
ar
X

iv
:h

ep
-p

h/
98

01
42

5v
3 

 2
0 

Ju
n 

19
98

hep-ph/9801425

THE EFFECTIVE WEAK MIXING ANGLE IN THE MSSM

A. DEDES1, A. B. LAHANAS2 and K. TAMVAKIS1

1Division of Theoretical Physics,

University of Ioannina, GR-45110, Greece

2Physics Department, Nuclear and Particle Physics Section University of Athens, Athens

157 71, Greece

Abstract
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merically, that, potentially dangerous, large logarithmic sparticle corrections

are cancelled. The relative difference factor ∆k between the mixing angle

defined as a ratio of couplings and the experimentally obtained angle is dis-

cussed. It is found that ∆k is dominated by the oblique corrections, while the

non-oblique overall supersymmetric EW and SQCD corrections are negligible.

The comparison of the MSSM with radiative electroweak symmetry breaking

to the LEP+SLD precision data indicates that rather large values of the soft

breaking parameter M1/2 in the region greater than 500 GeV are preferred.
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I. INTRODUCTION

The electroweak mixing angle sin2 θW , defined as a ratio of gauge couplings, provides a
convenient means to test unification in unified extensions of the Standard Model (SM) [1].
This quantity is not directly measured in experiments. Instead, LEP and SLD studies employ
an effective coupling sin2 θlepton

eff determined from on resonance asymmetries whose value is
known with excellent accuracy [2–5]. This effective mixing angle has been studied in detail
in the context of the SM at the one loop level in various renormalization schemes with the
dominant two loop heavy top contributions and three loop QCD effects taken into account
[4–8]. Due to large cancellations between fermion and boson contributions occurring at the
one loop level, in the MS scheme, these are the dominant contributions to the difference
sin2 θlepton

eff − sin2 θW ≈ O(10−4) which is less than the error quoted by the experimental
groups. Therefore, although conceptually different the two angles are very close numerically.
The mixing angle is sensitive on the values of the Higgs mass MH and top mass mt through
the quantities ∆rW and ∆ρ and carries an uncertainty of about .1% from its dependence on
the electromagnetic coupling α(MZ). ¿From the predictions of sin2 θlepton

eff and ∆ρ one can
draw useful theoretical conclusions concerning the Higgs and W - boson masses having as
inputs the Z - boson mass, the value of the fine structure constant and the Fermi coupling
constant which are experimentally known to a high degree of accuracy.

In the framework of supersymmetric extensions of the SM [9] the situation changes since
sin2 θW as well as sin2 θlepton

eff receive contributions from the superparticles in addition to ordi-
nary particles. Coupling unification at the GUT scale in conjunction with experimental data
for the strong coupling constant at MZ and radiative breaking of the Electroweak Symmetry
impose stringent constraints on the extracted value for sin2 θW . However sin2 θW is plagued
by large logarithms log(MZ/MS), where MS is the effective supersymmetry breaking scale∗.
Unlike sin2 θW the experimentally determined sin2 θlepton

eff is not plagued by such potentially
dangerous large logarithms due to decoupling. Therefore, the difference of the two angles
is not numerically small any more and sin2 θW cannot be directly used for comparison with
experimental data. Thus, in supersymmetric theories the precise relation between the two
angles is highly demanded. The non-decoupled supersymmetric corrections to sin2 θlepton

eff are
expected to be small of order (MZ/MS)2. However small these contributions may be, they
are of particular importance, since the experimental accuracy is very high, and these correc-
tions can be larger than the SM corrections occurring beyond the one loop order. Moreover
the effect of the one loop supersymmetric corrections may not be necessarily suppressed in
some sectors, such as the neutralino and chargino sectors, which are characterized by a rel-
atively small effective supersymmetry breaking scale for particular inputs of the soft SUSY
breaking parameters. Motivated by this we undertake a complete one loop study of the
supersymmetric corrections to the effective mixing angle in the context of the MSSM which
is the simplest supersymmetric extension of the Standard Theory.

Although there are several studies [10] in literature concerning the value of the weak

∗See for instance P. Chankowski, Z. Plucienic and S. Pokorski in ref. [10].
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mixing angle sin2 θW in the MSSM and other unified supersymmetric extensions of the SM,
only a few have tackled the problem of calculating the complete supersymmetric corrections
O(MZ/MS)2 to the experimentally measured angle sin2 θlepton

eff . In ref. [11] the effective mixing
angle is calculated in particular cases and the decoupling of large logarithms is numerically
shown. In that calculation all the one-loop corrections, including the non-universal super-
symmetric vertex and external fermion corrections , for the leptonic effective mixing angle
were considered. The non-universal corrections were found to be small. In other studies
[13–15], the serious constraints imposed by unification and radiative electroweak symmetry
breaking [16] have not been considered. Instead the MSSM parameters are considered as
free parameters chosen in the optimal way to improve the observed deficiencies of the SM in
describing the data.

In the present article we show explicitly how the cancellation of potentially dangerous
logs takes place and perform a systematic numerical study by scanning the entire parameter
space having as our main outputs the effective weak mixing angle, the values of the on Z -
resonance asymmetries measured in experiments, as well as the value of the strong coupling
constant at MZ . In each case we also give the theoretical prediction for the W - boson mass
through its relation to the parameter rho and the weak mixing angle.

It is perhaps worth noting that non-universal corrections, claimed to be small, are dom-
inated by large logs. These logs cancel at the end, as expected. Nevertheless, their presence
dictates that non-decoupled terms of order (MZ/MS)2 may be of the same order of magni-
tude as the corresponding terms stemming from the universal corrections and cannot be a
priori omitted. Knowing from other studies that universal corrections tend to decrease the
value of the effective mixing angle by almost six standard deviations from the experimental
central value it is important to see what is the effect of the non-universal contributions.
We take into account all constraints from unification and radiative EW symmetry breaking.
These constraints, along with the experimental bounds for the strong coupling constant and
sin2 θlept

eff , may restrict further the allowed parameter space.

II. FORMULATION OF THE PROBLEM

The value of the weak mixing angle, defined as the ratio of the gauge couplings, is

ŝ2(Q) =
ĝ′2(Q)

ĝ2(Q) + ĝ′2(Q)
, (1)

where ĝ and ĝ′ are the SU(2) and U(1)Y gauge couplings. Throughout this paper the
hat refers to renormalized quantities in the modified DR scheme [17,18]. These couplings
are running in the sense that they depend on the scale Q. Particularly for the electroweak
processes, Q is chosen to be MZ . There are many sources for the determination of the ŝ2.
From muon decay, for instance, and knowing that MZ = 91.1867 ± 0.0020GeV , αEM =
1/137.036 and GF = 1.16639(1) × 10−5 GeV −2, we get in the (DR) scheme

ŝ2ĉ2 =
π αEM√

2M2
Z GF (1 − ∆α̂) ρ̂ (1 − ∆r̂W )

, (2)
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where

ρ̂−1 = 1 − ∆ρ̂ = 1 − ΠZZ(M2
Z)

M2
Z

+
ΠWW (M2

W )

M2
W

, (3)

∆r̂W =
ΠWW (0) − ΠWW (M2

W )

M2
W

+ δ̂V B , (4)

α̂ =
αEM

1 − ∆α̂
. (5)

Π’s are the transverse gauge bosons self energies evaluated in the DR scheme. Explicit
forms for these self energies can be obtained from ref. [11]. The weak mixing angle obtained
from (2) although it plays a crucial role in the analysis of grand unification, it is not an
experimental quantity. Actually, it is obtained after fitting experimental observations with
αEM and GF as accurately known parameters (for more details see ref. [20]). The radiative
corrections on ŝ2 involve two subtleties: i) the renormalization scheme dependence† and ii)
the dependence on the mass of the top quark, Higgs masses and superparticle masses which
depend on the supersymmetric breaking parameters M1/2, M0, and A0.

As we can see from Fig.1, ŝ2 takes large values when we increase the masses of the soft
breaking parameters. In other words, the soft breaking parameters do not decouple from ŝ2.
This is due to the fact that the net effect of the contributions (3),(4),(5) to (2), contains
large logarithms of the form log(MSUSY

MZ
). On the other hand, the LEP collaborations [2]

employ an effective weak mixing angle sin2 θf
eff ≡ s2

f , first introduced by the authors of ref.
[4], which is not plagued by large logarithms due to decoupling. It is a common belief among
GUT theorists that these two angles ŝ2 and s2

f , although different conceptually, are very close
numerically [5]. Nevertheless, this is not true in the MSSM since there are large logarithmic
dependencies of the weak mixing angle ŝ2.

