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We explorethe stability of semilocalstring numerically. Our resultsconfirm the conclusionsof
Hindmarsh and also show a range of asymptotic field configurations that will relax to the
semilocalstring configuration ratherthan to the trivial vacuum.We alsostudy field configura-
tions correspondingto two semilocal strings with different colours and find that the colour
rapidly equilibrates and has little effect on the dynamicsof the strings. This result and its
limitations arediscussedand implications for theevolution of the semilocalstring networkare
drawn. In addition, we constructmodelsthat contain monopoleslabelledby colour indices.

1. Introduction

In a recentpaper[1], it wasshownthat thesimultaneouspresenceof global and
gaugesymmetriesin a field theorycanresult in the formationof a stablestring-like
defects even when the first homotopygroup of the vacuum is trivial. This new
variety of stringswas called “semilocal”. In the presentpaperwe shall studythe
propertiesof semilocalstrings in more detail and offer additional insight into the
existenceandformationof thesedefects.

Specifically, in ref. [1], the generalizationof the abelian Higgs model to an
SU(

2)glç,hal x U(1)
10~~symmetrywas considered.The Higgsmechanismbroke this

symmetry down to U(1)glohal. The vacuum manifold V, which is the cosetspace
SU(

2)gJobaI x U(l)IoCUI/U(l)gIOhal is simply connected.Nevertheless,this model was
shownto admit vortex solutionswhich were found to be stable[2] for /3 c 1 where
/3 is the ratio of the squareof the scalarto the vectormass. (For f3 = 1 thereis a
one-parameterfamily of configurationswith the sameenergy and varying core
radius).
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Semilocal stringshavetwo propertiesthat makethem unusual andinteresting:
(i) If V is the vacuummanifold then ir1(V) = 0 and hence,semilocalstrings

provide a counterexampleto the usual criterion for the formation of string-like
defects.In addition, since the strings are stable only for /3 ~ 1, it is clear that
topology is not sufficient to determinethe stability of the string solution (which

exists for all values of /3). Rather, the stability of the semilocal string is a
dynamicalquestion.

(ii) Eachstringis labelledby continuous“colour” parameters.While the colour
of an isolatedstring canbe freely chosen,the relativecolour of two stringsis fixed.
Two stringsof differentcolour may havea long-rangeinteractionvia the “colour”
field.

An addedmotivation for the studyof semilocal stringscomesfrom the recent
discovery [31that the string solution exists even when the SU(

2)glohaj group is
gauged.But, in this case,the semilocalmodel is preciselythe bosonicsectorof the
Weinberg—Salammodel! The stability of the stringsin the Weinberg—Salammodel
is currently underinvestigationby two of us [4].

In thispaper,afterreviewingthe semilocalstringsolution,we numerically study
the formation of a singlestring for a rangeof the parameter/3. Our approachis
different from that of Hindmarsh [2]: rather than looking at the perturbation
equations,we lay down a configurationof fields that is closeto the semilocalstring
solution and simulateits evolution numericallyto watch it evolve into or dissipate
away from the semilocalstring solution. Our resultsconfirm the findings in ref. [2]
that the string solutions are stable for /3 < 1 and are unstablefor /3> 1. An
advantageof our method is that we can also study the dynamicsof a decaying
stringsolution or that of a stringwhile it is forming. In fact, wehaveset up a class
of initial conditionsthat are at different“distances”(in functionalspace)from the
semilocalstring configuration.This allows us to get an idea of the rangeof initial
conditionsthatwill leadto strings.This studyis essentialif we are interestedin the
cosmologyof semilocalstringssince theformationof a networkof semilocalstrings
is likely to be much morecomplicatedthan the formation of ordinary U(1) strings

