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Abstract

If the soft Supersymmetry (SUSY) breaking masses and couplings are complex, then the
associated CP-violating phases can in principle modify the known phenomenological pattern of
the Minimal Supersymmetric Standard Model (MSSM). We investigate here their effects on Higgs
boson production in the gluon–gluon fusion mode at the Tevatron and the Large Hadron Collider
(LHC), by taking into account all experimental bounds available at present. The by far most stringent
ones are those derived from the measurements of the Electric Dipole Moments (EDMs) of fermions.
However, it has recently been suggested that, over a sizable portion of the MSSM parameter space,
cancellations among the SUSY contributions to the EDMs can take place, so that the CP-violating
phases can evade those limits. We find a strong dependence of the production rates of any neutral
Higgs state upon the complex masses and couplings over such parts of the MSSM parameter space.
We show these effects relatively to the ordinary MSSM rates as well as illustrate them at absolute
cross section level at both colliders. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and plan

The soft SUSY breaking parameters of the MSSM can well be complex. Even in the
absence of flavour non-conservation in the sfermion sector, the higgsino mass term, the
gaugino masses, the trilinear couplings and the Higgs soft bilinear mass need not be real.
Assuming universality of the soft gaugino masses at the Grand Unification (GUT) (or
Planck) scale, the effects of complex soft masses and couplings in the MSSM Lagrangian
(see Appendix A) can be parametrised in terms of only two independent phases [1,2],
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φµ andφA, associated to the (complex) higgsino mass term,µ, and to the trilinear scalar
couplingA 1, respectively. In other terms,

eiφµ = µ

|µ| , eiφA = A

|A| . (1)

Their presence is a potentially dangerous new source of violation of the CP-symmetry in
the MSSM. But their size can in principle strongly be constrained by the measurements
of the fermionic EDMs (mainly, of electron and neutron) and several analyses [3–5] have
indicated thatφµ andφA must be small in general. However, recent investigations [6–14]
have shown that, in a restricted but still sizable part of the parameter space of the MSSM,
the bounds drawn from the EDM measurements are rather weak, so that such phases can
even be close toπ/2. This is a consequence of cancellations taking place among the SUSY
loop contributions to the EDMs. Although, in order to be effective, these require a certain
amount of ‘fine-tuning’ among the soft masses and couplings [14], it has recently been
suggested that such cancellations occur naturally in the context of Superstring models
[15,16]. If the SUSY loop contributions to the EDMs do vanish, then, as emphasised by
the authors of Ref. [17], SUSY parameters with large imaginary parts may have a non-
negligible impact on the confrontation of the MSSM with experiments. In particular, many
of the SUSY (s)particle production and decay processes develop a dependence onφµ and
φA, so that, in view of the importance of searches for New Physics at present and future
accelerators, their phenomenology needs a thorough re-investigation.

Various sparticle processes including the effect of such phases have recently been
considered. For example, neutralino [18–20] and chargino [21,22] production at LEP, at
the CERN LHC [23] as well as at future electron–positron linear colliders (LCs) [24,25].
Direct CP-asymmetries in decays of heavy hadrons, such asB→Xs+γ ,B→Xd+γ and
B→ Xsl

+l−, have been investigated in the context of the Supergravity inspired MSSM
(M-SUGRA): in Refs. [26,27], [28] and [29,30], respectively.

In this paper, we are concerned with the Higgs sector of the MSSM. Here, although the
tree-level Higgs potential is not affected by the CP-violating phases, sinceM2

H1
,M2

H2
and

tanβ (the mass parameters of the two Higgs fields and the ratio of their vacuum expectation
values (VEVs), respectively) are real andµ enters only through|µ|2, it should be noticed
that this is no longer the case if one includes radiative corrections. In their presence, one
finds [31–33] that the three neutral Higgs bosons can mix and that their effective couplings
to fermions can be rather different at one loop. However, for the MSSM parameter space
that we will consider here, such corrections turn out to be negligible, of the order of just a
few percent, as compared to those induced at the lowest order by the CP-violating phases
in the squark sector. There are some reasons for this. First of all, the induced radiative
corrections to the Higgs-quark–quark vertices can be parametrised in terms of the mass
of the charged Higgs boson,MH± (≈MA0). Then, one can verify that they essentially
depend only upon the input values given to|µ|, |A| andMSUSY (the typical mass scale of
the SUSY partners of ordinary matter). Here, we will mainly be concerned with trilinear

1 For simplicity, hereafter (except in the appendices), we assumeA≡Au =Ad at the electroweak (EW) scale,
i.e.,O(MZ), whereu andd refer to all flavours of up- and down-type (s)quarks.
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Fig. 1. SM-like contributions from top (t ) and bottom (b) quarks to Higgs boson production via
gg→Φ0 in the MSSM.

couplings in the range|A|. 700 GeV, higgsino masses|µ| of the order of 600 GeV or so,
andMSUSY' 300 GeV. According to the analytic formulae of Ref. [32,33], in the above
MSSM regime, one finds negligible corrections to the tree-levelh0t t̄ andh0bb̄ couplings.
(Similarly, for the case of the lightest Higgs boson mass.) In contrast, the strength of the
H 0t t̄ vertex can significantly be modified for not too heavy masses of the charged Higgs
boson (say,MH± ≈MA0 < 200 GeV) and rather large values of|A| and |µ| (typically,
|A| ' |µ| ' 2 TeV), a region of parameter space that we will avoid, whereas that of the
H 0bb̄ one is generally small because we shall limit ourselves to the interval 2. tanβ
. 10. As for papers allowing instead for the presence of non-zero values ofφµ and/orφA
and studying the Higgs sector, one can list Refs. [34–36]. The first publication deals with
decay rates whereas the second one with Higgs production channels probable at a future
LC. In such papers though, no systematic treatment of the limits imposed by the EDM
measurements was addressed. Such effects ought to be incorporated in realistic analyses of
the MSSM Higgs dynamics.

Here, we have necessarily done so, since it is our purpose to study the effect of finite
values ofφµ and/orφA on Higgs production via thegg→ Φ0 channel [37–42], where
Φ0 = H 0, h0 andA0 represents any of the three neutral Higgs bosons of the MSSM.
(A preliminary account in this respect was already given by the authors in Ref. [43].)
These processes proceed through quark (mainly top and bottom: i.e.,t andb, see Fig. 1)
and squark (mainly stop and sbottom: i.e.,t̃1, t̃2 andb̃1, b̃2, see Fig. 2, each in increasing
order of mass) loops, in which the (s)fermions couple directly toΦ0. Needless to say, as
in the MSSM the lightest of the Higgs particles is bound to have a mass not much larger
than that of theZ boson,MZ , much of the experimental effort at both the Tevatron (Run 2)
and the LHC will be focused on finding this Higgs state,h0. In this respect, we remind
the reader that direct Higgs production via gluon–gluon fusion is the dominant mechanism
over a large portion of the MSSM parameter space at the LHC and a sizable one at the
Tevatron [44–50].

The plan of the paper is as follows. The next section describes our theoretical framework
and discusses experimental limits on the parameters of the model. The following one
briefly sketches the way we have performed the calculation. Section 4 presents some
numerical results, whereas Section 5 summarises our analysis and draws the conclusions.
Finally, in the two appendices, we introduce our notation and explicitly derive the Feynman
rules and cross section formulae needed for our numerical analysis.
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Fig. 2. SUSY-like contributions from top (t̃1,2) and bottom (̃b1,2) squarks to Higgs boson production
via gg→Φ0 in the MSSM. (Notice that, if the CP-symmetry is conserved, thenΦ0 6=A0.)