The tree level Lagrangian associated with the Zff can be written in the form

LZff
tree =

ê

2ĉŝ
Zµfγµ

[(

T f
3 − 2ŝ2Qf

)

− γ5T
f
3

]

f , (6)

where Qf is the electric charge and T f
3 is the third component of isospin of the fermions f .

Electroweak corrections in (6) yield the effective Lagrangian

LZff
eff = (

√
2GF MZ ) ρ

1/2
f Zµfγµ

[(

T f
3 − 2ŝ2k̂fQ

f
)

− γ5T
f
3

]

f , (7)

which is relevant to study Neutral Current processes on the Z - resonance. Then, the effective
weak mixing angle is simply defined from (7) as

† We are working on the modified DR scheme of ref. [18] which preserves supersymmetry up to

two-loops.
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s2
f ≡ ŝ2k̂f = ŝ2(1 + ∆k̂f ) . (8)

The angle s2
f can be compared directly with experiment while ŝ2 can be predicted from a

Grand Unification analysis. The LEP and SLD average gives the value 0.23152±0.00023 [3]
for the s2

l ≡ sin2θlept
eff . Since

c2
f = ĉ2

(

1 − ŝ2

ĉ2
∆kf

)

,

one obtains by making use of equations (2) and (8)

s2
fc

2
f =

π αEM (1 + ∆k̂f) (1 − ŝ2

ĉ2
∆k̂f)√

2M2
Z GF (1 − ∆α̂) ρ̂ (1 − ∆r̂W )

, (9)

where

∆k̂f =
ĉ

ŝ

ΠZγ(M
2
Z) − ΠZγ(0)

M2
Z

+
α̂ĉ2

πŝ2
log(

M2
W

M2
Z

) − α̂

4πŝ2
Vf(M

2
Z) + δkSUSY

f . (10)

The function Vf(M
2
Z) can be obtained from ref. [4]‡. δkSUSY

f denotes the non-universal
supersymmetric self energies and vertex corrections to s2

f .

In order to study MSSM (or SM) corrections to s2
f , we need calculate first the Z and W

gauge boson self energy corrections which contribute to ρ̂ and ∆r̂W . Our expressions agree
with those of ref. [11]§ and [12]. We need also calculate the Z − γ propagator corrections,
the wave function renormalization of external fermions as well as the Zff vertex corrections
which contribute to ∆k̂f . The supersymmetric contributions to last two were found to be
negligible, for the leptonic case, in the minimal supergravity model studied in ref. [11].
Including all these corrections in (9), we expect that the effective weak mixing angle s2

f , does

not suffer from potentially large logarithms, ∼ log(
M2

SUSY

M2
Z

).

At this point we should say that when the electroweak symmetry is broken by radiative
corrections, the value of the parameter µ, which specifies the mixing of the two Higgs multi-
plets within the superpotential, turns out to be of the order of the supersymmetry breaking
scale in most of the parameter space. Under these circumstances it is not only the large log-

arithms log(
M2

SUSY

M2
Z

) which should be cancelled but also logarithms involving the parameter
µ.

‡In the case f=bottom, the important top quark corrections to Zbb̄ vertex should be added to Vf .

§To match our conventions with those of ref. [11] we have to replace their matrices by the following:

N → OT , and U → U∗.
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III. DECOUPLING OF LOG(MSUSY /MZ) IN THE EFFECTIVE MIXING ANGLE

In this section we will first show how the potentially dangerous ∼ log(M1,2

MZ
), log( µ

MZ
) from

the contributions of the neutralinos and charginos are cancelled in the expression for sin2θf
eff

when the soft SUSY breaking parameter M1/2 is large (M2
SUSY >> M2

Z).

There are three sources of large logarithms which affect the value of the weak mixing
angle sin2 θf

eff :

i) Gauge boson self energies which feed large logs to the quantities ∆r̂W , ρ̂ and ∆k̂f .
ii) Vertex, external wave function renormalizations and box corrections to muon decay which
affect ∆r̂W through δSUSY

V B .
iii) Non-universal vertex and external fermion corrections to Zff coupling which affects
∆k̂f .
We shall see that the corrections (i) are cancelled against large logs stemming from the
electromagnetic coupling α̂(MZ). The rest, (ii) and (iii), are cancelled against themselves.

In order to prove the cancellation of the large log(MSUSY /MZ) terms among the dimen-
sionless quantities ∆r̂W , ρ̂, ∆k̂f and α̂(MZ), through which sin2 θf

eff is defined, it suffices to
ignore the electroweak symmetry breaking effects e.g < Ho

1 >=< Ho
2 >= 0. In this case the

masses of charginos and neutralinos take the simple form

mχo
i

= M1 , M2 , µ , −µ , (11)

mχ+
i

= M2 , µ . (12)

i) Vector boson self energy corrections

The contributions from the chargino/neutralino sector to the vector bosons self energies
are

Π
χo

i /χ+
i

ZZ =
ĝ2

16π2

{

1

2
H(µ, µ)

[

1

ĉ2
+ 4

(

ĉ − 1

2ĉ

)2
]

+ µ2B0(µ, µ)

[

1

ĉ2
+ 4

(

ĉ − 1

2ĉ

)2
]

+ 2ĉ2H(M2, M2) + 4ĉ2M2
2 B0(M2, M2)

}

, (13)

Π
χo

i /χ+
i

WW =
ĝ2

16π2

[

H(µ, µ) + 2µ2B0(µ, µ) + 2H(M2, M2) + 4M2
2 B0(M2, M2)

]

, (14)

Π
χo

i /χ+
i

Zγ =
êĝĉ2θW

16π2ĉ

[

4B̃22(µ, µ) + p2B0(µ, µ)

]

+
2êĝĉ

16π2

[

4B̃22(M2, M2) + p2B0(M2, M2)

]

, (15)
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where ĝ = ê
ŝ

is the running DR SU(2) gauge coupling.

In order to calculate the dependence of s2
f on M1,2/µ we make use of eqs.3,4,5 and reduce

all functions appearing in the expressions for the two point functions above in terms of the
basic integrals A0, B0 (see Appendix B). Isolating the logarithmic dependencies on M1,2/µ
we find that,

∆r̂W =
α̂

4π

2

3ŝ2

[

1 + 2 log
(

M2
2

Q2

)

+ log
(

µ2

Q2

)

]

, (16)

∆ρ̂ =
α̂

4π

2

9ĉ2

[

1 + 2ĉ2θW
+ 6ĉ2 log

(

M2
2

Q2

)

+ 3ĉ2θW
log
(

µ2

Q2

)

]

, (17)

∆k̂f = − α̂

4π

2 cot θW

9ŝ2

[

ŝ2θW
+ ĉ2θW

tan θW

+ 3ŝ2θW
log
(

M2
2

Q2

)

+ 3ĉ2θW
tan θW log

(

µ2

Q2

)

]

, (18)

∆α̂ = − α̂

3π

[

log
(

M2
2

Q2

)

+ log
(

µ2

Q2

)

]

. (19)

The angle θ̂W is the weak mixing angle defined through ratios of couplings in the DR scheme
and θW is the on shell mixing angle defined by sin2 θW = 1 − M2

W /M2
Z . In the equations

above ĉ2θW
≡ cos(2θ̂W ), ŝ2θW

≡ sin(2θ̂W ) with similar definitions for c2θW
, s2θW

.