[5].
In a cosmologicalsetting,we expectsomesort of networkof semilocalstringsto

form at a suitable phasetransition [6]; different strings in the network will, in

general, have different colours. The question then is: what effect do colour
gradientshaveon the evolution of the semilocalstring network. We shall take a
first step towardsansweringthis questionwhenwe study the interactionof two

stringswith different colour. Our resultsare negativein the sensethat the colour
gradientssmooth out very rapidly and have little effect on the dynamicsof the
strings themselves.However,we cannotconcludefrom this that the evolution of
the semilocalstringnetworkwill be similar to that of ordinarystrings:the fact that
semilocalstringscanterminateis likely to be a crucial difference,andwill haveto
be studiedthroughthree-dimensionalsimulations.
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In ref. [1], it was shown undersome assumptionsthat semilocal monopoles
cannotexist. However, it is still of some interest to seewhetherwe can construct
monopolesthat are “coloured” in thesameway that semilocalstringsare coloured.
We give some examplesof field-theoreticmodelscontainingcolouredmonopoles
in sect. 4. Herewe also note that if the colour interaction betweenmonopolesis
important for their dynamicsthen it could affect the annihilation rateof primor-
dial monopoles.

2. Semilocalstring review

Let us briefly review the Nielsen—Olesen[7] string solutions.They arecylindri-
cally symmetric,topologically stable solutions of the abelian Higgs model. This
model is describedby the lagrangiandensity

LAH = + — +F~F~”— A(~~ — l~2)2 (2.1)

For static solutions where the string lies on the z-axis, the energy functional
obtainedfrom the lagrangian(2.1) is

EAII = f d2x[~(a
1A1 — + + + A(~*~— 2)21 (2.2)

The Nielsen—Olesensolution that extremizesthe energyfunctional (2.2) is of the
form

4~N()=fNO(r) e , ANO = — —e
0, (2.3)

where (r, 0) are cylindrical coordinates in the xy-plane and m is the winding
numberof the string which we will henceforthtake to be one. For m = 1, the
Nielsen—Olesensolution is a minimum of the energyfor any value of A. The
functions f(r) and t’(r), are not known in closedform and are solutions of the
following differential equations:

f” + - (1 - ~eu)24 - 2A(f
2 - ~f= 0, (2.4)

— + e(1 — ~et’)f2 = 0, (2.5)

with boundaryconditions

2
f(0) = 0 = L’(O), f(oo) = .~, t’(cc) = — (2.6)
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(primesdenotedifferential with respectto r). Thesesolutionshavebeenthe focus
of extensiveinvestigationin the literature.Someof the relevantpapersare given in
ref. [8].

Following Bogomol’nyi [9], we rescalefields andcoordinatesas follows:

e~
= = —~, A~= —An. (2.7)

With this rescalingthe numberof parametersin the model is reducedto one:

m~ 8A
(2.8)

wherethe massof the scalarfield is givenby m~= 2A~2andthe massof thevector
field by m~= e2i~2/4.

The semilocalstring[1] maybeviewedasa generalizationof the Nielsen—Olesen
string. The semilocalmodel, in terms of the resealed,dimensionlessvariablesand
coordinates,is givenby the lagrangian

22

L~
1= (s—) [R~~+ jA) 2 — F~— ~j3(4~4— 1)21, (2.11)

wherewe havedroppedthe barsover the coordinatesandvariablesfor notational
simplicity. Notice that 1 is now a complexdoublet of fields and II. is the 2 X 2 unit
matrix. The symmetry breaking describedby the lagrangian(2.11) is SU(2)gt x
U(1) —~ U(l)gi and the vacuum manifold is SU(2)g x U(1)/U(1)g1= S

3 with a
distinguishedgaugedS’ embeddedin it. Since ir

1(S
3) = 1 thereare no topological

stringsolutions.However, it may be seenthat therearestill stablevortexsolutions
for semi-topologicalreasons.It we only look at the gaugedpart of the symmetry,
thebreakingis identical to that of the abelianHiggsmodel andthis tellsus that we
shouldhavelocal strings.

The importanteffect of the global symmetry is to eliminate the topological
reasonfor the existenceof the string. The stability of the string now dependson
the dynamics: if the Nielsen—Olesenstring is weakly stable,the global symmetry
will be effectivein destabilizingit. If, on the otherhand,theNielsen—Olesenstring
is strongly stable,the global symmetry will not be able to destabilizeit and the
semilocalmodel will continueto havestablestringsolutions in spiteof the absence
of (non-trivial) topology. Therefore the stability of the semilocal string solution
dependson the singleparameter/3 that entersinto the model.