2. The theoretical model and its parameters

We work in the theoretical framework provided by the MSSM, the latter including
explicitly the CP-violating phases and assuming universality of the soft gaugino masses
at the GUT scale and universality of the soft trilinear couplings at the EW scale. We define
its parameters at the EW scale, without making any assumptions about the structure of the
SUSY breaking dynamics at the Planck scale, whether driven by Supergravity (SUGRA),
gauge mediated (GMSB) or proceeding via other (yet unknown) mechanisms. We treat the
MSSM as a low-energy effective theory, and input all parameters needed for our analysis
independently from each other. However, we require these to be consistent with current
experimental bounds. In fact, given the dramatic impact that the latter can have on the
viability at the Tevatron and/or the LHC of the CP-violating effects in the processes we are
dealing with, we specifically devote the two following subsections to discuss all available
experimental constraints. The first focuses on collider data, from LEP and Tevatron; the
second on the measurements of the fermionic EDMs. (Some bounds can also be derived
from the requirement of positive definiteness of the squark masses squared.) Following
this discussion, we will establish the currently allowed ranges for the Higgs and sparticle
masses and couplings.

Before proceeding in this respect though, we declare the numerical values adopted for
those MSSM parameters that are in common with the Standard Model (SM). For the
top and bottom masses entering the SM-like fermionic loops of our process, we have
usedmt = 175 GeV andmb = 4.9 GeV, respectively. As for the gauge couplings, the
strong, electromagnetic (EM) coupling constants and the sine squared of the Weinberg
angle, we have adopted the following values:αs(MZ)= 0.119,αEM(MZ)= 1/127.9 and
sin2 θW (MZ)= 0.2315, respectively.
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2.1. Limits from colliders

The Higgs bosons and sparticles of the MSSM that enter thegg → Φ0 production
processes can also be produced via other channels, both as real and virtual objects. From
their search at past and present colliders, several limits on their masses and couplings have
been drawn. As for the neutral Higgs bosons of the MSSM, the most stringent bounds come
from LEP. For bothMh0 andMA0 these are set — after the 1998 LEP runs — at around
80 GeV by all Collaborations [51], for tanβ > 1.2 The tightest experimental limits on
the squark masses come from direct searches at the Tevatron. Concerning thet̃1 mass, for
the upper value of tanβ that we will be using here, i.e., 10, the limit onmt̃1 can safely be
drawn at 120 GeV or so [53], fairly independently of the SUSY model assumed. As for
the lightest sbottom mass,mb̃1

, this is excluded for somewhat lower values, see Ref. [54].
Besides, DØ also contradicts all models withmq̃ 6=t̃1,b̃1

< 250 GeV for tanβ . 2, A = 0
andµ < 0 [55] (in scenarios with equal squark and gluino masses the limit goes up to
mq̃ 6=t̃1,b̃1

< 260 GeV).

2.2. Limits from the EDMs

These are possibly the most stringent experimental constraints available at present on the
size of the CP-violating phases. The name itself owns much to the consequences induced in
the QED sector. In fact, to introduce a complex part into the soft SUSY breaking parameters
of the MSSM corresponds to ‘explicitly’ violating CP-invariance in the matrix elements
(MEs) involving the EM current, as the phases lead to non-zero TP form factors, which in
turn contribute to the fermionic EDMs. In contrast, within the SM, it is well known that
contributions to the EDMs arise only from higher-order CP-violating effects in the quark
sector, and they are much smaller than the current experimental upper bounds. At 90% CL,
those on the electron,de [56,57], and neutron,dn [58], read as:

|de|exp6 4.3× 10−27 e cm, |dn|exp6 6.3× 10−26 e cm. (2)

As mentioned in the introduction, if cancellations take place among the SUSY contribu-
tions to the electron and neutron EDMs, so that their value in the MSSM is well below
the above limits, i.e.,|de|MSSM� |de|exp and|dn|MSSM� |dn|exp, thenφµ andφA can be
large. To search for those combinations of soft sparticle masses and couplings that guaran-
tee vanishing SUSY contributions to the EDMs for each possible choice of the CP-violating
phases, we have scanned over the (φµ,φA) plane and made use of the program of Ref. [14].
This returns those minimum values of the modulus of the common trilinear coupling,|A|,
above which the cancellations work. For instance, in the case of the neutron EDMs, the
dominant chargino and gluino contributions appear with opposite sign over a large portion
of the MSSM parameter space. Thus, for a given|µ|, a chargino diagram can cancel a
gluino one and this occurs for certain values of the gaugino/squark masses and a specific

2 See also [52] for a more recent and somewhat higher limit — that we adopt here — onM
h0 from ALEPH, of

about 85.2 GeV for tanβ > 1 at 95% confidence level (CL), using data collected at collider centre-of-mass (CM)
energies in the range 192 GeV.√see . 196 GeV and a total luminosity of about 100 pb−1.
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choice of|A| [6–14]. In general, internal cancellations are more likely among the SUSY
contributions to the neutron EDMs, than they are in the case of the electron. So much so
that, in the former case, it is even possible to remain consistently above the experimental
limits (2) if one only assumes the phase of|µ| to be non-zero [14].

However, not all the surviving combinations ofφµ, φA and|A| are necessarily allowed.
In fact, one should recall that physical parameters of the MSSM depend upon these three
inputs. In particular, the squark masses (entering the triangle loops of the production
processes considered here) are strongly related toφµ, φA and|A|. Given the assumptions
already made on the trilinear couplings (i.e., their universality), and further setting (see
Appendix A for the notation)

Mq̃3 ≡MQ̃3
=MŨ3

=MD̃3
, (3)

Mq̃1,2 ≡MQ̃1,2
=MŨ1,2

=MD̃1,2
, (4)

with Mq̃1,2
>∼Mq̃3, whereMq̃1,2,3 are the soft squark masses of the three generations, one

gets for the lightest stop and sbottom masses the following relations:

m2
t̃1
=M2

q̃3
+m2

t + 1
4M

2
Z cos2β −

{(5
6M

2
Z − 4

3M
2
W

)2 cos2 2β

+ 4m2
t

[|A|2+ |µ|2 cot2β + 2|A||µ|cos(φµ − φA)cotβ
]}1/2

, (5)

m2
b̃1
=M2

q̃3
+m2

b − 1
4M

2
Z cos2β −

{(1
6M

2
Z − 2

3M
2
W

)2 cos2 2β

+ 4m2
b

[|A|2+ |µ|2 tan2β + 2|A||µ|cos(φµ − φA) tanβ
]}1/2

. (6)

For some choices ofφµ, φA and|A| and a given value ofMq̃3, |µ| and tanβ , the two above
masses (squared) can become negative. This leads to a breaking of the SU(3) symmetry,
that is, to the appearance of colour and charge breaking minima. In order to avoid this,
some points on the plane (φµ,φA) will further be excluded in our study.