Plugging in all that into (9), we find that s2
effc

2
eff is corrected as

∆(s2
effc

2
eff ) =

π αEM√
2M2

Z GF

8

9
(

α̂

4π
) , (20)

which at one loop order is independent of large logs. It must be noted that this result is
also independent of the sign of µ. However this finite correction vanishes when the next to
leading terms in the expansion of B0 are considered.

ii) Vertex and Box Corrections from muon decay

The non-universal contribution to ∆r̂W , which contains vertex and box as well as external
wave function renormalization corrections, is divided into two parts

δV B = δSM
V B + δSUSY

V B . (21)

The Standard model part appears in ref. [4]. The supersymmetric contributions can be
found in refs. [11], [21]. We reproduce the results of ref. [11] for the wave - function and
vertex corrections here,
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δSUSY
V B = − ŝ2ĉ2

2πα̂
M2

ZRea1 + (δυe +
1

2
δZe +

1

2
δZνe) + (δυµ +

1

2
δZµ +

1

2
δZνµ) , (22)

where the wave-function and vertex corrections are

16π2 δZνe = −
2
∑

i=1

∣

∣

∣aχ̃+
i νeẽL

∣

∣

∣

2
B1(0, mχ̃+

i
, mẽL

) −
4
∑

j=1

∣

∣

∣aχ̃0
jνeν̃e

∣

∣

∣

2
B1(0, mχ̃0

j
, mν̃e) , (23)

16π2 δZe = −
2
∑

i=1

∣

∣

∣aχ̃+
i eν̃e

∣

∣

∣

2
B1(0, mχ̃+

i
, mν̃e) −

4
∑

j=1

∣

∣

∣aχ̃0
jeẽL

∣

∣

∣

2
B1(0, mχ̃0

j
, mẽL

) , (24)

16π2 δve =
2
∑

i=1

4
∑

j=1

aχ̃+
i νeẽL

a∗
χ̃0

jeẽL

{

−
√

2

g
aχ̃0

j χ̃+
i Wmχ̃+

i
mχ̃0

j
C0(mẽL

, mχ̃+
i
, mχ̃0

j
)

+
1√
2g

bχ̃0
j χ̃+

i W

[

B0(0, mχ̃+
i
, mχ̃0

j
) + m2

ẽL
C0(mẽL

, mχ̃+
i
, mχ̃0

j
) − 1

2

]

}

−
2
∑

i=1

4
∑

j=1

aχ̃+
i eν̃e

aχ̃0
jνeν̃e

{

−
√

2

g
bχ̃0

j χ̃+
i W mχ̃+

i
mχ̃0

j
C0(mν̃e, mχ̃+

i
, mχ̃0

j
)

+
1√
2g

aχ̃0
j χ̃+

i W

[

B0(0, mχ̃+
i
, mχ̃0

j
) + m2

ν̃e
C0(mν̃e, mχ̃+

i
, mχ̃0

j
) − 1

2

]

}

+
1

2

4
∑

j=1

a∗
χ̃0

jeẽL
aχ̃0

jνeν̃e

[

B0(0, mẽL
, mν̃e) + m2

χ̃0
j
C0(mχ̃0

j
, mẽL

, mν̃e) +
1

2

]

, (25)

and the non-vanishing couplings are given by ∗∗

aχ̃+
1 νeẽL

= aχ̃+
1 eν̃e

=
ê

ŝ
, (26)

aχ̃0
1νeν̃e

= aχ̃0
1eẽL

= − ê√
2ĉ

, (27)

aχ̃0
2νeν̃e

= − aχ̃0
2eẽL

=
ê√
2ŝ

. (28)

In all expressions above the functions B0,1, C0 are considered with vanishing momenta
squared and their analytic expressions in terms of the masses involved are given in Ap-
pendix B. We recall that we have ignored EW symmetry breaking effects so that mχ̃0

1
= M1,

mχ̃0
2

= M2 and mν̃e = mẽL
= ML̃. We have compared these results with those of Ref. [21]

∗∗ To conform with the notation of ref. [11] we use the couplings aχ̃0
aχ̃+

i W ≡ gPL
ai, bχ̃0

aχ̃+
i W ≡ gPR

ai.

PL
ai and PR

ai are given in the Appendix A ( see Eqs. A.13 ). Also the lepton, slepton, chargino (or

neutralino) couplings in the equations (25-28) differ in sign from those given in A.20.
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and we have found agreement. Dangerous large log corrections are contained only in the
second and third part of the eq.(22). For these terms we obtain,

(

δυe +
1

2
δZe +

1

2
δZνe

)

= − 1

ŝ2

(

α̂

4π

){

2M2
2 C0(ML̃, M2, M2)

− M2
L̃
C0(ML̃, M2, M2) +

1

4
M2

2 C0(M2, ML̃, ML̃) − 1

4
M2

1

ŝ2

ĉ2
C0(M1, ML̃, ML̃)

− B0(0, M2, M2) +
1

4

(

1 − ŝ2

ĉ2

)

B0(0, ML̃, ML̃) +
1

2
+

1

8

(

1 − ŝ2

ĉ2

)

+
3

2
B1(0, M2, ML̃) +

ŝ2

2ĉ2
B1(0, M1, ML̃)

}

. (29)

Using Eqs. (B7-B10) of Appendix B, we find that the expression above involves no large
logarithms. Also as said before the first term (Reα1) in eq. (22) contains finite parts which
go as ∼ MZ

MSUSY
. Thus no large logarithmic terms arising from the wave function and vertex

corrections of the muon decay and the decoupling of large logarithms in s2
f appear.

iii) Non-universal corrections to ∆k̂f

The Zff vertex corrections can be written as

i
ê

2ŝĉ
γµ ( F

(f)
V − γ5F

(f)
A ) , (30)

where F
(f)
V , F

(f)
A denote the vector and axial couplings respectively. Incorporating the tree

level couplings we can write this vertex in a slightly different form as ††

i
ê

ŝĉ
γµ ( u′

LPL + u′
RPR) , (31)

where

u′
L = uL +

F
(f)
L

16π2
, (32)

u′
R = uR +

F
(f)
R

16π2
. (33)

In the equations above uL, uR are the tree level left and right handed couplings respectively
related to the vector vf and axial af tree level couplings by vf = uL + uR, af = uL − uR.

††We follow the notation of Ref. [14] which will be useful in what will follow.
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F
(f)
L,R denote the corresponding one loop corrections to the aforementioned couplings, with

the coefficient 1/16π2 factored out for convenience. These are related to F
(f)
V , F

(f)
A of eq.

(30) by

F
(f)
V ≡ 1

16π2
(F

(f)
L + F

(f)
R ) , (34)

F
(f)
A ≡ 1

16π2
(F

(f)
L − F

(f)
R ) . (35)

As a result the corrections to ∆k̂f are given by

∆k̂f = − 1

16π2

1

ŝ2Qf (uL − uR)
( uLF

(f)
R − uRF

(f)
L ) , (36)

and are equivalent to the well known expression

∆k̂f = − 1

2ŝ2Qf

( F
(f)
V − vf

af

F
(f)
A ) . (37)

In eq. (10) we have denoted by δkSUSY
f the supersymmetric contributions to ∆k̂f . Here

we consider the example of the decoupling of large logs in δkSUSY
f in the case where the

fermion f stands for a “down” quark denoted by b being in the same isospin multiplet with
the “up” quark denoted by t. In this case we have

uL = −1

2
+

1

3
ŝ2 , (38)

uR =
1

3
ŝ2 , (39)

Qf = −1

3
. (40)

The cases of other fermion species are treated in a similar manner. In what follows we will
consider only the chargino corrections to vertices and external fermion lines. The decoupling
of large logarithmic terms arising from the neutralinos exchanges proceeds in exactly the
same manner.