The energy functional for the semilocalmodel can be written down from the
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lagrangian.For static,translationallyinvariant configurations,the resealed(dimen-
sionless)energyperunit length is

E51 = f d2x[~(a1A1— 31A~)
2+ (a

1 + ~ ~2 + ~/3(4t4 — 1)21, (2.12)

The (unit winding) semilocalsolution that minimizes E51 is

— ~ iSf. — f 0 \ A — A

“psI JN0 e ~ ‘~° — ~ 1)’ ‘
tsl ~NO~

Note that the choice of the constantdoublet ~I~()is arbitrary since we can always
(globally) rotate it to a different value by performinga global SU(2) rotation. By
having chosena certain •~,the semilocal string solution is such that 4~is
constantin space.Hindmarsh[2] hasshown that the semilocalstring is stable to
perturbationsin the directionorthogonalto 4~when /3 < 1.

The choiceof ~ is arbitrary for an isolatedstring andonevalueof ~I~()canbe
rotatedinto anothervaluewithout any cost in energy.However, if thesearetwo or
more strings with different values of I~ then a global transformationcannot
eliminate this difference.That is, the relatit.’e value of I~is significant while the
absolutevalue is not. Hence,we must label eachstring by its value of cI~or its
“colour”. Multi-vortex solutions correspondingto parallel semilocal strings with
the samecolour havebeenstudiedby Gibbonset al. [10].

Anotherpropertyof semilocalstringsis that theycanendin a “cloud” of energy
or what has also beencalled a global monopole[2]. This is becausethereis no
topological index that forces the string to continueindefinitely or form a closed
loop. However,the energybarrier that stabilizesthe semilocalstring also provides
an energybarrier to endingthe string[11].

The motion of a string endis also relatedto thenotion of colour. It mayhappen
that a string ends in a cloud of energyfrom which a string of a different colour
might emerge.In other words,stringsof different colour could havejunctionsat
which the changein colour carriesenergy.It is still not clear to us if such colour
junctions have any consequencesfor the dynamics of a network of semilocal
strings.

3. Numericalsimulations

In this sectionwe use numericalsimulationsto
(1) Test the stability of semilocalstringsas a function of the parameter/3.
(2) Find the sectorof S3 such that initial conditionsstarting asymptoticallyin

that sectorrelax to a semilocalstringconfigurationrather than to the vacuum.We
also find the dependenceon /3 of that sector.



440 A. Achácarroet a!. / Semilocalstrings

(3) Study the evolution of a pair of semilocal stringswith nonzero relative
SU(2)gIobaI phase.

The simulationsare performedby numerically solving the equationsof motion
for the fields 4 and obtainedby varying the lagrangian(2.11). In the temporal
gaugeA1~= 0 theseequationsareof the form:

j~. v2~+pi~i~t_ 1)- 2iA ~V~-iIVA +A
24=0, (3.1)

— + 31F,
1 — 2 Im(1ta.,1) — 2A1~t4= 0. (3.2)

The condition A1~= 0 implies the constraint

~ (a)

LP

C’.

~ (b)

~ I ~

___ \o2.

~ ~

Fig. 1. The evolution of an isolatedstring P= (g(r), f(r) e’
5), for /3 = 0.9. The energydensity. (a)

T = 0, (b) T 100, (c) T = 400 and(d) T 500.
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Fig. 1. Continued.

2 Im(~IHI~t)+ aA, = 0. (3.3)

The conservationof the constraint(3.3), in additionto energyconservation,was
usedas a test during the evolution. The algorithm used for the solution of eqs.
(3.1), (3.2) was a second-orderaccuratestaggeredleapfrogschemeon an 80 X 80
lattice with spacingdx = 0.6 and timestepdt = 0.2. The ratio dt/dx was slightly
smaller than the Courant number1/V~thus enhancingstability at the cost of
introducinga small numericalviscositywhich howeverhadno significant effectsfor
the evolutiontimescalesconsidered.The boundaryconditionswe usedwereto set
the field derivatives across the boundariesto zero, thus smoothing the field
configurationsthere.

In order to testthe stability of semilocalstringswe perturbthe semilocalstring
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~ ~ (a)

(~.