3. Numerical calculation

We have calculated the Higgs production rates in presence of the CP-violating phases
exactly at the leading order (LO) and compared them to the yield of the ordinary MSSM
(that is, ‘phaseless’) at the same accuracy. In our simulations, we have included only the
t-, b-, t̃1-, t̃2-, b̃1- and b̃2-loops, indeed the dominant terms, because of the Yukawa type
couplings involved. In order to do so, we had to compute from scratch all the relevant
analytical formulae forA0 production. In fact, one should notice that for such a Higgs
state there exist no tree-level couplings with identical squarks ifφµ = φA = 0, whereas
they appear at lowest order whenever one of these two parameters is non-zero. Besides,
being the quark loop contributions antisymmetric (recall thatA0 is a pseudoscalar state)
and the squark loop ones symmetric, no interference effects can take place between the
SM- and the SUSY-like terms in the ME forgg→ A0. (That is to say thatφµ- andφA-
induced corrections are always positive ifΦ0= A0.) The full amplitude is given explicitly
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in Appendix B. For completeness, we have also recomputed the well known expressions for
scalar Higgs production,Φ0= h0,H 0, finding perfect agreement with those already given
in literature (again, see Appendix B). Here, CP-violating effects can produce corrections
of both signs.

It is well known that next-to-leading order (NLO) corrections togg→ Φ0 processes
from ordinary QCD are very large [59–64]. However, it has been shown that they affect the
quark and squark contributions very similarly [64]. Thus, as a preliminary exercise, one
can look at the LO rates only in order to estimate the effects induced by the CP-violating
phases. In contrast, for more phenomenological analyses, one ought to incorporate these
QCD effects. We have eventually done so by resorting to the analytical expressions for the
heavy (s)quark limit given in Ref. [64]. These are expected to be a very good approximation
for Higgs masses below the quark–quark and squark–squark thresholds. Therefore, we will
confine ourselves to combinations of masses which respect such kinematic condition.

As Parton Distribution Functions (PDFs), we have used the fits MRS98-LO(05A) [65]
and MRS98-NLO(ET08) [66], in correspondence of our one- and two-loop simulations,
respectively. Consistently, we have adopted the one- and two-loop expansion for the strong
coupling constantαs(Q), with all relevant (s)particle thresholds onset within the MSSM
as described in [67]. The running of the latter, as well as the evolution of the PDFs, was
always described in terms of the factorisation scaleQ ≡QF , which was set equal to the
produced Higgs mass,MΦ0. In fact, the same value was adopted for the renormalisation
scaleQ≡QR entering the Higgs production processes, see Eqs. (B.1) and (B.6)–(B.7).

Finally, for CM energy of the LHC, we have assumed
√
spp = 14 TeV; whereas for the

Tevatron, we have taken
√
spp̄ = 2 TeV.

4. Results

A sample ofφµ, φA and|A| values that guarantee the mentioned cancellations can be
found in Fig. 3, for the two representative choices ofMq̃1,2 given in Table 1. Here, both|µ|
andMq̃3 are held constant at, e.g., 600 and 300 GeV, respectively. The soft gluino mass
is given too, in Table 1, as it enters our analysis indirectly, through the EDM constraints
(recall the discussion in Section 2.2). The allowed values for the modulus of the (common)
trilinear couplings|A| are displayed in the form of a contour plot over the (φµ,φA) plane,
where both phases are varied from 0 toπ . (Same results are obtained in the interval
(π,2π), because of the periodic form of the SUSY couplings and mixing angles: see

Table 1
Two possible parameters setups of our model. (Apart from the
dimensionless tanβ, all other quantities are given in GeV.)

tanβ |µ| Mq̃1,2
Mq̃3

Mg̃ MA0

2.7 600 2500 300 1000 200
10 600 5000 300 2000 200
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Fig. 3. Contour plots for the values of the modulus of the common trilinear coupling,|A|, needed in
order to obtain the cancellations of the SUSY contributions to the one-loop EDMs, over the (φµ,φA)
plane for small (left-hand plot) and large (right-hand plot) tanβ. The other MSSM parameters are
as given in Table 1. Here and in the following, “×” symbols denote points excluded because of
the negativity of the squark masses squared; “�·” symbols denote points excluded by the two-loop
Zee–Barr type contributions to the EDMs; “�· ” and “·” symbols denote points excluded from Higgs
boson and squark direct searches, respectively.

Fig. 4. Contour plots for the values of the lightest top squark mass,mt̃1
, corresponding to those of

|A| in Fig. 3, over the (φµ,φA) plane for small (left-hand plot) and large (right-hand plot) tanβ. The
other MSSM parameters are as given in Table 1.

Appendix A.) In the same plots, we have superimposed those regions (to be excluded
from further consideration) over which the observable MSSM parameters assume values
that are either forbidden by collider limits (dots for the lightest stop mass and squares for
the lightest Higgs mass: see Figs. 4–5) or for which the squark masses squared become
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Fig. 5. Contour plots for the values of the lightest Higgs boson mass,Mh0, corresponding to those of
|A| in Fig. 3, over the (φµ,φA) plane for small (left-hand plot) and large (right-hand plot) tanβ. The
other MSSM parameters are as given in Table 1.

negative (crosses), for a given combination of the other soft SUSY breaking parameters.
Typically, we obtain that for smallµ phases, i.e.,φµ . π/300≈ 0.01, the value of|A|
tends to be zero for almost all values ofφA. In the region where both phases are quite large
(φµ,φA ≈ π/2), the modulus of the trilinear coupling must be around 700 GeV, for the
EDM constraints to be satisfied.

In Table 1, in order to completely define our model for the calculation of thegg→Φ0

processes, we also have introduced the Higgs sector parameters: the mass of one physical
states, e.g.,MA0, and the ratio of the VEVs of the two doublet fields, i.e., tanβ . We
have fixed the former to be 200 GeV, whereas two possible choices of the latter have
been adopted, 2.7 and 10 (corresponding toMq̃1,2 = 2500 and 5000 GeV, respectively).
With regard to this last parameter, tanβ , a few considerations have to be made at this
point: namely, concerning the so-called ‘Barr–Zee type graphs’ [68]. Very recently, the
corresponding contributions to the electron and neutron EDMs have been calculated at
two loops, in Ref. [69]. These terms put bounds (diamond symbols) directly on the squark
masses and soft trilinear couplings of the third generation and thus are crucial for our
analysis. However, they are quantitatively significant only at large values of tanβ , as can be
appreciated in the right-hand plot of Fig. 3. The smaller tanβ the less relevant they are: see
the left-hand plot of the same figure. Besides, these two-loop terms entering the EDMs also
depend on|µ|: small values of the latter induce negligible contributions to both the electron
and neutron EDMs. (For example, for the choice|µ| = 500 GeV and tanβ = 3 made in
Ref. [43], one obtains no bounds from the EDMs through the Barr–Zee type graphs.)
Moreover, for tanβ >∼ 10, in order to be consistent with the EDM constraints in (2), one
would need the modulus of the soft trilinear coupling to be unnaturally large, even greater
than 4 TeV (forφA ≈ φµ ≈ π/2). This would drive the squark masses in Eqs. (5)–(6)
to become negative over most of the (φµ,φA) plane. Thus, in order to avoid all such
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effects, we limit our analysis to the interval 2. tanβ . 10 (recall the lower experimental
limit on such a parameter: see Section 2.1). Corresponding values for the modulus of the
(common) trilinear couplings are in the range|A|. 1 TeV. In this regime, the parameter
combinations given in Table 1 should serve the sole purpose of being examples of the rich
phenomenology that can be induced by the CP-violating phases in the MSSM, rather than
benchmark cases.