We will first discuss the self energy corrections to Zbb̄ vertex. From the diagrams of the
Figure 2a, we obtain ‡‡ , in an obvious notation,

F
(b)
L =

∑

i=1,2

∑

j=1,2

b1(mt̃j , mχ̃i
, mb) uL |abt̃χ̃

ij |2 , (41)

F
(b)
R =

∑

i=1,2

∑

j=1,2

b1(mt̃j , mχ̃i
, mb) uR |bbt̃χ̃

ij |2 . (42)

‡‡ The functions b1, c0 used throughout this section which are defined below should not be confused

with the Passarino-Veltman functions [22] which are commonly denoted by capital letters. These

are actually the reduced Passarino-Veltman functions [23] defined as
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¿From the Appendix A (see the discussion following eqs. A.19) we get abt̃χ̃
11 = g, abt̃χ̃

22 = −ht

and bbt̃χ̃
21 = −hb. All other couplings vanish when the electroweak symmetry breaking effects

are ignored. Thus we get,

F
(b)
L = uL

[

g2b1(mt̃L , M2, mb) + h2
t b1(mt̃R , µ, mb)

]

, (43)

F
(b)
R = uR

[

h2
bb1(mt̃L , µ, mb)

]

. (44)

On the other hand, from the first triangle graph of Figure 2b we obtain,

F
(b)
L =

∑

i,j,k=1,2

c0(mχ̃k
, mt̃i , mt̃j )

(

2

3
ŝ2δij −

1

2
K t̃∗

i1K t̃
j1

)

abt̃χ̃
ki abt̃χ̃∗

kj , (45)

F
(b)
R =

∑

i,j,k=1,2

c0(mχ̃k
, mt̃i , mt̃j )

(

2

3
ŝ2δij −

1

2
K t̃∗

i1K t̃
j1

)

bbt̃χ̃
ki bbt̃χ̃∗

kj , (46)

which, when the electroweak effects are ignored, have the following form,

F
(b)
L =

(

2

3
ŝ2 − 1

2

)

g2c0(M2, mt̃L , mt̃L) +
2

3
ŝ2h2

t c0(µ, mt̃R , mt̃R) , (47)

F
(b)
R =

(

2

3
ŝ2 − 1

2

)

h2
bc0(µ, mt̃L, mt̃L) . (48)

The calculation of the second diagram of Figure 2b gives §§

F
(b)
L = −

∑

i,j,k=1,2

{

[

P 2c6(mt̃k
, mχ̃i

, mχ̃j
) − 1

2
− c0(mt̃k

, mχ̃i
, mχ̃j

)
]

AL
ij

+ mχ̃i
mχ̃j

c2(mt̃k
, mχ̃i

, mχ̃j
) AR

ij

}

abt̃χ̃
ik abt̃χ̃∗

jk , (49)

F
(b)
R = −

∑

i,j,k=1,2

{

[

P 2c6(mt̃k
, mχ̃i

, mχ̃j
) − 1

2
− c0(mt̃k

, mχ̃i
, mχ̃j

)
]

AR
ij

+ mχ̃i
mχ̃j

c2(mt̃k
, mχ̃i

, mχ̃j
) AL

ij

}

bbt̃χ̃
ik bbt̃χ̃∗

jk , (50)

b1(m1,m2, q) ≡
∫ 1

0
dx x log

xm2
1 + (1 − x)m2

2 − q2x(1 − x) − iǫ

Q2
,

c0(m1,m2,m3) ≡
∫ 1

0
dx

∫ 1−x

0
dy log

(1 − x − y)m2
1 + xm2

2 + ym2
3 − (1 − x − y)(x + y)m2

b − xyP 2

Q2
.

§§ [c2, c6](m1,m2,m3) =
∫ 1
0 dx

∫ 1−x
0 [1, x] 1

(1−x−y)m2
1+xm2

2+ym2
3−(1−x−y)(x+y)m2

b
−xyP 2−iǫ

.

10



where P is the momentum carried by the Z - boson. The couplings AL
ij,AR

ij can be read
from Appendix A (see Eqs. A.17). In the absence of electroweak symmetry breaking effects
the only non-vanishing couplings are

AL
11 = ĉ2 = AR

11 , (51)

AL
22 = ĉ2 − 1

2
= AR

22 . (52)

Thus, we obtain

F
(b)
L = g2ĉ2c0(mt̃L , M2, M2) + h2

t

(

ĉ2 − 1

2

)

c0(mt̃R , µ, µ) , (53)

F
(b)
R = h2

b

(

ĉ2 − 1

2

)

c0(mt̃L , µ, µ) . (54)

Summing up the diagrams of Figures 2a and 2b we get

F
(b)
L =

(

−1

2
+

1

3
ŝ2
)

[

g2b1(mt̃L , M2, mb) + h2
t b1(mt̃R , µ, mb)

]

+
(

2

3
ŝ2 − 1

2

)

g2c0(M2, mt̃L , mt̃L) +
2

3
ŝ2h2

t c0(µ, mt̃R , mt̃R)

+ g2ĉ2c0(mt̃L , M2, M2) + h2
t

(

ĉ2 − 1

2

)

c0(mt̃R , µ, µ) , (55)

F
(b)
R =

1

3
ŝ2h2

bb1(mt̃L , µ, mb) +
(

2

3
ŝ2 − 1

2

)

h2
b c0(µ, mt̃L , mt̃L)

+ h2
b

(

ĉ2 − 1

2

)

c0(mt̃L , µ, µ) . (56)

In the limit of q2 = m2
b ≃ 0, P 2 = M2

Z → 0 or M2
Z << M2

SUSY , the following useful
relations hold,

c0(m1, m2, m3) = b1(m2, m1, 0) , (57)

c0(m1, m2, m3) − b1(m1, m2, 0) =
1

m2
1 − m2

2

[

m2
1m

2
2 log

(

m2
1

m2
2

)

− 1

2

(

m2
1 + m2

2

)

]

. (58)

Using these we have for the expressions for F
(b)
L,R above

F
(b)
L = h2

t O

(

m2
t̃R

µ2

)

+ g2 O

(

m2
t̃L

M2
2

)

, (59)

and
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F
(b)
R = h2

b O

(

m2
t̃L

µ2

)

, (60)

which is independent of large logs and the decoupling of terms log(MSUSY

MZ
) is manifest.

So far we have considered the cancellation of potentially large logarithms involving the
soft SUSY breaking scale M1/2 and the mixing parameter µ which arise from the neutralino
and chargino sectors when M1/2 >> MZ . A similar analysis can be repeated for the cor-
responding contributions of the squark and slepton sectors, whose masses depend also on
the soft SUSY breaking parameters M0, when M0 gets large. We have carried out such an
analysis and found that the decoupling of large logarithms does indeed occur when these pa-
rameters get large values. It is not necessary to present the details of such a calculation here.
We merely state that large logarithms arising from the vector boson self energy corrections
which contribute to the quantities ∆r̂W , ρ̂ and ∆k̂f cancel against those from α̂(MZ). Also,
the large log contributions from the muon decay amplitude, which affect the effective mixing
angle through δSUSY

V B , cancel among themselves. As for the large logarithmic contributions to
the weak mixing angle from the non-universal corrections to the factor ∆k̂f , these are found
to be cancelled in exactly the same way as in the case of the neutralinos and charginos∗∗∗.

iv) SQCD corrections to ∆k̂f

The last corrections to be considered are the SQCD non-universal corrections [30] which,
due the largeness of the strong coupling constant, are, naively, expected to yield contributions
larger than those of the electroweak sector. This case is of relevance only when the external
fermions in the Zff vertex are quark fields and is of particular interest for the bottom case
whose measurement of the Forward / Backward asymmetry AFB

b yields the most precise
individual measurement at LEP.

The one loop correction to Zqq vertex (see Figure 2c) where two squarks, which are
coupled to the Z - boson, and a gluino are exchanged yields for the Left and Right handed
couplings defined in Eqs. (30)-(33),

F
(q)
L =

16

3
(4παs)

∑

i=1,2

∑

j=1,2

K q̃⋆

j1K
q̃
i1 Aji

q̃ C24(m
2
q, M

2
Z , m2

q ; M
2
g̃ , m2

q̃i
, m2

q̃j
) , (61)

F
(q)
R =

16

3
(4παs)

∑

i=1,2

∑

j=1,2

K q̃⋆

j2K
q̃
i2 Aji

q̃ C24(m
2
q, M

2
Z , m2

q ; M
2
g̃ , m2

q̃i
, m2

q̃j
) . (62)

In these, the coupling Aji
q̃ is given by

Aji
q̃ = uL K q̃⋆

j1K
q̃
i1 + uR K q̃⋆

j2K
q̃
i2 ,

∗∗∗The logarithmic corrections of the Higgs sector to the Zbb̄ vertex and external b lines are

cancelled in exactly the same manner.
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with K q̃
ij the matrix diagonalizing the squark q̃ mass matrix. The function C24, with momenta

and masses as shown, is the coefficient of gµν in the tensor three point integral ( This is

denoted by C20 in ref. [29] ). The contribution of FL,R
(q) to the form factor ∆k̂q is free of

large logarithms. In order to understand this consider the case of vanishing quark mass mq.
In this case the matrix K q̃

ij becomes the unit matrix. It is easy to see that the contribution

to ∆k̂q, as this is read from Eq. (36), is proportional to the difference

C24(m
2
q , M

2
Z , m2

q; M
2
g̃ , m2

q̃1
, m2

q̃1
) − C24(m

2
q , M

2
Z , m2

q ; M
2
g̃ , m2

q̃2
, m2

q̃2
) .