(b)

Fig. 2. The evolution of an isolatedstring ~ = (g(r), f(r) e’
5), for /3 = 0.9. The function f(r). (a) T = 0,

(b) T = 100, (c) T = 400 and(d) T = 500.
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solution andevolvetheperturbedconfigurationfor differentvaluesof the parame-
ter /3. The unperturbedsemilocalstring solution maybe written as:

t’~(r)
= (0, f11(r) e’

5), A
1~= er (3.5)

where f~(r)hasthe asymptoticbehaviour:

f0(r <<1) r, i’11(r <<1) r
2, (3.6)

f
1~(r>> 1) 1, i’0(r>> 1) 1. (3.7)

The perturbedconfigurationwhoseevolutionwe consideredhereis:

~P= (g(r), f(r) e’°), (3.8)

= (3.9)

with the initial ansatz[2] f(r) = r/(1 + r
2)’~’2, g(r) = 1/0 + r2Y”2 and i’(r) =

r2/(1 + r2). We evolved the aboveconfigurationfor severaldifferent valuesof the
parameter/3. A critical changein the evolutionoccuredat /3 = I. In fig. I we show
the evolution of the energy densityfor /3 = 0.9. The energy maximum which is
associatedwith the semilocalstringpersistsduring the whole evolutionwhile the
perturbation g(r) rapidly decreasesand oscillates around zero (fig. 3). The
correspondingevolution of the lower componentis shown in fig. 2. The fact that

1.2
t=o

1.0 - ~6O

0.0

Fig. 3. The evolution of an isolated string ~5=(g(r), f(r)e’5), for /3 = 0.9. The function Ig(r)~for
T = 0, 60 and 100.
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our initial conditionsare not exact solutionsof the equationsof motion explains
the observedoscillationsof the maximumof the energydensityassociatedwith the
string. Similar evolutionwasobtainedfor severalvaluesof /3 between0 and 1.

Fig. 4 shows the evolution of the energydensityfor /3 = 1.1. In this casethe

semilocalstring maximum rapidly dissipateswhile the perturbationg(r) increases
and tends to relax aroundthe value 1 (fig. 6). The bottomcomponentshowsthe
increasein the stringwidth (fig. 5). This type of evolutionproceedsfrom smallerto
larger r. The configurationeventuallyrelaxesto thevacuum.Similar evolutionwas
seenfor several/3> 1.

This behaviourimplies stability (instability)of semilocalstringsfor /3 < 1 (/3 > 1)
thusconfirming the conclusionof ref. [2]. As mentionedin ref. [2] this result may
be obtained alternatively by looking for negativeeigenvaluesof the fluctuation

~ (b)

L,.2Lf

“C ~

_,ls. ~

Fig. 4. The evolution of an isolated string ~ = (g(r), f(r) e
8), for /3 = 1.1. The energydensity. (a)

T = 0, (b) T = 100, (c) T = 400 and(d) T = 500.
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L.~
1 I

‘C

Fig. 4. Continued.

operator(—D2 + V(~)”)~
5~q.We have pursuedthis eigenvaluemethod in the

moregeneralcaseof electroweakstrings.The results,whenreducedto the special
caseof semilocalstrings, are in good agreementwith the onespresentedhere[4].

Alter havingverified that thereis a parameterregionfor which semilocalstrings
are stablewe addressthe questionof string formation. In particularwe look for a
sectorof S

3 such that any initial condition starting asymptotically in that sector
leadsto semilocalstringformation ratherthan relaxationto the vacuum.In order
to addressthis issuewe evolve the following configurationfor severalvaluesof /3:

4=(w,f(r) e’°), (3.10)

(3.11)
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~ ________

(c)

Fig. 5. The evolutionof an isolatedstring ~ = (g(r), J(r) e’
5), for /3 = 1.1. The function f(r). (a) T = 0,

(h) T = 100, (c) T = 400 and(d) T = 500.
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1.2

1.0 - L~A~

40

Fig. 6. The evolution of an isolated string (P =(g(r), f(r) e’
5), for /3 = 1.1. The function g(r)I for

T = 0, 60 and 100.

with f(r) and i’(r) sameas aboveand w a constantparametrizingthe distanceof
the asymptoticvalue of the initial configurationfrom the circle of S3 spannedby
U(1)

10~~1.Clearly, the configuration(3.10) has divergingenergyand will relax to a

0.3

~ critical

0.2

Vacuum
— Relaxation

5?