Furthermore, notice that, starting from the numbers in Table 1, one can verify that the
heaviest squark masses,mt̃2 andmb̃2

, are both consistent with current experimental bounds.
As for the lightest stop, we display in Fig. 4 the values assumed bymt̃1 over the usual
(φµ,φA) plane, for the two choices of tanβ in Table 1 and in correspondence of the|A|
values of the previous figure. As a matter of fact, the effect of the phases is quite significant
on the actual lightest stop mass, see Eq. (5). We observe that, forφµ ≈ π

2 , one can get small
values formt̃1, if not negative. This is due to the fact that, in such a region,|A| can still get
large enough (despite of a low tanβ), so that the last term on the right-hand side of Eq. (5)
becomes comparable to the first two terms. Anyhow, over most of the (φµ,φA) plane,mt̃1
is well above the current experimental reach of 120 GeV. The lightest sbottom mass,mb̃1

,
see Eq. (6), is always around 290 GeV, so that we have avoided to reproduce here the
corresponding plots. Also, for the above choices of tanβ , one gets constraints on the mass
of the lightest Higgs boson. In order to derive these, we make use of the two-loop analytic
formula forMh0 [70,71]. We display the corresponding values over the (φµ,φA) plane in
Fig. 5. The mass regions excluded by LEP (see Section 2.1) amount to a restricted part of
the (φµ,φA) plane, both at small and, particularly, large tanβ . As for the heaviest Higgs
boson masses, one hasMH0 = 212(201) GeV for tanβ = 2.7(10), thus almost degenerate
with MA0.

Having defined the allowed spectrum for the (s)particles masses and couplings entering
the Higgs production modes that we are considering, we are now ready to quantify the
effects of the phases on the actual cross sections. A convenient way of doing so is to
simply look at the ratio between the MEs computed with and without phases. In fact, at LO
accuracy and further assuming that the relevant hard scale is the same in both cases (e.g.,
Q≡MΦ0), such a ratio coincides with that obtained at cross section level, independently
of the choice of the PDFs and of

√
s. Thus, we define

R(gg→Φ0)= σ
MSSM∗
LO (gg→Φ0)

σMSSM
LO (gg→Φ0)

. (7)

By means of the notation MSSM∗, we refer here and in the following to the case of the
MSSM with same|A| but finite values of eitherφµ or φA. Thus, e.g., whenφµ = φA = 0
(and|A| = 0 too, see Fig. 3), the expression in (7) is of course equal to 1. (Several results
for this ratio have already been presented in Ref. [43], though for a choice of the MSSM
parameters different from those considered here.)

In Fig. 6 we presentR(gg→ h0) as a contour plot over the (φµ,φA) plane for the two
choices of MSSM parameters of Table 1. As a consequence of the expression for thegg→
h0 amplitude, see Eq. (B.1), the corrections induced by the presence of finite values of
φµ and/orφA in the squark loops can be either positive or negative. Interestingly enough,
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Fig. 6. Contour plots for the values of the ratio in Eq. (7) for the caseΦ0 = h0, corresponding to
those of|A| in Fig. 3, over the (φµ,φA) plane for small (left-hand plot) and large (right-hand plot)
tanβ. The other MSSM parameters are as given in Table 1.

destructive interferences take place over regions already excluded by direct Higgs searches.
Only constructive interferences would then be observable. These can considerably enhance
the value of the cross sections obtained in the ordinary MSSM, particularly at largeφA and
intermediateφµ values, if tanβ is small (by up to a factor of 7). This result is a consequence
of two related aspects. Firstly, in those (φµ,φA) regions,|A| achieves its maximum, so that
the corresponding Higgs-squark–squark couplings are enhanced significantly, with respect
to the strength of the Higgs-quark–quark vertices (see Appendix A). Secondly, large values
of |A| correspond to small values ofmt̃1 (compare Fig. 3 to Fig. 4), this yielding a further
kinematic enhancement in the squark loops. For large tanβ , the portion of the (φµ,φA)
plane surviving the EDM constraints is much smaller, but the CP-violating effects are still
large. For example, in the region 3π/5. φµ . 3π/4 andπ/3. φA . 3π/4, the MSSM∗
cross sections can be larger by about a factor of 5 with respect to the MSSM ones.

In Fig. 7 we present similar rates for the heaviest scalar Higgs boson, i.e.,Φ0 = H 0.
Contrary to the previous case, here, one typically obtains a suppression of the MSSM∗
cross sections relatively to the MSSM ones, over the allowed regions of the(φµ,φA)

plane, both at small and large tanβ . The destructive effect is the consequence of the
interplay between the Higgs mixing angleα and the minus sign in the third term of the
relevantλH0t̃1t̃

∗
1

coupling, see Eq. (A.49), as opposed to a plus sign inλh0t̃1t̃
∗
1

of Eq. (A.53).
Quantitatively, the effects of the phases are most conspicuous at small tanβ , whenφµ '
3π/5 for smallφA values (about one order of magnitude difference between the MSSM∗
and the MSSM, at the most). At large tanβ , over the much smaller (φµ,φA) plane surviving
the experimental constraints, the suppression is at most a factor of 2, whenφµ ' 4π/5.

The ratioR(gg→ A0) is plotted in Fig. 8. As already discussed in Section 3, here the
corrections induced by finite values ofφµ and/orφA are always positive: see Eq. (B.1).
In fact, the ratioR(gg→ A0) can become as large as 2 at small tanβ . In this case, the
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Fig. 7. Same as in Fig. 6 for the caseΦ0=H0.

Fig. 8. Same as in Fig. 6 for the caseΦ0=A0.

maximum is obtained very close to the excluded regions: i.e.,φµ ' π/2 andφA ' 0,π .
This pattern can easily be understood by looking at theλA0t̃1t̃

∗
1

coupling of Eq. (A.48)
and further recalling Eq. (A.20). (Also notice that, forφA = φµ ' π

2 and tanβ = 2.7,
the couplingλA0t̃1t̃

∗
1

becomes zero, henceR(gg→ A0) = 1.) For larger values of tanβ ,
the effects of the phases on pseudoscalar Higgs boson production can even be larger, as
they are induced through theA0b̃1b̃

∗
1 vertex of Eq. (A.48), which benefits from the tanβ

enhancement. For example, whenφµ ' 3π/4 and forφA slightly larger thanπ/2, the
increase can amount to a factor of 3.

As general remark on the behaviour of the three ratios, one should notice that they are
close to unity (i.e., no effects from the CP-violating phases) whenφµ is small for every
value ofφA. This can easily be interpreted by looking at Fig. 3, since, whenφµ→ 0, one



A. Dedes, S. Moretti / Nuclear Physics B 576 (2000) 29–55 41

Fig. 9. Contour plots for the values of the NLO cross section forgg→Φ0 in the MSSM∗ at the LHC,
σMSSM∗

NLO (gg→Φ0), for the caseΦ0= h0, corresponding to those of|A| in Fig. 3, over the (φµ,φA)
plane for small (left-hand plot) and large (right-hand plot) tanβ. The other MSSM parameters are as
given in Table 1.

has that|A|→ 0 andφt̃,b̃→ 0 too (these are the mixing angles of the third generation, see
Appendix A). Thus, the strength of all Higgs-squark–squark vertices becomes very small
compared to that of the Higgs-quark–quark ones. The opposite (|A|→ 0 whenφA→ 0 for
anyφµ) is not true, since here the|µ| value is fixed and thusφt̃,b̃ are always non-zero.