In this difference the leading log terms cancel each other. Note that it would vanish if the
left and right handed squark fields happened to be degenerate in mass. Due to their mass
splitting however the result is not vanishing but at any rate small. In general the SQCD
vertex corrections turn out to be smaller than the corresponding electroweak corrections, as
we have verified numerically.

As for the external quark contributions (see Figure 2d) we find

F
(q)
L =

8

3
(4παs) uL

[

c2 B1(m
2
q , M

2
g̃ , m2

q̃1
) + s2 B1(m

2
q, M

2
g̃ , m2

q̃2
)
]

, (63)

F
(q)
R =

8

3
(4παs) uR

[

s2 B1(m
2
q, M

2
g̃ , m2

q̃1
) + c2 B1(m

2
q , M

2
g̃ , m2

q̃2
)
]

. (64)

In the equation above c ≡ K q̃
11, s ≡ K q̃

12. Their contribution to ∆k̂q is free of large logarithms
and small due to cancellations of the leading terms exactly as in the case of the vertex
corrections discussed previously. In fact in the limit of vanishing quark mass the self energy
corrections to ∆k̂q is proportional to the difference

B1(m
2
q , M

2
g̃ , m2

q̃1
) − B1(m

2
q , M

2
g̃ , m2

q̃2
) .

which vanishes when the squark masses are equal. Therefore, following the same arguments
as in the vertex case, we are led to the conclusion that SQCD contributions from the external
quark lines are small.

Besides the cancellations discussed above which lead to relatively small SQCD vertex
and external fermion corrections, these two contributions tend to cancel each other since
they contribute with opposite signs. This results in very small overall SQCD corrections to
∆k̂q almost one to two orders of magnitude smaller than the corresponding non-universal
electroweak corrections. We shall come back to this point later when discussing our numerical
results.

In the following section we shall discuss our numerical results concerning the predictions
of the MSSM for the effective mixing angle and asymmetries. We will also present the
corresponding theoretical predictions for the mass of the W - boson through its connection
to the parameter rho and the effective mixing angle.
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IV. NUMERICAL ANALYSIS AND RESULTS

For a given set of pole masses mpole
t , mpole

b , mpole
τ we define the DR Yukawa couplings at

MZ . To start with, we set a test value for the ŝ2 (i.e ŝ2 = 0.2315) and we define the DR
gauge couplings ĝ1 and ĝ2 at MZ . The numerical output is independent of the starting value
for ŝ2. For ŝ2 around the value given above the number of iterations needed for convergence
is minimized. Then we use the 2-loop Renormalization Group equations [24] to run up to
the scale MGUT where ĝ1 and ĝ2 meet. At MGUT we impose the unification condition

gGUT ≡ ĝ1 = ĝ2 = ĝ3 . (65)

Assuming universal boundary conditions for the soft breaking parameters M0, M1/2 and A0,
we run down to MZ and find the couplings and the soft masses at MZ which are inputs
for the self energies of the gauge bosons, wave functions and vertex corrections and they
define the new ŝ2. The whole procedure is iterated until convergence is reached satisfying
the full one loop minimization conditions in order to have radiative symmetry breaking
observing the experimental bounds on supersymmetric particles. For the calculation of the
one loop integrals encountered we have made use of the FF library [25]. The conversion of the
“theoretical” ŝ2 to the experimental s2

f through eq.(8) gives our basic output : the effective
weak mixing angle s2

f . In addition, the value of the strong QCD coupling, as it is calculated

in the MS scheme at MZ , is among our outputs [19]. Note that we have used as inputs the
parameters αEM , MZ and GF which are experimentally known to a high degree of accuracy,
as well the masses of leptons and quarks.

The factor ∆k̂f needed to pass from the ŝ2(MZ) to the effective angle s2
f(MZ) receives

universal corrections, from the γ −Z propagator, and non-universal corrections arising from
vertices and external wave function renormalizations. We find that the non-universal Elec-
troweak supersymmetric corrections are very small. Although separately vertex and external
fermion corrections are large they cancel each other yielding contributions almost two orders
of magnitude smaller than the rest of the electroweak corrections. The non-universal SQCD
contributions although a priori expected to to be larger than the Electroweak corrections
turn out to be even smaller. The reason for this was explained in the previous section. In
fact they are found to be one to two orders of magnitude smaller than the corresponding
electroweak corrections. We conclude therefore that at the present level of accuracy one can
safely ignore the supersymmetric non-universal corrections to the factors ∆k̂f . The situa-
tion is very clearly depicted in Table I where for some characteristic input values we give the
contributions of the various sectors to ∆k̂f , as well as their total contributions, and also the
corresponding predictions for the values of the effective mixing angle and the asymmetries.
Concerning the values displayed in Table I, in a representative case, a few additional remarks
are in order:
i) The bulk of the supersymmetric corrections to ∆k̂f is carried by the universal corrections
which are sizable, due to their dependence on large logarithmic terms. These cancel similar
terms in ŝ2.
ii) The contribution of Higgses, which is small, mimics that of the Standard Model with a
mass in the vicinity of ≃ 100GeV .
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iii) Gauge and Higgs boson contributions tend to cancel large universal contributions of mat-
ter fermions. Concerning the gauge boson contributions note that they are different for the
different fermion species l, c, b. This is due to the fact that their non-universal corrections
depend on the charge and weak isospin assignments of the external fermions and on the mass
of the top for when the external fermion is a bottom.
iv) The slepton universal corrections are suppressed relative to their corresponding squark
contributions. This is due to the following reason. The couplings of the left and right handed
sleptons to the neutral Z - boson depend on the angle ŝ2 and would be exactly opposite if
ŝ2 happened to be 1

4
. Thus their contributions to the γ − Z propagator would be exactly

opposite if their masses were equal leading to a vanishing slepton contribution.The fact that
ŝ2 ≃ .23 is close to 1

4
in conjunction with the fact that the left and right handed sleptons

are characterized by small mass splittings leads to the conclusion that universal slepton
contributions to ∆k̂f are small.

In Figure 3, we display the effective weak mixing angle s2
l (MZ), obtained from the vertex

Z−l+−l−, and the weak mixing angle ŝ2(MZ) as functions of the soft gaugino mass parameter
M1/2, the soft parameter M0, A0 as well as the parameters tan β and mt inside the region
which is indicated in the figure. Non-universal supersymmetric vertex and external fermion
corrections have been taken into account. As is well known there is a discrepancy between the
LEP and SLD experimental values of s2

eff . The LEP average s2
eff = 0.23199±0.00028 differs

by 2.9σ from the SLD value s2
eff = 0.23055±0.00041 obtained from the single measurement

of left-right asymmetry [3]. The LEP+SLD average value is s2
eff = 0.23152 + 0.00023. We

observe that ŝ2(MZ) takes on the “theoretical” value ŝ2 = 0.2377 for M1/2 = 900 GeV
and becomes larger and larger due to the fact that it contains large logarithms. Manifest
cancellation of large logarithmic terms is obtained in the extracted value of the effective
weak mixing angle as we have analytically demonstrated in the previous chapter. In Figure
3, the dispersion of the values of s2

l (MZ) in the lower region of M1/2 is caused by the
presence of the finite parts of order O (MZ/MSUSY ) in the expression (8), which become very
important when M1/2 ∼ M0 ∼ MZ (case which is preferred by SLD data) and contribute
positively to ∆k. When M1/2 → 900 GeV (case which is rather preferred by LEP data) then
s2

l (MZ) → 0.23145 independently of the value of M0. It must be noted that, when M1/2 = MZ

and M0 ≃ 200 GeV , the values of the two angles are equal, i.e. s2
l (MZ) = ŝ2(MZ) = 0.2310.