3 0.1

String
Formation

0.0

0.0 0.2 0.4 0.6 0.6 1.0

Fig. 7. The numerically obtainedfunction “~cre Initial conditionswith o under thecurve resultedin
relaxationtowardsa semilocalstring configuration.
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finite energywhich can be either the semilocalstring (0, f(r) e’5) or the vacuum
(1,0). As w increasesand goesto 1 it becomeseasierfor the configurationto relax
to the vacuum for fixed /3. On the other hand as /3 decreases,for fixed w the

semilocalstring is favouredas its stability increases.This behaviouris indeedseen
in our simulations.We fixed /3 and evolved the initial ansatz(3.10), (3.11) for
severalvaluesof w. For w smallerthan a critical value(which dependson /3) the
configurationrelaxedto the semilocal string. For w larger than the critical value,
vacuumrelaxationoccurred.ln fig. 7 we plot the critical valuew~

1as a functionof
/3. For values of /3 within the error bars the fields did not relax within the
evolutiontime. As anticipated,the sectorof S

3 leadingto semilocalstring forma-
tion increasesas /3 decreases.The numericallyobtainedfunction t0crit(/3) may now
be used in a Monte-Carlosimulationto obtain the initial semilocalstring network
after a cosmologicalphasetransition. This study will be presentedin a separate
publication.

The study of the interactions of semilocal strings is important in order to

understandthe evolutionof a networkof suchstrings. In ref. [1] it wasarguedthat
the evolution of semilocalstringscould be different from that of gaugedstrings
due to the long-rangeGoldstoneboson field induced by the nontrivial relative
orientationof the submanifoldsspannedby U(l)

10~~for two interactingsemilocal
strings. This conjecture relied on the assumptionthat the nontrivial relative
orientationwould persistduring the evolution. In order to testthis assumption,we
introducethe “Hopf parametrization”[10]

~ =f e
1~2 cos a/2 e’~2 (3.12)

sin a/2 e’~”2

andrewrite the action (2.11)as

S = f[~(a~+ ~)(f et~2)~2— ~ — ~/3(f2— 1)2 +

+ ~f2(a~y)2 +f2 cos a(~O~~+A~)(a~y)1d4x. (3.13)

An estimatefor the energy can be obtainedby ignoring the phasesy and x.
Sincef = 1 outside strings, the energyper unit length betweentwo static, parallel
strings with colours ~ and a

7 at a distanced is roughly

E = ff2(va)
2 d2x K(a

2 — a)
2 in d/d~

1, (3.14)
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where d0 is the corewidth of the string, d >> d11 and K is someconstantthat can
be calculatednumerically.The (dimensionless)force betweenthe strings is given
by the slope

= ~(d/d11) = K(~a)
2d

0/d, (3.15)

with iia = a2 — a1,whereasthe tendencyto align the U(1) orbits of bothstringsin
S

3 is measuredby

~ = = 2K(~1a)In d/d
11. (3.16)

~(L1a)

(a)

L

Fig. 8. Theevolutionof theenergydensityfor thestring pair givenby (3.19).Thestring coresremain at
their initial positions.(a)T 0, (b) T = 50, (c) T = 200 and(d) T = 250.
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Their ratio satisfies

md d z.la

____ = 2(d/d0) ln(d/d0) 2(d/d0) ln(d/d0) (3.17)

and this suggeststhat, for d >> d0, colour alignment is a more efficient way to

lower the energy.In general,the stringswill radiateawaytheir colour differencein
the form of Goldstonebosonsandtherewill be little or no interactionobserved.
Our simulations had a typical separationof d/d~1 30, which yields a ratio
md/d/m~a 0.02, and confirm this result. (Note that a similar calculationfor
monopolesyields a slightly higher ratio md/d/m~a d0/d; semilocalmonopoles

~ (c)

c-~)

.1
.~ ~

—\

(d)

..;A. c~’ ~- ‘.... (,~S

Fig. 8. Continued.
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c..

