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The influence of the e8'ective three-body interaction on the spectra of "Tc, "Mo, and "Ru is studied. It is

yen to give very seawall contributions for these nuclei.

NUCLEAR STRUCTURE Calculation of the effective three-body interaction on
the spectra of Tc, 8 Mo, and +Ru.

The importance of the effective three-body inter-
action was first discussed by Osnes' and Bertsch
in connection with the binding energies of nuclei
of the oxygen and calcium regions. Recently Singh'
and Dirim, Evans, and Elliott' investigated the ef-
fects of the three-body force on the spectra of Op

shell nuclei. In the present work we discuss the
importance of the effective three-body interaction
in the nuclei of the zirconium region. In particular
we study the nuclei 4~3Tc, ,",Mo, and ~Ru and
examine the assumption made in Refs. 5 and 6
that to a good approximation the effective three-

body interaction can be neglected for ~Mo and "Tc,
respectively.

There are two distinct types of three-body
graphs. These are labeled by (a) and (b) in Fig.
1. One notes that for these two diagrams only one
particle (hole) is outside the valence space whereas
for the two-body diagrams l(c), 1(d), and 1(e) two
particles (holes) or one particle and one hole may
be outside the valence space. This feature clearly
suggests that the two-body diagrams are more im-
portant than 1(a) and 1(b).

The expression for graph l(a) is

I j, J (j,j„IIVI jpjs;I)(j'j2;I'IVlpj, ;I')
(1)

P Ii .I
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where q,~=(1+6,~)' ' while i=2I+1. The expression for graph 1(b) can be easily obtained from (1) by a
change of sign and by replacing p by h. Graphs 1(a) and 1(b) each have eight exchange graphs not accounted
for by the antisymmetrized matrix elements of expression (1). The nine graphs corresponding to l(a) and
1(b) may all be expressed as

((jgja)1 js'~ ~ V ~ (i &I'3)I'~Is~~&= Qg,'g', g,Qjigl'y]'f(I ~I2~IBA'~ j2 j3'& &' ~)
s

where the exchange operator Qz, ~,z, is defined by

q"' =6 +(ik)'I' I'I21 n ( 1)"~. '"(IIf)'"lE &a&3 '
j, JK j, JK

(2)

and the operator b& &
interchanges particles j„j,.&~&R

The matrix element (2) has been written con-
veniently in the neutron. -proton formalism since
in our case protons and neutrons occupy different
orbitals. It should be noted that expression (2) is
not normalized if two or more of the particles are
identical. If two of the particles are identical (the

Mo case) the normalization factor is equal to 0.5.

In the case of three identical particles, however,
the basis states

~

jal,j;J) are generally not ortho-
gonal. In this case the normalization factor is
evaluated by means of the Schmidt method which
also serves to eliminate the redundant states from
the basis. An expression equivalent to (1)-(3) has
been given in Ref. 4 in terms of fermion creation
and annihilation operators.
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FIG. 2. Energy spacings used in the calculation.

FIG. 1. Effective three-body and two-body diagrams
discussed in the calculation. Exchange graphs accounted
for by the antisymmetrized two-body matrix elements
and topologically equivalent graphs are not shown.

For "Tc (~Ru) our basis states are constructed
among the (Og, &,p)' [(Og, &,p)'] configurations while
for "Mo we similarly restrict the two protons to
the Og, &, orbital but allow the valence neutron to be
in any of the 1d,&„2s,&„1d,&„and Og, &, orbitals.
To be consistent with earlier related calculations' '
we assume that the g, &, orbital is depressed by
Iso with respect to the other states of the same
oscillator energy. The unperturbed single-par-
ticle energies used in the calculation are shown
in Fig. 2. The calculation has been performed
with the Sussex matrix elements' for a b value of
21fm.

The contribution of the two-body diagrams 1(c),
1(d), and 1(e) for all 25&v excitations has already
been reported" for the case of "Tc and ~Ru. In
Tables I and II we make a comparison of this con-
tribution with the contributions of the three-body
diagrams 1(a) and 1(b) calculated in the same

space. Parity restrictions and conservation of
charge imply that the p or h excitation in diagrams
1(a) and 1(b) must be an even parity proton. Thus
only 1hu& excitations (p = Og, &„ld, 2s; h = Od, 1s)
contribute to these two diagrams. To test the ef-
fects of a larger space we have also calculated
the three-body effects allowing for up to 3@co ex-
citations (p also Oi, 1g, 2d, Ss; h also Os). The re-
sults of this enlarged space calculation are also
shown in Tables I and II.

In Table III we make a similar comparison be-
tween the two-body and three-body contributions
for ~Mo. Here the protons are allowed 1h~ ex-
citations and the neutrons 1+2Sco excitations
(p=Oi, 1g, 2d, Ss;h=Og, &„Od, ls). Due to the many
configurations involved in this calculation we only
list the 4= 2 case, but similar results have also
been obtained for the other J states.

Like in earlier calculations, '4 the contribution
of the effective three-body diagrams is found to
be considerably smaller than that of the two-body
diagrams in the case of three and four valence
particle systems. This is partly because there is
only one triad of valence particles in ~Tc and Mo
and four triads for ~Ru, while there are three and

TABLE I. Contribution of three-body diagrams to the 3Tc spectrum.

Two-body
diagrams

Diagram 1(a)
up to 1S~ exc.

Diagram 1(b)
up to Mco exc.

Diagrams 1(a)+ 1(b)
up to 1hcu exc.

Diagrams 1(a)+ 1{b)
up to 3k' exc.