As already intimated in Section 3, in order to give realistic predictions for CP-violating
effects ingg → Φ0 processes, one ought to include two-loop QCD effects. We do so
in the reminder of this section, by considering the NLO production rates of all Higgs
states at the mentioned CERN and FNAL colliders,σMSSM∗

NLO (gg → Φ0). We convert
the total production cross sections to picobarns and again adopt the input parameters of
Table 1. (Incidentally, notice that, beingmt̃1 > 120 GeV, the relationMΦ0 < 2mq̃ is always

satisfied, for anỹq = t̃1, t̃2, b̃1, b̃2: recall the discussion in Section 3.) The LHC rates are
displayed through Figs. 9–11 whereas the Tevatron ones appear in Figs. 12–14. We present
these figures mainly as a reference for experimental analyses. In fact, as far as CP-violating
effects are concerned, the two-loop QCD dynamics is very similar to the one-loop one
already discussed. In particular, we have verified that the QCDK-factors for the quark
and squark loops are very similar [64] over the portions of the MSSM parameter space
considered here. Thus, to obtain the effects ofφµ andφA on Higgs production via gluon–
gluon fusion at NLO, it suffices to refer to Figs. 6–8 with the normalisation of Figs. 9–11
and Figs. 12–14, for the LHC and the Tevatron, respectively. Concerning the possibility of
actually observing the CP-violating effects at either collider, this is very much dependent
upon their luminosities.

At the LHC, with an annual value between 10 and 100 fb−1, all the available (φµ,φA)
areas can in principle be covered, at both large and small tanβ and for all Higgs states, as
the production cross sections are never smaller than 5 pb or so, see Figs. 9–11. In particular,
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Fig. 10. Same as in Fig. 9 for the caseΦ0=H0.

Fig. 11. Same as in Fig. 9 for the caseΦ0=A0.

this is true where the effects ofφµ andφA are larger: compare the areas with highR(gg→
Φ0) values in Figs. 6–8 to the corresponding rates in Figs. 9–11. For example, forΦ0= h0,
at largeφA, intermediateφµ and for tanβ = 2.7, σMSSM∗

NLO (gg→ h0) is around 200 pb. At
large tanβ , when 3π/5. φµ . 3π/4 andπ/3. φA . 3π/4, the MSSM∗ cross sections
are around 100 pb or more. Similarly, forΦ0=H 0, if tanβ = 2.7, whenφµ ' 3π/5 and
for small φA values,σMSSM∗

NLO (gg→ H 0) is of the order of 6 pb. At tanβ = 10, when
φµ ' 4π/5 (for anyφA), one gets cross section rates around 10 pb. Finally, ifΦ0=A0, at
small tanβ and whenφµ ' π/2 with φA ' 0,π , one has again MSSM∗ cross sections of
the order of 10 pb. For large tanβ , φµ ' 3π/4 andφA >∼ π/2,σMSSM∗

NLO (gg→A0) is about
15 pb.
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Fig. 12. Contour plots for the values of the NLO cross section forgg→ Φ0 in the MSSM∗ at the
Tevatron,σMSSM∗

NLO (gg→ Φ0), for the caseΦ0 = h0, corresponding to those of|A| in Fig. 3, over
the (φµ,φA) plane for small (left-hand plot) and large (right-hand plot) tanβ. The other MSSM
parameters are as given in Table 1.

Fig. 13. Same as in Fig. 12 for the caseΦ0=H0.

Concerning the Tevatron, given the value of integrated luminosity expected at Run 2,
of the order of 10 fb−1, prospects of detecting CP-violating effects ingg→Φ0 processes
are very slim. The variousσMSSM∗

NLO (gg→ Φ0)’s are notably smaller here, because of the
reduced gluon content inside the (anti)proton at lower

√
s, for a givenMΦ0 value. In fact,

the production rates over not yet excluded (φµ,φA) regions are never larger than a handful
of picobarns. One can possibly aim at disentangling CP-violating effects in the case of
the lightest Higgs boson, at both tanβ ’s, but only in the usual corners where both the
corrections and the absolute production rates are largest: see Fig. 12. As for the other two
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Fig. 14. Same as in Fig. 12 for the caseΦ0=A0.

Higgs states, the chances are extremely poor, asσMSSM∗
NLO (gg→Φ0) is always well below

the picobarn level, see Figs. 13–14.
As a final remark of this section, we would like to mention the following. A peculiar

feature concerning Figs. 9–10, as compared to Figs. 6–7, respectively, is the different
pattern of the level curves. This should not be surprising though, as, forΦ0 = h0,H 0,
the squark loop contributions in the ordinary MSSM are non-zero to start with. In contrast,
one can appreciate the strong correlations between the level curves in Fig. 11 and Fig. 6,
a consequence of the absence of scalar loops ingg→ A0 if φµ = φA = 0. Similarly, for
the case of Figs. 12–14.

5. Summary and conclusions

It is well known that finite values of the mixing anglesθ
t̃,b̃

, converting the weak into
the mass basis of the third generation of squarks, see Eqs. (A.6) and (A.9), imply that left-
right chiral currents, Eqs. (A.26)–(A.37), can enter the Higgs-squark–squark couplings
appearing in the scalar loops contributing togg→Φ0 processes, ifΦ0= h0,H 0, because
of the structure of the mixing equations (A.15). As a consequence, the correspondingΦ0

production cross sections develop a dependence onµ andA, the higgsino mass term and
the trilinear scalar coupling (the latter assumed here to be universal to all (s)quark flavours)
entering the soft SUSY breaking sector. The strength of their contribution is however
modified if CP-violating effects are manifestly inserted into the MSSM Lagrangian, by
allowing these two parameters to be complex, see Eqs. (A.48)–(A.56). In such a case,
in particular, also thegg → A0 cross section receives scalar loop contributions, thus
acquiring a dependence uponµ andA, much on the same footing as whenΦ0= h0,H 0:
see Eq. (B.1).
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Clearly, it is the actual size of the independent phases associated to the above two
parameters,φµ andφA, that regulates the phenomenological impact of complex values
of µ and/orA, not least, because they also affect the two mixing angles: see Eqs. (A.19)
and (A.24). Given the importance of Higgs production at future hadron–hadron colliders,
such as the Tevatron (Run 2) and the LHC, and the fact that gluon–gluon fusion is a sizable
production mode at the former and indeed the dominant one at the latter (over most of
the MSSM parameter space), we have made the investigation of the effects induced by
finite CP-violating phases ingg→ Φ0 processes the concern of this paper. In order to
address the problem quantitatively, we first had to derive the relevant Feynman rules of the
MSSM in presence ofφµ andφA (Appendix A) and eventually calculate the associated
cross sections, for any Higgs state (Appendix B).

Before proceeding to the numerical analysis though, we had to introduce a parametri-
sation of our theoretical model and incorporate the latest experimental constraints on its
parameters. These can be subdivided into two categories, those arising from analyses per-
formed with collider data and those deduced from the measurements of the electron and
neutron EDMs. The former mainly limit the value of the squark masses and couplings, thus
only indirectly affectingφµ andφA, see Eqs. (5)–(6). In contrast, the latter can be very
stringent in this respect, unless cancellations take place among the SUSY contributions to
the fermionic EDMs, so that the bounds derived this way onφµ andφA become much less
potent. In practise, the CP-violating phases can attain any value between 0 andπ , provided
|µ| and|A| are in appropriate relations, which are in fact satisfied over large portions of the
MSSM parameter space. Under these circumstances then, the CP-violating phases can af-
fect the interplay between the quark and squark loops ingg→Φ0 processes considerably
(Section 2).