~ (d)
Fig. 9. The evolution of the uppercomponentof the field 1 for the string pair (3.19). The relative

SU(2)phaseis minimizedduringthe evolution.(a)T = 0, (b) T = 50, (e) T = 200 and(d) T = 250.
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were shown not to exist within somefairly generalassumptionsin ref. [1] but we
providesome alternativemodelswith “coloured” monopolesin sect.(4).

We evolved several field configurationscorrespondingto pairs of semilocal
strings. In order to minimize noise from Goldstoneradiation emitted during the
evolution we did not use an arbitrary initial ansatz,insteadwe first minimized
numericallythe energyfunctional subjectto semilocalstringpair boundarycondi-
tions andusedthe configurationminimizing the energyas initial condition in the
numericalsimulation of evolution. We usedoptimum interpolating initial condi-
tions for the following typesof stringpairs:

= (0, f(r) e’°)~-s 1 = (f(r) e’°,0), (3.18)

= (0, f(r) e’°)~-s = (if(r) e’°,0), (3.19)

4=(0,f(r) e’°)4-~~=(0,if(r)e’5). (3.20)

In all caseswe observedthe samepatternof behaviour;the position of the strings
remainedthe sameduring thewhole evolutionwhile the fields tendedto minimize
the initial relative SU(2) phase. In fig. 8 we show the evolved energydensity

correspondingto the initial condition (3.19)while fig. 9 showsthe corresponding
evolution of the upper componentof the field 4 (the evolution of the lower
component is similar, but with the initial minimum on the right). Clearly, the
positionsof the coresremainedunchangedduring the evolutionwhile the field 4

relaxedby equatingthe magnitudesof the upperand lower componentsof both
stringsthusminimizing the relative5U(2) orientation.This result implies that the
interactionof semilocalstrings is weak andit may be possibleto use an effective
action similar to theNambuaction to describetheir evolution. This however,does

not mean that semilocalstrings evolve identically with gaugedstrings in three
dimensions. For examplesemilocal strings can terminatewhile gaugedstrings

cannot.Three dimensionalsimulations are clearly necessaryto give a complete
pictureof the semilocalstringevolution.

To summarize,in this sectionwe havepresentedresultsof numericalsimula-
tions with semilocalstrings. Oursimulationsshow that semilocalstringsarestable
for /3 < 1 and that they canform with initial conditionsof nonzeromeasure.They
also show that semilocalstringinteractionsarequite weak.

4. Generalizations

As waspointedout in ref. [1], the semilocalstringcanbe generalizedtrivially by
consideringotherglobal symmetrygroups.Semilocalstringswith symmetrygroup
SU(N) x U(1) were discussedin [2], where it was shown that they correspondto
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CP” instantonsin two dimensions.The physical propertiesof thesemodelsare
basicallythe sameas for the SU(2) x U(l) string.

What aboutothersemi-localdefects?We define a semi-localdefect as onefor

which

= 0 but ~ ) ~0,

(n = 1 for strings,n = 2 for monopolesand n = 3 for textures).

Under very general assumptions,it was shown in ref. [1] that semi-local
monopolescannot exist. However, if one relaxes the condition 1T,,(V) = 0, it is
possibleto constructmodelswith “colour”; we will call thesedefects“coloured”,
as opposedto semilocal,becausetheir stability is really topological.

To illustrate the difference,considera model wherethe Higgsfield is the tensor
productof the adjoint representationof SU(2) andthe two-dimensionalrepresen-
tation of U(1), that is,

11~~’ ~122

6t~_- ~/t = i/j~, ~2 (4.1)

X Xi’ X2

where the SU(2)giobal transformationsare

1/) 1/)

e’~”” ~/,, (4.2)

x x

with

010 001 0 00
T’= —1 0 0 , T2= 0 ü 0 , T3= 0 0 1 , (4.3)

0 0 0 —l 0 0 0 —1 0

and the U(1)
10~.,1transformationsaregiven by

~i’ ~2 cosat~1sina~2, sina~1+cosa~2
~b~1’~P2~ cos a ~ —sin a tb~2’ sin a

11i~+cos a ~ (4.4)