3+
Y
5+
2

7+
2

(t) zl
2

(i [ 2)

(2 J 2)
ii+
2

13+
2

is+
T
1'f+
Y
2i+
2

-0.246

-0.592

-1.134

—1.970

—0.021

-0.071

—0.348

-0.423

0.330

0.302

0.625

0.009

0.005

-0.001

0.009

0.000

0.007

0.010

0.012

0.003

0.002

-0.001

0.009

0.002

0.001

0.000

-0.001

-0.004

-0.002

0.000

—0.004

0.000

-0.004

0.018

0.007

-0.000

0.009

-0.001

0.003

0.008

0.012

-0.001

0.002

-0.005

0.020

0.012

0.005

0.012

-0.000

0.006

0.010

0.010

0.001

0.001

-0.006

We list the matrix elements between orthogonal states of the {g9~2) configurations.
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TABLE II. Contribution of three-body diagrams to the ~4Ru spectrum.

Two-body
diagrams

Diagram 1(a) Diagram 1(b) Diagrams 1(a)+ 1(b)
up to Mm exc. up to M'u exc. up to N'co exc.

Diagrams 1(a)+ 1e)}
up to 3kco exc.

o'

&2I 2)

&»)
&'2 2}

4'
&xl2)

&2 I 3)
&3I s)

s' &z I a)
(1I 2)
&i I 3&

&2 I 2)
(l2 3)
(3 3)

8'

&2I2)

1p

-3.941
-0.043
-0.142

-1.172
0.574

-2.025

-0.176

-0.626
-0.619
-0.145
-1.217

0.137
-1.237

-0.488

-Q.171
0.454

-0.207
-0.902

0.166
-1.147

-0.451

-1.236
-0.018

0.186

0.467

0.240

1.011

0.036
0.001
0 ~ 028

0.032
-0.000

0.027

0.026

0.027
0.001

-0.003
0.024

-0.009
0.024

0.026

0.022
-0.000

0.002
0.011

-0.007
0.022

0.018

0.020
-0.001

0.021

0.014

0.019

0.001

0.001
-0.004
-0.017

0.003
-0.003
-0.002

-0.005

0.009
0.002
0.003

-0.003
-0.001

0.000

-0.001

-0.001
0.000
0.000

-0.001
0.004

-0.003

-0.005

-0.003
0.002

-0.007

-0.010

-0.005

-Q.P11

0.037
-0.003

0.011

0.035
—0.003

0.025

0.021

0.036
O.Q03

-0.000
0.021

-0.010
0.024

O.025

0.021
0.000
0.002
0.010

-0.003
0.019

0.013

0.017
0.001
0.014

0.004

0.014

-0.010

0.046
-0.001

0.024

0.043
-0.001

0.036

0.031

0 ~ 042
0.003

-0.001
0.029

—0.007
0 ~ 031

0.030

0.027
-0.001

0.002
0.020

-0.002
0.024

0.019

0.019
Q.001
0.015

P.005

0.009

-0.013

%e list the matrix elements between orthogonal states of the (gsy2) configurations.

six pairs, respectively, for these nuclei. A fur-
ther reason why the three-body contribution is so
small is, as stated before, that only a limited num-
ber of excitations contribute to the diagrams l(a)
and 1(b). In particular for "Mo there is an addi-
tional restriction. Thus there is no contribution
from the direct graphs l(a) and l(b) but only from
their eight exchange terms. Of these, four in-
volve even parity proton, and four even parity
neutron excitations.

As shown in Tables I and II of the two graphs 1(a)
and l(b) the former is generally the more im-
portant. This is expected since it involves more
intermediate states than the latter. Another con-
clusion drawn from the results of Tables I and II
is that the inclusion of the Bkro excitations does not
significantly affect the contributions of the three-
body graphs.

It may be observed from Tables I-ID that the
three-body corrections generally have an opposite
sign from the two-body contribution thus tending

to decrease the two-body effects. On the other
hand we find, as first suggested in Refs. 1 and 2,
that there is an exact cancellation between the
Pauli violating terms of diagrams l(c) and 1(e)

TABLE III. Three-body as compared with two-body
contributions to the spectrum of 93Mo in the case J= &.

Matrix elements Two body Three body

(1
(1

(2

2)
3)
4)
2)
3)

&2I 4&

&,
'3

t 3)
(314)
(4) 4)

-3.135
0.563

-0.658
O. 184

-1.330
0.270

-0.499
-1.217

0.176
-1.133

0.005
-0.005
-0.003

0.008
0.007

-0.003
-0 ~ 004
-0.006

0.001
-0.023

I && = l&ogggpp&'o, &2s, q, n»; I 2& =I &og,i,p&'2, &w, &, n&);

I » = I&og„,p&'2, 0d», ~&&; I4) = l&og„,pA, &og»„&&.
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and 1(a}and 1(b}. In particular the term with

j,m, = j,'m,' of diagram 1(a) cancels with the term
of 1(c}where p,m~, (or p~») is equal to j,m, .
Similarly the term of 1(b) where j,m, -

=jism f can-
cels with the term of 1(e) where pm -=j,m, . The
other type of Pauli violating terms of diagram 1(e)
as, for example, when j,'m,' =- j~„cancel with ap-
propriate one-body diagrams.

From the above it may be concluded that for few
valence nucleons, the three-body graphs in the

zirconium region are very small compared with
the hvo-body graphs calculated in the same space.
Thus the approximation made in Refs. 5 and 6 of
neglecting the three-body graphs seems to be justi-
fied. However, from combinatorial arguments it
is expected that these effects will become more im-
portant as one goes to heavier nuclei in this re-
gion. On the other hand, even for few-particle
systems the three-body graphs ought to be included
for an exact elimination of the Pauli violating terms.

*On leave from the American University, Beirut, Leban-
on.
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