We have also explored the case where the Higgs mixing parameter is negative (µ < 0). In
this case, as M1/2 tends to larger values M1/2 → 900 GeV , s2

l (MZ) approaches the value
0.23145 which means that, for large values of M1/2, s2

l (MZ) is independent of the sign of µ
as it is expected from the decoupling shown in chapter III. The sign of µ does not affect
either the ŝ2(MZ) value for large M1/2. The effect of the sign appears in the lower values
of M1/2. In the region M1/2 → MZ , the value of ∆kl (l = e, µ, τ) is always negative in
the case µ < 0 and thus s2

l < ŝ2. There is no possibility of equality between the two
angles in this case. The largest value of s2

l (MZ) = 0.2315 (ŝ2(MZ) → 0.238) is reached
when M1/2 → 1200 GeV . Just above this value no radiative symmetry breaking occurs.
The lowest value of s2

l (MZ) = 0.2305 (ŝ2(MZ) = 0.2302), for µ > 0, and s2
l (MZ) = 0.2309

(ŝ2(MZ) = 0.2316) for µ < 0, is bounded by the new experimental limit on the chargino
mass which is around ∼ 84 − 86 GeV [26].
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In Figure 4, we plot the values of s2
f for the fermions f = c, b. In the large SUSY breaking

limit, where all superparticles are quite massive (M1/2 → 900 GeV ), we obtain for the central
values s2

b = 0.2330 and s2
c = 0.2314. In the light limit, M1/2 ≃ M0 ≃ MZ , they take on the

values, s2
b = 0.2298 and s2

c = 0.2308. The main effect in the extracted values of the effective
angle s2

l is coming dominantly from the variation of M1/2 and secondly from M0. If M1/2 is
kept constant, the variation of M0 from 100 to 900 GeV, changes s2

f by +0.0005. In addition,
the effect of A0 on the effective angle is negligible. The effect of the independent parameter
tan β is also negligible if it remains in the region tanβ ≃ 5 − 28. Large loop corrections to
the b-Yukawa coupling (or to the bottom pole mass), which are proportional to the term
µ tanβ, affect the obtained values of s2

f in the large tanβ region [27].

There is a strong correlation of the output value of the effective weak mixing angle
with the top quark mass as it is shown in Figure 5. In this Figure, we have chosen two
characteristic sets of input values A0 = M0 = M1/2 = 600 GeV and A0 = M0 = M1/2 =
200 GeV . It is clear that the first case is most preferable if one assumes the LEP+SLD
data, where s2

l = 0.23152 ± 0.00023. The present combined CDF/DØ [28] result for mt =
175 ± 5 GeV , is also compatible with the first case. Radiatively corrected light Higgs boson
masses are also shown in Figure 5. Figures 6 and 7 display the range of predictions for the
mass of the W-gauge boson in the MSSM. As one can see, the W-mass is in agreement with
the presently experimentally observed value, MW = 80.427 ± 0.075 (MW = 80.405 ± 0.089)
GeV obtained from LEP (CDF,UA2,DØ) experiments [2] for rather low (high) values of M1/2

in the region of mt = 175 ± 5 GeV. Variation of mt equal to +5 GeV leads to variation of
MW equal to +0.032 GeV while the effect on s2

l is −0.00017.

The left-right asymmetries are given by the effective Lagrangian (7) with

Af
LR = Af =

2 υf
eff/a

f
eff

1 +
(

υf
eff/a

f
eff

)2 , (66)

where

υf
eff = T f

3 − 2 s2
f Qf ,

af
eff = T f

3 . (67)

As it is depicted in Figure 8, the MSSM prediction for Ae agrees with the LEP+SLD average
value (Ae = 0.1505 ± 0.0023) when both M1/2 and M0 take on values around MZ . In the
heavy limit (large M1/2), the MSSM agrees with the LEP value Ae = 0.1461± 0.0033. Note
that as M1/2 → 900 GeV , the value of Ae tends asymptotically (which means that large
logarithms have been decoupled from the expression (66) ) to the value 0.1476 corresponding
to s2

l ≃ 0.23145 (see also Figure 4).

In the results shown in Figures 3-8, we have not considered the constraint resulting
from the experimental value of αs. In Figure 9, we have plotted the acceptable values of
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the soft breaking parameters M1/2 and M0
†††, which are compatible with the LEP+SLD

(αs = 0.119±0.004, s2
eff = 0.23152±0.00023) [3] and the CDF/DØ (mt = 175±5 GeV ) [28]

data. The trillinear soft couplings as well as the parameter tanβ(MZ) are taken arbitrarily
in the region (0− 900 GeV ) and (2− 30), respectively. As we observe from Figure 9, MSSM
with radiative EW breaking is valid in the region M1/2

>∼ 500 GeV and M0
>∼ 70 GeV ‡‡‡.

In this region, the physical gluino mass is above 1 TeV , the LSP (one of the neutralinos)
is >∼ 200 GeV , the chargino masses are mχ̃1,2

>∼ 650 , 370 GeV , the stop masses are mt̃1,2
>∼

1000 , 790 GeV , the sbottom masses are mb̃1,2

>∼ 1000 , 960 GeV , the slepton masses are

mτ̃1,2
>∼ 340 , 210 GeV , the sneutrinos are mν̃

>∼ 330, GeV and the radiative 1-loop corrected
Higgs masses are Mh, MA,H,H± >∼ 108 , 780 GeV , respectively. Thus, we conclude that the
recent LEP+SLD and CDF/DØ data analysis favours the MSSM with radiative symmetry
breaking only in the heavy limit of the sparticle masses.

V. CONCLUSIONS

We have considered the supersymmetric one loop corrections to the effective mixing an-
gle s2

f which is experimentally determined in LEP and SLD experiments from measurements
of on resonance left/right and forward/backward asymmetries. This effective angle differs
from the corresponding mixing angle ŝ2 defined as the ratio of couplings which is useful
to test unification of couplings in unified schemes encompassing the Standard Model. The
difference of the two angles, while very small in the Standard Model, is substantial in su-

persymmetric extensions of it due to large logarithmic log(
M2

SUSY

M2
Z

) dependences of ŝ2. Thus,

although ŝ2 is a useful theoretical tool to test the unification of couplings, it is not the proper
quantity to compare with experimental data which have already reached a high degree of
accuracy. Therefore, the relation between the two definitions is of utmost importance for
phenomenological studies of supersymmetric extensions of the Standard Model.

In this article we have calculated all corrections to the factor ∆kf relating the two angles
s2

f and ŝ2 including the non-universal corrections from vertices and external fermions. While
∆kf is plagued by large logarithms in the limit where the supersymmetry breaking scale
is large, the effective weak mixing angle does not suffer from such large logarithms. In

fact, we have proven that there are no dangerous logarithmic corrections log(
M2

1/2

M2
Z

) from

the chargino/neutralino sector to the effective weak mixing angle. The decoupling of large
logarithms involving the Higgsino mixing parameter µ, which in the constrained MSSM with
radiative symmetry breaking, is large, is obtained in the same manner. The cancellation of
potentially dangerous terms also holds for the contributions of the squark and slepton sector.

The cancellation of the log(
M2

SUSY

M2
Z

) terms in the DR scheme had been shown only numerically

††† We examine the region where A0 , M0 , M1/2
<∼ 900 GeV.

‡‡‡ The requirement that the LSP is neutral puts this bound on M0.
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in previous studies.

It must be noted that there are large logarithmic terms in the “non-oblique” super-
symmetric wave function renormalization of external fermions and vertex corrections of the
vertex Zff . Nevertheless, we have analytically proven that they get decoupled from ∆kf

and, hence, from the effective weak mixing angle itself. In addition to the analytical results
described in chapter III, we have also displayed representative numerical results in Table I
in two particular cases of the MSSM.

We have also presented analytically, the decoupling of the large logarithmic terms from
s2

f in the case of the non-universal SQCD corrections. Besides the self-cancellations of this
terms from the relevant diagrams Fig.2c and Fig.2d, there are additional cancellations from
the summation of these diagrams due to their opposite sign. We have found that these
corrections are very small and could be safely ignored from the analysis in the present
experimental accuracy.