Xi’ x
2 cos a Xi — sin a x2~ sin a Xi + cos a X2

The most generalaction compatiblewith thesesymmetriesis

S = f d4x[~ID,~Il2— +FP~F~~— ~A(4~
2— p2)2 — y~6I~X ~2I] (4.5)
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with A and y positive to ensurethat the energy is boundedfrom below. We are
usingherethe obviousnotation ~I’~= (4~,11’i~Xi), and similarly for ~2• Note that
~ x 4~is U(1)-invariant, and its modulusis also SU(2)-invariant.

The vacuummanifold is the set

~ ~ x4
2=0, (4.6)

andit canbe parametrizedas

~=i~cosOn, 42=iisinOn, (4.7)

where n = (ni, n2, n3) lies on the two sphere n = 1, providedwe identify the
points (0, n) and (0 + ir, —n). This is a non-trivial fibre bundleT with basespace
5~andfibre ~2 (or, alternatively,with basel~P

2andfibre Si). It canbe shownthat

~ (T) = 7/: the non-contractibleloops are thosestarting at (0, n) and finishing at
(0 + ir, —n) in the aboveparametrization.

Let us considerthe symmetrybreaking.When the Higgs field acquiresa v.e.v.,
say,

0, 0
1= 0, 0 (4.8)

1, 0

the stability group is given by

a b 0 / b~
c d 0 , with det( a =

0 ~ \c di

a b 0 /
e’~ c d 0 , with det~,°d) = —1, (4.9)

0 0 —l C

i.e. H = U(l)giob~iX ~2. If we only considerthe local symmetries,we have U(1)
breakingdown to ~2, andthe homotopygroupof the quotient is again 7/ (a circle
with oppositepoints identified is still a circle) so stringswill form.

Locally, thevacuummanifold looks like S2 x Si andthereforethesestringshave
colour parametersliving on S2 but they are not semilocalbecausethe vacuum is
not simply connected.In particular,the stringswill be stableevenaftergaugingthe
global SU(2).We will call them “coloured” strings.(Note that this model also has
global monopoles.)

In ref. [1] it wasshown that semilocalmonopolesdo not exist within somevery
general assumptions.A semilocal monopole would occur in a theory where
ir

2(G/H) = 0 but ~ � 0. Note that if one relaxes the condition
~-2(G/H) = 0, one can easily construct coloured monopoles. For instance, to
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obtain a modelwith colouredmonopoles,simply interchangethe global andlocal
symmetry group in the previous example.Thenwe have SU(2)iocaiX U(l)gi

0i~i

U(l)iocai, and ir2(V) = ~r2(F)= 7/. Thesemonopolesare topologicallystable.One
can also constructcolouredtexturesin thisway.

Finally, note that, as in the case of semilocal strings, there is an obvious
generalizationto other colouredmodelsby consideringdifferent global groups.

5. Conclusions

We havestartedan investigationof the cosmologicalformation andsubsequent
evolutionof string networks. In particular:

(1) we have shown that there is a non-zeromeasureset of asymptoticfield
configurationswhich will yield semilocalstringsin a cosmologicalphasetransition,
and

(2) we have shown that the interactions between infinitely long, parallel,

semilocal stringswith different colours are essentiallythe sameas for Nielsen—
Olesenstrings. The colour differenceis radiatedaway in the form of Goldstone
bosons.

The main difference betweenU(1) and semilocal strings is thereforethe fact
that the latter can terminate.The behavior of terminating strings is not well
understoodand shouldbe clarified before networksimulationscan be attempted.

We havealso confirmedby explicit numericalsimulationsHindmarsh’sanalysis
of the stability of semilocalcosmicstrings: we find that stringsarestablefor /3 < 1
andunstablefor /3> 1.

Finally, we havegiven examplesof topological defectswith colour. Theseare
not semilocaldefects,becausetheir stability is topological,but they havea colour
degreeof freedomsimilar to that of semilocalstrings.
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awardedby the SpaceTelescopeScience Institute (which is operatedby the
Association of Universities for Researchin Astronomy, Inc., for NASA under
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