In the end, we have verified, both at LO and NLO accuracy (Section 3), that this is true,
over those parts of MSSM parameter space where these cancellations are more effective.
As a matter of fact, effects due to finite values ofφµ and/orφA can be extremely large,
inducing variations on the Higgs cross sections of the ordinary MSSM (i.e., those obtained
for φµ = φA = 0 at the same|A|) of several hundred percent, at least for values of tanβ in
the range between 2 and 10 and soft masses and couplings up to the TeV region (Section 4).
For these combinations of parameters, even the bounds induced by the contributions of the
Barr–Zee type diagrams to the EDMs can easily be evaded. Other than studying relative
effects of the phases, with respect to the yield of the ordinary MSSM, we also have
presented absolute rates for thegg→Φ0 cross sections at NLO, at both the LHC and the
Tevatron, for the MSSM includingφµ andφA, thus showing CP-violating effects explicitly
in observable quantities. Given the higher luminosity and production rates expected at the
CERN collider, as compared to the values at the FNAL one, real prospects of sizing these
effects in Higgs boson production will most likely have to wait for a few more years.
By then, the available portions of the (φµ,φA) plane should also be expected to be better
defined than at present, given the improvement foreseen in the near future in the precision
of the EDM measurements [72].

Anyhow, as we have tried to motivate in the introduction, and following our results, we
believe that further investigation is needed of the consequences of explicit CP-violation
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being present in the soft SUSY Lagrangian. For example, to stay with the Higgs sector,
one should establish the effects ofφµ andφA in the decay processh0→ γ γ [74], as this
represents the most promising discovery channel of the lightest Higgs boson of the MSSM
at hadron–hadron machines. In this case, the proliferation of SUSY induced contributions
(also due to charged Higgs bosons, sleptons and gauginos) could well be responsible of
CP-violating effects comparable to those seen in the Higgs production processes via gluon–
gluon fusion, as the latter are solely due to squarks contributions.
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Appendix A. The CP-violating phases in the MSSM

In this section, we follow the notation of Ref. [73]. We start from the superpotential,
which has the form

W = εij
(
YeH

i
1L

j Ē + YdH i
1Q

jD̄ + YuHj

2Q
iŪ +µHi

1H
j

2

)
(A.1)

and where all fields appearing are actually superfields, withε12= 1. In terms of component
fields, the Lagrangian of the soft breaking terms reads as

Lsoft=−M2
H1
|H1|2−M2

H2
|H2|2−µBεij

(
Hi

1H
j

2 + h.c.
)

− 1
2M1
¯̃BB̃ − 1

2M2
¯̃WaW̃a − 1

2M3 ¯̃gαg̃α
−M2

Q̃

(
ũ∗LũL + d̃∗Ld̃L

)−M2
Ũ
ũ∗RũR −M2

D̃
d̃∗RD̃R

−M2
L̃

(
ẽ∗LẽL + ν̃∗Lν̃L

)−M2
Ẽ
ẽ∗RẽR

− εij
(−YuAuH i

2Q̃
j ũ∗R + YdAdH i

1Q̃
j d̃∗R + YeAeH i

1L̃
j ẽ∗R + h.c.

)
. (A.2)

The squark mass squared matrix (here and in the following,q(
′) = t andb)

M2
q̃ =

(
M2
q̃LL

|M2
q̃LR
|e−iφq̃

|M2
q̃RL
|eiφq̃ M2

q̃RR

)
, (A.3)

is Hermitian and can be diagonalised by the unitary transformation

U
†
q̃
M2
q̃Uq̃ = diag

(
M2
q̃1
,M2

q̃2

)
, (A.4)

with (Mq̃2
1
<Mq̃2

2
),

M2
q̃(1)[2] =

1

2

{(
M2
q̃LL +M2

q̃RR

)
(−)[+]

√(
M2
q̃LL
−M2

q̃RR

)2+ 4 |Mq̃RL|4
}

(A.5)
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and

Uq̃ =
(

cosθq̃ −sinθq̃e
iφq̃

sinθq̃e
−iφq̃ cosθq̃

)
, (A.6)

where−π/26 θq̃ 6 π/2 and

tan2θq̃ =
2 |M2

q̃RL
|

M2
q̃LL
−M2

q̃RR

, (A.7)

sinφq̃ =
=(M2

q̃RL
)

|M2
q̃RL
| , (A.8)

where= refers to the imaginary part of a complex quantity.
Now, in order to construct the Feynman rules for the Higgs-squark–squark vertices, we

need the transformation of the squark weak basis(q̃L, q̃R) into the mass basis(q̃1, q̃2),
namely(

q̃L

q̃R

)
=Uq̃

(
q̃1

q̃2

)
. (A.9)

Furthermore, one has to proceed by also transforming the Higgs boson weak ba-
sis (H 0

1 ,H
0
2 ,H

+
2 ,H

−
2 ) of the four complex fields into the real eight physical ones

(H 0, h0,A0,H+,H−,G0,G+,G−). Following Ref. [73], the transformation can be writ-
ten as follows

H 0
1 = v1+ 1√

2

(
H 0 cosα − h0 sinα + iA0 sinβ − iG0 cosβ

)
, (A.10)

H 0
2 = v2+ 1√

2

(
H 0 sinα + h0 cosα + iA0 cosβ + iG0 sinβ

)
, (A.11)

H−1 =H− sinβ −G− cosβ, (A.12)

H+2 =H+ cosβ +G+ sinβ, (A.13)

with (H+)∗ ≡H− and

sin 2α =−sin2β

(
M2
H0 +M2

h0

M2
H0 −M2

h0

)
, (A.14)

whereMH0,Mh0 are the tree-level CP-even Higgs boson masses.
The Feynman rules for the Higgs-squark–squark vertices, involving mixing and phases,

finally are (here,Φ =Φ0 andH±):

λΦq̃1q̃
′∗
1
= cq̃cq̃ ′λΦq̃Lq̃ ′∗L + sq̃sq̃ ′e−i(φq̃−φq̃′ )λΦq̃Rq̃ ′∗R + cq̃sq̃ ′eiφq̃′λΦq̃Lq̃ ′∗R
+ sq̃cq̃ ′e−iφq̃ λΦq̃Rq̃ ′∗L,

λΦq̃2q̃
′∗
2
= sq̃sq̃ ′ei(φq̃−φq̃′ )λΦq̃Lq̃ ′∗L + cq̃cq̃ ′λΦq̃Rq̃ ′∗R − sq̃ cq̃ ′eiφq̃ λΦq̃Lq̃ ′∗R
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− cq̃sq̃ ′e−iφq̃′λΦq̃Rq̃ ′∗L,

λΦq̃1q̃
′∗
2
=−cq̃sq̃ ′e−iφq̃′λΦq̃Lq̃ ′∗L + sq̃ cq̃ ′e−iφq̃ λΦq̃Rq̃ ′∗R + cq̃cq̃ ′λΦq̃Lq̃ ′∗R
− sq̃sq̃ ′e−i(φq̃+φq̃′ )λΦq̃Rq̃ ′∗L,

λΦq̃2q̃
′∗
1
=−sq̃cq̃ ′eiφq̃ λΦq̃Lq̃ ′∗L + cq̃sq̃ ′eiφq̃′λΦq̃Rq̃ ′∗R − sq̃ sq̃ ′ei(φq̃′+φq̃ )λΦq̃Lq̃ ′∗R
+ cq̃cq̃ ′λΦq̃Rq̃ ′∗L . (A.15)