We have further proceeded to a numerical study of the one loop corrected effective mixing
angle having as inputs the values of αEM , MZ , the Fermi coupling constant GF and the
experimental values for the fermion masses. Assuming coupling constant unification and
radiative breaking of the electroweak symmetry we have scanned the soft SUSY breaking
parametric space and given theoretical predictions for the value of the effective mixing angles,
the value of the strong coupling constant at MZ and the value of the W - boson mass as
this is determined from the parameter ρ and the effective weak mixing angle. We find

that the large logarithmic corrections of the form log(
M2

SUSY

M2
Z

) indeed get decoupled from the

extracted value of the effective weak mixing angle in the region of large M1/2 and M0 (Figure
3) following our analytical calculations. The predicted MSSM values of the effective angles
are in agreement with the LEP+SLD data (Figure 4) as well as with the new CDF/DØ [28]
results for the top mass mt = 175±5 GeV (Figure 5) in the region where all superparticles are
quite massive. In this region, MSSM predicts values of the W-gauge boson mass which are
in agreement with the new [2] CDF,UA2,DØ average value 80.405±0.089 GeV (Figures 6,7).
Large logarithms are also decoupled from the left-right asymmetry value Ae. MSSM seems
to prefer the experimental LEP value of Ae, rather than the average value from LEP+SLD
(Figure 8). Finally, values of M1/2 which are greater than 500 GeV are favoured by the
MSSM if one assumes the present LEP and CDF/DØ data for s2

l , αs and mt (Figure 9).

Note Added :

After submitting this article for publication we became aware of the paper by P.
Chankowski and S. Pokorski [31] where corrections to the leptonic mixing angle and predic-
tions for the W boson mass are presented.
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Appendix A: Quick reference to neutralino/chargino and their interactions

In the B̃, W̃ (3), iH̃0
1 , iH̃0

2 , basis the neutralino mass matrix is

MN =















M1 0 g′ υcosβ
2

−g′ υsinβ
2

0 M2 −g υcosβ
2

g υsinβ
2

g′ υcosβ
2

−g υcosβ
2

0 −µ

−g′ υsinβ
2

g υsinβ
2

−µ 0















. (A.1)

The mass eigenstates (χ̃0
1,2,3,4) of neutralino mass matrix MN are written as

O











χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4











=













B̃

W̃ (3)

iH̃0
1

iH̃0
2













. (A.2)

and

OTMNO = Diag
(

mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4

)

, (A.3)

where O is a real orthogonal matrix. Note that when electroweak breaking effects are ignored
O can get the form

O =









12 02

02

1√
2

1√
2

− 1√
2

1√
2









. (A.4)

The chargino mass matrix can be obtained from the following Lagrangian mass terms

Lmass
charginos = −

(

W̃−, iH̃−
1

)

Mc

(

W̃+

iH̃+
2

)

+ (h.c) , (A.5)

where we have defined W̃± ≡ W̃ (1)∓iW̃ (2)
√

2
and

MC =





M2 −g υsinβ√
2

−g υcosβ√
2

µ



 . (A.6)

Diagonalization of this matrix gives

UMcV
† =

(

mχ̃1 0

0 mχ̃2

)

. (A.7)

Thus,
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Lmass
charginos = −mχ̃1

¯̃χ1χ̃1 − mχ̃2
¯̃χ2χ̃2 . (A.8)

The Dirac chargino states χ̃1,2 are given by

χ̃1 ≡
(

λ+
1

λ̄−
1

)

, χ̃2 ≡
(

λ+
2

λ̄−
2

)

. (A.9)

The two component Weyl spinors λ±
1,2 are related to W̃±, iH̃−

1 , iH̃+
2 by

V

(

W̃+

iH̃+
2

)

≡
(

λ+
1

λ+
2

)

,
(

W̃− , iH̃−
1

)

U † ≡
(

λ−
1 , λ−

2

)

. (A.10)

The gauge interactions of charginos and neutralinos can be read from the following La-
grangian§§§

L = ĝ
(

W+
µ Jµ

− + W−
µ Jµ

+

)

+ êAµJ
µ
em +

ê

ŝĉ
ZµJ

µ
Z . (A.11)

Also,

(

Zµ

Aµ

)

=

(

ĉ ŝ

−ŝ ĉ

) (

W (3)
µ

Bµ

)

. (A.12)

The currents Jµ
+, Jµ

em and Jµ
Z are given by

Jµ
+ ≡ ¯̃χ0

aγ
µ
[

PLPL
ai + PRPR

ai

]

χ̃i a = 1...4, i = 1, 2 , (A.13)

where PL,R = 1∓γ5

2
and

PL
ai ≡ +

1√
2
O4aV

∗
i2 −O2aV

∗
i1 ,

PR
ai ≡ − 1√

2
O3aU

∗
i2 −O2aU

∗
i1 . (A.14)

The electromagnetic current Jµ
em is

Jµ
em = ¯̃χ1γ

µχ̃1 + ¯̃χ2γ
µχ̃2 . (A.15)

Finally, the neutral current Jµ
Z can be read from

Jµ
Z ≡ ¯̃χiγ

µ
[

PLAL
ij + PRAR

ij

]

χ̃j +
1

2
¯̃χ0
aγ

µ
[

PLBL
ab + PRBR

ab

]

χ̃0
b , (A.16)

§§§ In our notation ê ≡electron’s charge just opposite to that used in ref. [29].
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with

AL
ij = ĉ2δij −

1

2
Vi2V

∗
j2 ,

AR
ij = ĉ2δij −

1

2
Ui2U

∗
j2 ,

BL
ab =

1

2
(O3aO3b −O4aO4b) ,

BR
ab = −BL

ab . (A.17)

Note that since BR
ab = −BL

ab the neutralino contribution to Jµ
Z can be cast into the form

Jµ
Z = −1

2
BL

ab

(

¯̃χ0
aγ

µγ5χ̃0
b

)

. (A.18)

For the supersymmetric external fermion corrections we need know the chargino and
neutralino couplings to fermions and sfermions. The relevant chargino couplings are given
by the following Lagrangian terms

L = i ¯̃χ
c
i (PL af ′f̃

ij + PR bf ′f̃
ij ) f ′ f̃ ∗

j + i ¯̃χi (PL aff̃ ′

ij + PR bff̃ ′

ij ) f f̃ ′∗
j + (h.c) . (A.19)

In this, χi (i = 1, 2) are the positively charged charginos and χc
i the corresponding charge

conjugate states having opposite charge. f , f ′ are “up” and “down” fermions, quarks or
leptons, while f̃i , f̃ ′

i are the corresponding sfermion mass eigenstates. The left and right-
handed couplings appearing above are given by

af ′f̃
ij = gV ∗

i1 K f̃
j1 − hfV

∗
i2K

f̃
j2 , bf ′f̃

ij = −hf ′ U∗
i2K

f̃
j1 ,

aff̃ ′

ij = gUi1 K f̃ ′

j1 + hf ′ Ui2K
f̃ ′

j2 , bff̃ ′

ij = hf Vi2K
f̃ ′

j1 .

In the equation above hf , hf ′ are the Yukawa couplings of the up and down fermions respec-

tively. The matrices K f̃ ,f̃ ′

which diagonalize the sfermion mass matrices become the unit
matrices in the absence of left-right sfermion mixings. For the electron and muon family the
lepton masses are taken to be vanishing in the case that mixings do not occur. In addition
the right-handed couplings, are zero.
The corresponding neutralino couplings are given by

L = i ¯̃χ0
a (PL aff̃

aj + PR bff̃
aj ) f f̃ ∗

j + i ¯̃χ0
a (PL af ′f̃ ′

aj + PR bf ′f̃ ′

aj ) f ′ f̃ ′∗
j + (h.c) . (A.20)

The left and right-handed couplings for the up fermions, sfermions are given by

aff̃
aj =

√
2 (gT 3

f O2a + g′Yf

2
O1a) Kf

j1 + hf O4a Kf
j2 ,

bff̃
aj =

√
2 (−g′Yfc

2
O1a) Kf

j2 − hf O4a Kf
j1 ,

while those for the down fermions and sfermions are given by
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af ′f̃ ′

aj =
√

2 (gT 3
f ′O2a + g′Y

′
f

2
O1a) Kf ′

j1 − hf ′ O3a Kf ′

j2 ,

bf ′f̃ ′

aj =
√

2 (−g′Y
′
fc

2
O1a) Kf ′

j2 + hf ′ O3a Kf ′

j1 .

