to a

0.3

—o0—  critical

Vacuum
Relaxation

Fig. 7. The numerically obtained function

crit®
relaxation towards a semilocal string configuration.

Initial conditions with w under the curve resulted in
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finite energy which can be either the semilocal string (0, f(r) e'®) or the vacuum
(1,0). As w increases and goes to 1 it becomes easier for the configuration to relax
to the vacuum for fixed 8. On the other hand as B decreases, for fixed w the
semilocal string is favoured as its stability increases. This behaviour is indeed seen
in our simulations. We fixed B and evolved the initial ansatz (3.10), (3.11) for
several values of w. For w smaller than a critical value (which depends on B) the
configuration relaxed to the semilocal string. For @ larger than the critical value,
vacuum relaxation occurred. In fig. 7 we plot the critical value w_,, as a function of
B. For values of B within the error bars the fields did not relax within the
evolution time. As anticipated, the sector of S* leading to semilocal string forma-
tion increases as B decreases. The numerically obtained function e ;(8) may now
be used in a Monte-Carlo simulation to obtain the initial semilocal string network
after a cosmological phase transition. This study will be presented in a separate
publication.

The study of the interactions of semilocal strings is important in order to
understand the evolution of a network of such strings. In ref. {1] it was argued that
the evolution of semilocal strings could be different from that of gauged strings
due to the long-range Goldstone boson field induced by the nontrivial relative
orientation of the submanifolds spanned by U(1),,, for two interacting semilocal
strings. This conjecture relied on the assumption that the nontrivial relative
orientation would persist during the evolution. In order to test this assumption, we
introduce the “Hopf parametrization” [10]

: 2¢h/?
@ f o] S a/2e” 3.12
d (sin a/2e /2 (3-12)
and rewrite the action (2.11) as
= i /2|2 _ 1 pr 1 2_12 1p209 2
S_f ’(8M+1AH)(fe )l 4F,LLL’F Zﬁ(f ) + 4f ( I_La)
+%f2(0“y)2+f2 €os a(%c?“,\/ +A#)(8"y)] d*x. (3.13)

An estimate for the energy can be obtained by ignoring the phases y and y.
Since f= 1 outside strings, the energy per unit length between two static, parallel
strings with colours «, and «, at a distance d is roughly

E= [f}(Va)’ dx =K(a,~a,)" In d/d,, (3.14)
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where d,, is the core width of the string, d > d,, and K is some constant that can

be calculated numerically. The (dimensionless) force between the strings is given
by the slope

my,, = ————=K(4da)’d,/d, 3.15
i 5(d dy) (4a)'d,/ (3.15)

with Aa = @, — a,, whereas the tendency to align the U(1) orbits of both strings in
S* is measured by

E
M= S 2K(Aa) In d/d,. (3.16)

(a)

5.0

A

i
0.0 10 2.0

Fig. 8. The evolution of the energy density for the string pair given by (3.19). The string cores remain at
their initial positions. (a) T =0, (b) T = 50, (¢) T = 200 and (d) T = 250.
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Their ratio satisfies

md/do Aa s
= <
Mg 2(d/dy) In(d/dy)  2(d/d,) In(d/d)

(3.17)

and this suggests that, for d > d,, colour alignment is a more efficient way to
lower the energy. In general, the strings will radiate away their colour difference in
the form of Goldstone bosons and there will be little or no interaction observed.
Our simulations had a typical separation of d/d,= 30, which yields a ratio
My 4,/ Maq = 0.02, and confirm this result. (Note that a similar calculation for
monopoles yields a slightly higher ratio m, ,, /m, ~ d,/d; semilocal monopoles

<
=

Fig. 8. Continued.
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Fig. 9. The evolution of the upper component of the field ® for the string pair (3.19). The relative
SU(2) phase is minimized during the evolution. (a) T =0, (b) T = 50, (¢) T = 200 and (d) T = 250.
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were shown not to exist within some fairly general assumptions in ref. [1] but we
provide some alternative models with “coloured” monopoles in sect. (4).

We evolved several field configurations corresponding to pairs of semilocal
strings. In order to minimize noise from Goldstone radiation emitted during the
evolution we did not use an arbitrary initial ansatz, instead we first minimized
numerically the energy functional subject to semilocal string pair boundary condi-
tions and used the configuration minimizing the energy as initial condition in the
numerical simulation of evolution. We used optimum interpolating initial condi-
tions for the following types of string pairs:

D= (0, f(r) ) o ®=(f(r) e’ 0), (3.18)
@ = (0, f(r) e?) o ®=(if(r) e”,0), (3.19)
® = (0, f(r) &) & ®= (0, if(r) e). (3.20)

In ail cases we observed the same pattern of behaviour; the position of the strings
remained the same during the whole evolution while the fields tended to minimize
the initial relative SU(2) phase. In fig. 8 we show the evolved energy density
corresponding to the initial condition (3.19) while fig. 9 shows the corresponding
evolution of the upper component of the field ® (the evolution of the lower
component is similar, but with the initial minimum on the right). Clearly, the
positions of the cores remained unchanged during the evolution while the field ®
relaxed by equating the magnitudes of the upper and lower components of both
strings thus minimizing the relative SU(2) orientation. This result implies that the
interaction of semilocal strings is weak and it may be possible to use an effective
action similar to the Nambu action to describe their evolution. This however, does
not mean that semilocal strings evolve identically with gauged strings in three
dimensions. For example semilocal strings can terminate while gauged strings
cannot. Three dimensional simulations are clearly necessary to give a complete
picture of the semilocal string evolution.