For the case of stop squarks (i.e.,q̃ = t̃ ), one has

M2
t̃LL
=M2

Q̃
+M2

t + 1
6

(
4M2

W −M2
Z

)
cos2β, (A.16)

M2
t̃RR
=M2

Ũ
+M2

t − 2
3

(
M2
W −M2

Z

)
cos2β, (A.17)

M2
t̃RL
= (M2

t̃LR

)∗ =mt(At +µ∗ cotβ), (A.18)

and thus

tan2θt̃ =
2mt |At +µ∗ cotβ|

M2
Q̃
−M2

Ũ
+ ( 4

3M
2
W − 5

6M
2
Z

)
cos2β

, (A.19)

sinφt̃ =
|At |sinφAt − |µ|sinφµ cotβ

|At +µ∗ cotβ| , (A.20)

whereµ= |µ|eiφµ andAt = |At |eiφAt .
Similarly, one obtains for sbottoms (i.e.,q̃ = b̃):

M2
b̃LL
=M2

Q̃
+m2

b − 1
6

(
2M2

W +M2
Z

)
cos2β, (A.21)

M2
b̃RR
=M2

D̃
+m2

b + 1
3

(
M2
W −M2

Z

)
cos2β, (A.22)

M2
b̃RL
= (M2

b̃LR

)∗ =mb(Ab +µ∗ tanβ), (A.23)

with

tan2θb̃ =
2mb|Ab +µ∗ tanβ|

M2
Q̃
−M2

D̃
+ (−2

3M
2
W + 1

6M
2
Z

)
cos2β

, (A.24)

sinφb̃ =
|Ab|sinφAb − |µ|sinφµ tanβ

|Ab +µ∗ tanβ| , (A.25)

whereAb = |Ab|eiφAb .
The chiral couplingsλΦq̃χ q̃ ′χ ∗ (χ = L,R) of Eq. (A.15) can be found in Ref. [73], with

the only exception of those cases whereµ andAq̃ enter3, for which one has to adopt the
following set of formulae (withg2≡ 4παEM/sin2 θW the weak constant and whereMW is
theW± boson mass):

3 In other terms, for realµ andAq̃ our expressions reduce to those in Ref. [73].
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λA0t̃Lt̃
∗
R
=− gmu

2MW

(
µ∗ −Au cotβ

)
, (A.26)

λA0t̃∗Lt̃R =−
(
λA0t̃Lt̃

∗
R

)∗
, (A.27)

λ
A0b̃Lb̃

∗
R
=− gmd

2MW

(
µ∗ −Ad tanβ

)
, (A.28)

λA0b̃∗Lb̃R
=−(λA0b̃Lb̃

∗
R

)∗
, (A.29)

λH0t̃Lt̃
∗
R
=− igmu

2MW sinβ

(
µ∗ cosα +Au sinα

)
, (A.30)

λH0t̃∗Lt̃R =−
(
λH0t̃Lt̃

∗
R

)∗
, (A.31)

λ
H0b̃Lb̃

∗
R
=− igmd

2MW cosβ

(
µ∗ sinα +Ad cosα

)
, (A.32)

λH0b̃∗Lb̃R
=−(λH0b̃Lb̃

∗
R

)∗
, (A.33)

λh0t̃Lt̃
∗
R
= igmu

2MW sinβ

(
µ∗ sinα−Au cosα

)
, (A.34)

λh0t̃∗Lt̃R =−
(
λh0t̃L t̃

∗
R

)∗
, (A.35)

λ
h0b̃Lb̃

∗
R
=− igmd

2MW cosβ

(
µ∗ cosα −Ad sinα

)
, (A.36)

λh0b̃∗Lb̃R
=−(λh0b̃Lb̃

∗
R

)∗
, (A.37)

λ
H+ b̃Lt̃∗R

=− igmu√
2MW

(
µ∗ −Au cotβ

)
, (A.38)

λ
H− t̃Lb̃∗R

=− igmd√
2MW

(
µ∗ −Ad tanβ

)
, (A.39)

λH+ t̃∗Lb̃R
=− igmd√

2MW

(
µ−A∗d tanβ

)
, (A.40)

λH− b̃∗Lt̃R
=− igmu√

2MW

(
µ−A∗u cotβ

)
. (A.41)

(Although we have not made use of the Feynman rules involving charged Higgses we
display them here for completeness.) We need also the interactions among Higgs bosons
and quarks and these read as follows:

λA0t t̄ =−
gmu cotβ

2MW

γ5, (A.42)

λA0bb̄ =−
gmd tanβ

2MW

γ5, (A.43)
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λH0t t̄ =−
igmu sinα

2MW sinβ
, (A.44)

λH0bb̄ =−
igmd cosα

2MW cosβ
, (A.45)

λh0t t̄ =−
igmu cosα

2MW sinβ
, (A.46)

λh0bb̄ =
igmd sinα

2MW cosβ
. (A.47)

It is now useful to look at the explicit phase dependence of the vertices involving Higgs
bosons and squarks: to this end, we expand our formulae (A.15). The relevant couplings
involving the CP-odd Higgs boson read as:4

λA0t̃1t̃
∗
1
=−i

[
gmt

2MW

]
sin2θt̃

{|µ|sin(φt̃ − φµ)− |At |sin(φt̃ + φAt )cotβ
}
,

λA0t̃2t̃
∗
2
=−λA0t̃1t̃

∗
1
,

λA0b̃1b̃
∗
1
=−i

[
gmb

2MW

]
sin2θb̃

{|µ|sin(φb̃ − φµ)− |Ab|sin(φb̃ + φAb) tanβ
}
,

λA0b̃2b̃
∗
2
=−λA0b̃1b̃

∗
1
. (A.48)

For the CP-even Higgs bosons we find (here,sW ≡ sinθW andcW = cosθW ),

λH0t̃1t̃
∗
1
=
[
igMZ

cW

]{
−[1

2 cos2 θt̃ − eus2
W cos2θt̃

]
cos(α + β)− m2

t

M2
Z

sinα

sinβ

− mt sin 2θt̃
2M2

Z sinβ

[|µ|cos(φt̃ − φµ)cosα + |At |cos(φt̃ + φAt )sinα
]}
, (A.49)

λH0t̃2t̃
∗
2
=
[
igMZ

cW

]{
−[1

2 sin2 θt̃ + eus2
W cos2θt̃

]
cos(α + β)− m2

t

M2
Z

sinα

sinβ

+ mt sin 2θt̃
2M2

Z sinβ

[|µ|cos(φt̃ − φµ)cosα + |At |cos(φt̃ + φAt )sinα
]}
, (A.50)

λH0b̃1b̃
∗
1
=
[
igMZ

cW

]{[1
2 cos2 θb̃ + eds2

W cos2θb̃
]
cos(α + β)− m2

b

M2
Z

cosα

cosβ

− mb sin 2θb̃
2M2

Z cosβ

[|µ|cos(φb̃ − φµ)sinα+ |Ab|cos(φb̃ + φAb )cosα
]}
, (A.51)

4 Note that the vertices with gluons and squarks are not affected by the phases.
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λH0b̃2b̃
∗
2
=
[
igMZ

cW

]{[1
2 sin2 θb̃ − eds2

W cos 2θb̃
]
cos(α + β)− m2

b

M2
Z

cosα

cosβ

+ mb sin 2θb̃
2M2

Z cosβ

[|µ|cos(φ
b̃
− φµ)sinα+ |Ab|cos(φ

b̃
+ φAb )cosα

]}
, (A.52)