Appendix B: Passarino - Veltman functions

All functions appearing in the propagator corrections in the main text can be expressed
in terms of the basic Passarino - Veltman integrals A0, B0 in the following way

A0(m) = m2(
1

ǫ̂
+ 1 − ln

m2

Q2
) , (B.1)

B0(p, m1, m2) =
1

ǫ̂
−
∫ 1

0
dx ln

(1 − x)m2
1 + xm2

2 − x(1 − x)p2 − iǫ

Q2
, (B.2)

where 1
ǫ̂

= 1
ǫ
− γE + ln 4π. This reduction can be done with the following identities (in what

follows we made use of these functions only)

H(p, m1, m2) = 4B̃22(p, m1, m2) + (p2 − m2
1 − m2

2)B0(p, m1, m2) , (B.3)

B̃22(p, m, m) = − 1

12
p2B0(p, m, m) − 1

18
p2 +

1

3

[

m2 + m2B0(p, m, m) − A0

]

, (B.4)

B̃22(0, m, m) = 0 , (B.5)

B0[p, m, m]
m2>>p2

−→ − ln(m2/Q2) . (B.6)

For the vertex and box corrections to muon decay we need the functions B0, B1, C0 at zero
momenta. The following relations are useful in order to express the contributions to δSUSY

V B

in terms of the masses of the particles in the loop

B0(0, m1, m2) =
1

ǫ̂
+ 1 + ln

(

Q2

m2
2

)

+
m2

1

m2
1 − m2

2

ln

(

m2
2

m2
1

)

, (B.7)

B1(0, m1, m2) =
1

2

[

1

ǫ̂
+ 1 + ln

(

Q2

m2
2

)

+

(

m2
1

m2
1 − m2

2

)2

ln

(

m2
2

m2
1

)

+
1

2

(

m2
1 + m2

2

m2
1 − m2

2

)

]

, (B.8)

C0(m1, m2, m3) = −
∫ 1

0
dx
∫ 1−x

0
dy

1

m2
1x + m2

2y + m2
3(1 − x − y)

, (B.9)

C0(m1, m2, m2) =
1

m2
1 − m2

2

+
m2

1

(m2
1 − m2

2)
2 ln

(

m2
2

m2
1

)

. (B.10)
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TABLES

TABLE I. Partial and total contributions to ∆kf , (f = lepton, charm, bottom), for two sets of

inputs shown at the top. Also shown are the predictions for the effective weak mixing angles and the

asymmetries. In the first five rows we display the universal contributions to 103 × ∆k of squarks (q̃),

sleptons(l̃), Neutralinos and Charginos (Z̃, C̃), ordinary fermions and Higgses (The number shown

in the middle below the ”charm” column refers to ”lepton” and ”bottom” as well). In the next five

rows we display the contributions of gauge bosons as well as the supersymmetric Electroweak (EW )

and SQCD vertex and external fermion wave function renormalization corrections to 103 × ∆k.

M0 = 200 M1/2 = 200 A0 = 200 M0 = 400 M1/2 = 400 A0 = 500

mt = 175 tanb = 4 µ > 0 mt = 175 tanb = 4 µ > 0

lepton charm bottom lepton charm bottom

q̃ -6.6206 -8.8188

l̃ -0.3123 -0.3791

Z̃, C̃ -4.4892 -9.6138

Fermions 4.6573 4.5103

Higgs -0.7312 -1.0113

Gauge -3.1782 -3.6272 2.2911 -3.1128 -3.5572 2.2822

V ertex(EW ) 1.2324 3.5581 12.7641 2.2825 4.8539 18.1519

Wave(EW ) -1.3209 -3.5208 -12.9598 -2.2973 -4.8422 -18.0059

V ertex(SQCD) - 0.2110 -1.1129 - 0.2361 -1.1166

Wave(SQCD) - -0.2103 1.1012 - -0.2359 1.1135

∆k (× 102) -1.0763 -1.1085 -0.5412 -1.8440 -1.8858 -1.2888

sin2θf 0.23134 0.23126 0.23259 0.23145 0.23135 0.23276

Af
LR 0.1485 0.6684 0.9348 0.1476 0.6681 0.9347

Af
FB 0.0165 0.0744 0.1041 0.0163 0.0740 0.1035
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mt = 174 GeV

tan β = 4

M0 = A0 = 200 GeV

M1/2 (GeV )

ŝ2
(M

Z
)

900800700600500400300200100
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0.234

0.233

0.232

0.231

0.23

Figure 1: The values of the running weak mixing angle ŝ2 at MZ in the DR scheme defined as a ratio of

gauge couplings for various input universal soft gaugino masses M1/2 for particular input of M0 , A , tanβ

and mt . The strong dependence of ŝ2 on M1/2 near MZ is due to the presence of sparticle thresholds.
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χi

tj

χi

tj

Figure 2a : Self energy chargino and squark corrections to the Zbb̄ vertex.
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ti

tj

tk

χi

χj

Figure 2b : Chargino and squark contributions to the Zbb̄ vertex.

g

qi

qj

Figure 2c : Supersymmetric QCD corrections to the Zqq̄ vertex from gluino and squark contributions.

g

q

g

q

Figure 2d : Self energy gluino and squark contributions to the Zqq̄ vertex.
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exp.
s2

l

ŝ2

LEP+SLD

µ > 0 GeV

mt = 175 ± 5 GeV

tan β = 2 − 30

A0 = 0 − 900 GeV

M0 = 70 − 900 GeV

M1/2 (GeV )

9008007006005004003002001000
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0.23

Figure 3 : The effective weak mixing angle s2

l (MZ) in comparison to the weak mixing angle ŝ2(MZ)

versus M1/2 when the soft parameters M0, A0 vary in the indicated regions. The width of each branch is

due mainly to the variation on M0, for low M1/2 < 200 GeV, and to the variation of the top mass for

M1/2 > 200 GeV. The effect of the variation of A0 = 0 − 900 GeV and of tanβ = 5 − 28 on s2

l is negligible.

The error bar show the measured value of s2

l = 0.23152± 0.00023, obtained at LEP and SLD. The MSSM

value is in agreement with the LEP+SLD data for the bulk of the values in the soft parameter space.
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f = c
f = b

µ > 0 GeV

mt = 175 ± 5 GeV

tan β = 2 − 30

A0 = 0 − 900 GeV

M0 = 70 − 900 GeV
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Figure 4 : The effective weak mixing angles s2

c and s2

b . In the region M1/2 → 900 GeV , the two angles

are separated from each other. The dispersion of points around the central value for M1/2 > 200 GeV is

due to the variation of the top mass. For the limiting behaviour to be more clearly exhibited, in this figure

and in figures 3,7 and 8 we do not display the dispersion of points for M1/2 > 800 GeV.
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LEP + SLD
A0 = M0 = M1/2 = 200 GeV
A0 = M0 = M1/2 = 600 GeV

Mh = 115 ± 7 GeV

tanβ = 4 , µ > 0 GeV

Mh = 108 ± 5 GeV
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Figure 5 : MSSM predictions for s2

l as a function of mt for two different characteristic values of the soft

breaking parameters. The corresponding values of the light Higgs mass and their errors due to the

variation of mt are indicated.
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exp
A0 = M0 = M1/2 = 200 GeV
A0 = M0 = M1/2 = 600 GeV
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Figure 6 : MSSM predictions for physical mass of the W-boson as a funcion of mt for the same inputs as

in Figure 5.
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µ > 0 GeV

mt = 175 ± 5 GeV

tan β = 2 − 30
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Figure 7 : MSSM prediction for the mass of the W-gauge boson as a function of the independent soft

parameters M1/2, M0 and A0. The experimental value MW = 80.427± 0.075 (MW = 80.405± 0.089) GeV

obtained at LEP (CDF,UA2,DØ) is shown for comparison.
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LEP

LEP+SLD Average

µ > 0 GeV

mt = 175 ± 5 GeV

tan β = 2 − 30

A0 = 0 − 900 GeV

M0 = 70 − 900 GeV
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Figure 8 : The left-right asymmetry Ae in the MSSM as a function of M1/2 when we vary M0, A0, tanβ

and mt.
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mt = 175 ± 5 GeV

LEP+SLD Average

µ > 0

αs(MZ) = 0.119 ± 0.004
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l = 0.23152± 0.00023
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Figure 9 : Acceptable values in the M1/2-M0 plane according to the LEP+SLD data. The values of tanβ

and A0 are taken in the region 2 − 30 and 0 − 900 GeV, respectively. Only large values of M1/2 are

acceptable.
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