To summarize, in this section we have presented results of numerical simula-
tions with semilocal strings. Our simulations show that semilocal strings are stable
for B <1 and that they can form with initial conditions of nonzero measure. They
also show that semilocal string interactions are quite weak.

4. Generalizations

As was pointed out in ref. [1], the semilocal string can be generalized trivially by
considering other global symmetry groups. Semilocal strings with symmetry group
SU(N) X U(1) were discussed in [2], where it was shown that they correspond to
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CP” instantons in two dimensions. The physical properties of these models are
basically the same as for the SU(2) x U(1) string.

What about other semi-local defects? We define a semi-local defect as one for
which

7T"(G/H) =0 but Wn(Glocul/Hlocal) #* O’

(n =1 for strings, n = 2 for monopoles and # = 3 for textures).

Under very general assumptions, it was shown in ref. [1] that semi-local
monopoles cannot exist. However, if one relaxes the condition 7,(V)=0, it is
possible to construct models with “colour’; we will call these defects “coloured”,
as opposed to semilocal, because their stability is really topological.

To illustrate the difference, consider a model where the Higgs field is the tensor
product of the adjoint representation of SU(2) and the two-dimensional represen-
tation of U(1), that is,

¢ i b,
C=1y|=1d, ¥, (4.1)
X X1 X2
where the SU(2),,,,, transformations are
¢ s A
l/I — @l 7 ¢ , (42)
X X
with
0 1 0 0 0 1 0 0 0
T'={-1 0 o], T?°=| 0 0 o|, T°={0o 0 1|, (4.3)
0 0 0 -1 0 0 0 -1 0
and the U(1),,., transformations are given by
¢, o, COS @ ¢p; —sin o ¢,, sin « ¢, + cos « ¢,
U, Y| > |cosay,—sinad,, sinai +cosai,]. (4.9)
X1s X2 COS a x, —sin a y,, Ssina y,+cos a x,

The most general action compatible with these symmetries is

2 2
S=[ dx[3D@f — 1F, F* — IN(®2 - n?) —yl@, x @[ (45)
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with A and y positive to ensure that the energy is bounded from below. We are
using here the obvious notation ®, = (¢, ¥, x,), and similarly for ®,. Note that
@, X @, is U(1)-invariant, and its modulus is also SU(2)-invariant.

The vacuum manifold is the set

D -’ =P+ PI—75?=0, P Xb,=0, (4.6)
and it can be parametrized as
b, =1 cos 8 n, ®,=7nsin b n, (4.7)

where n=(n,, n,, n;) lies on the two sphere |n| =1, provided we identify the
points (8, n) and (6 + 7, —n). This is a non-trivial fibre bundle T with base space
S' and fibre S? (or, alternatively, with base RP? and fibre S'). It can be shown that
o (T) = Z: the non-contractible loops are those starting at (8, n) and finishing at
(8 + 7, —n) in the above parametrization.

Let us consider the symmetry breaking. When the Higgs field acquires a v.e.v.,
say,

0, 0
=10, 0 (4.8)
1, 0
the stability group is given by
a b 0 b
¢ d 0}, with det(a d)=1,
0 0 1 ¢
[a b 0 b
¢"lc d 0], with det(z d)=—1, (4.9)
0 0 -1

ie. H=U(Dg,, X Z,. If we only consider the local symmetries, we have U(1)
breaking down to Z,, and the homotopy group of the quotient is again 7 (a circle
with opposite points identified is still a circle) so strings will form.

Locally, the vacuum manifold looks like S? X S' and therefore these strings have
colour parameters living on S, but they are not semilocal because the vacuum is
not simply connected. In particular, the strings will be stable even after gauging the
global SU(2). We will call them “coloured” strings. (Note that this model also has
global monopoles.)

In ref. [1] it was shown that semilocal monopoles do not exist within some very
general assumptions. A semilocal monopole would occur in a theory where
7{G/H) =0 but 7,(G,,cui/Hoea) # 0. Note that if one relaxes the condition
7,(G/H)=0, one can easily construct coloured monopoles. For instance, to
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obtain a model with coloured monopoles, simply interchange the global and local
symmetry group in the previous example. Then we have SU(2),,,, X U(1)yp =
U(1),yea» and 7, (V) = 7,(F) = Z. These monopoles are topologically stable. One
can also construct coloured textures in this way.

Finally, note that, as in the case of semilocal strings, there is an obvious
generalization to other coloured models by considering different global groups.

5. Conclusions

We have started an investigation of the cosmological formation and subsequent
evolution of string networks. In particular:

(1) we have shown that there is a non-zero measure set of asymptotic field
configurations which will yield semilocal strings in a cosmological phase transition,
and

(2) we have shown that the interactions between infinitely long, parallel,
semilocal strings with different colours are essentially the same as for Nielsen—
Olesen strings. The colour difference is radiated away in the form of Goldstone
bosons.

The main difference between U(1) and semilocal strings is therefore the fact
that the latter can terminate. The behavior of terminating strings is not well
understood and should be clarified before network simulations can be attempted.

We have also confirmed by explicit numerical simulations Hindmarsh’s analysis
of the stability of semilocal cosmic strings: we find that strings are stable for 8 < 1
and unstable for 8 > 1.

Finally, we have given examples of topological defects with colour. These are
not semilocal defects, because their stability is topological, but they have a colour
degree of freedom similar to that of semilocal strings.
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