λh0t̃1t̃
∗
1
=
[
igMZ

cW

]{[1
2 cos2 θt̃ − eus2

W cos2θt̃
]
sin(α + β)− m2

t

M2
Z

cosα

sinβ

+ mt sin 2θt̃
2M2

Z sinβ

[|µ|cos(φt̃ − φµ)sinα − |At |cos(φt̃ + φAt )cosα
]}
, (A.53)

λh0t̃2t̃
∗
2
=
[
igMZ

cW

]{[1
2 sin2 θt̃ + eus2

W cos 2θt̃
]
sin(α + β)− m2

t

M2
Z

cosα

sinβ

− mt sin 2θt̃
2M2

Z sinβ

[|µ|cos(φt̃ − φµ)sinα − |At |cos(φt̃ + φAt )cosα
]}
, (A.54)

λh0b̃1b̃
∗
1
=
[
igMZ

cW

]{
−[1

2 cos2 θb̃ + eds2
W cos2θb̃

]
sin(α + β)+ m2

b

M2
Z

sinα

cosβ

− mb sin 2θb̃
2M2

Z cosβ

[|µ|cos(φb̃ − φµ)cosα − |Ab|cos(φb̃ + φAb)sinα
]}
, (A.55)

λ
h0b̃2b̃

∗
2
=
[
igMZ

cW

]{
−[1

2 sin2 θb̃ − eds2
W cos2θb̃

]
sin(α + β)+ m2

b

M2
Z

sinα

cosβ

+ mb sin 2θb̃
2M2

Z cosβ

[|µ|cos(φb̃ − φµ)cosα − |Ab|cos(φb̃ + φAb)sinα
]}
, (A.56)

whereeu =+2/3 anded =−1/3. Of course, one can get the corresponding vertices for all
squarks flavours by a simple substitutiont→ u, c andb→ d, s.

Appendix B. Matrix elements and cross sections

Since, as we have already discussed in the main body of the paper, the CP-violating
phases induce a non-zero contribution from squark loops in CP-odd Higgs boson
production which is absent in the phaseless MSSM and since this has not been evaluated
yet in the literature, we had to perform the loop tensor reduction in such a case from scratch.
However, for comparison purposes, we have also recalculated the well known tensor
associated to CP-even Higgs boson production and found agreement with old results. We
have evaluated the diagrams in the (modified) Dimensional Regularisation (DR) scheme,
which preserves the SUSY Ward identities of the theory up to two loops. This enabled
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us to check analytically the gauge invariance of our results. Furthermore, we have carried
out theγ -algebra in four dimensions while using analytical continuation ind dimensions
in order to calculate the divergent parts of the integrals. The squared matrix elements
summed/averaged over final/initial spins and colours finally are:5

|M̄|2
gg→h0 =

α2
s (Q)M

4
h0

256π2

∣∣∣∣∑
q

λh0qq̄

mq
τq
[
1+ (1− τq)f (τq)

]

− 1

4

∑
q̃

λh0q̃q̃∗

m2
q̃

τq̃
[
1− τq̃f (τq̃ )

]∣∣∣∣2,
|M̄|2

gg→H0 =
α2
s (Q)M

4
H0

256π2

∣∣∣∣∑
q

λH0qq̄

mq
τq
[
1+ (1− τq)f (τq)

]

− 1

4

∑
q̃

λH0q̃q̃∗

m2
q̃

τq̃
[
1− τq̃f (τq̃ )

]∣∣∣∣2,
|M̄|2

gg→A0 =
α2
s (Q)M

4
A0

256π2

{∣∣∣∣∑
q

λA0qq̄

mq

[
τqf (τq)

]∣∣∣∣2

+ 1

16

∣∣∣∣∑
q̃

λA0q̃q̃∗

m2
q̃

[
τq̃
(
1− τq̃f (τq̃ )

)]∣∣∣∣2}, (B.1)

whereτq,q̃ = 4m2
q,q̃

M2
Φ0

, q = t, b andq̃ = t̃1, t̃2, b̃1, b̃2. The functionf (τ) stands for

f (τ)=−1

2

1∫
0

dy

y
ln

(
1− 4y(1− y)

τ

)

=
arcsin2

( 1√
τ

)
, τ > 1,

−1
4

[
ln 1+√1−τ

1−√1−τ − iπ
]2
, τ < 1,

(B.2)

and some useful limits are

lim
τ→∞

{
τ
[
1+ (1− τ )f (τ )]}=+2

3
, (B.3)

lim
τ→∞

{
τ
[
1− τf (τ )]}=−1

3
, (B.4)

lim
τ→∞

{
τf (τ )

}=+1. (B.5)

The non-existence of interference terms between quark and squark loops for CP-odd Higgs
boson production can readily be understood by looking at the corresponding amplitude

5 Note that theγ5-matrix is here intended to be removed from the expressions of theλ
A0qq̄ ’s of Eqs. (A.43)–

(A.44).
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formula (P1,P2 are the gluon four-momenta,εµ(P1), εν(P2) their polarisation four-vectors
anda, b their colours)

iεµ(P1)εν(P2)Mµν
ab (gg→A0)

=−αs(Q)
2π

δab εµ(P1)εν(P2)

{
iεµνρσP1ρP2σ

∑
q

λA0qq̄

mq

[
τqf (τq)

]
+ 1

4

∑
q̃

λA0q̃q̃∗

m2
q̃

(
gµνP1 · P2− Pν1Pµ2

)
τq̃
[
1− τq̃f (τq̃ )

]}
, (B.6)

where one notices an antisymmetric part — note the Levi–Civita tensorε — associated to
the quark contributions (first term on the right-hand side) and a symmetric one associated
to the squark loops (second term on the right-hand side). For completeness, we also give the
tensor structure of the loop amplitudes corresponding to CP-even Higgs boson production:

iεµ(P1)εν(P2)Mµν
ab (gg→ h0,H 0)

= αs(Q)
2π

δabεµ(P1)εν(P2)
(
gµνP1 · P2− Pν1 Pµ2

)
×
{∑

q

λ(h0,H0)qq̄

mq
τq
[
1+ (1− τq)f (τq)

]
− 1

4

∑
q̃

λ(h0,H0)q̃q̃∗

m2
q̃

τq̃
[
1− τq̃f (τq̃ )

]}
. (B.7)

Here, interference effects clearly exist between the SM- and SUSY-like parts, because of
the symmetric nature of both contributions.

The LO partonic cross sections at the energy
√
ŝ are then

σ̂ Φ
0

LO =
π

ŝ
|M̄|2

gg→Φ0δ
(
ŝ −M2

Φ0

)
, (B.8)

whereas the corresponding hadronic rates for a collider CM energy
√
s read as

σΦ
0

LO =
π

M4
Φ0

|M̄|2
gg→Φ0τ

dL
dτ
, (B.9)

with τ = ŝ/s ≡M2
Φ0/s and

τ
dL
dτ
=

1∫
τ

dx

x
τg(x,Q)g

(
τ

x
,Q

)
, (B.10)

whereg(x,Q) is the PDF of the gluon, evaluated at the scaleQ≡MΦ0.
As already mentioned in the introduction, in performing the two-loop analysis, we have

made use of the formulae given in Ref. [64]. We refer the reader to that paper for specific
details.
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