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Abstract

We perform a comprehensive study of the emission of massive scalar fields by a higher-
dimensional, simply rotating black hole both in the bulk and on the brane. We derive
approximate, analytic results as well as exact numerical ones for the absorption probabil-
ity, and demonstrate that the two sets agree very well in the low and intermediate-energy
regime for scalar fields with mass mΦ ≤ 1 TeV in the bulk and mΦ ≤ 0.5 TeV on the
brane. The numerical values of the absorption probability are then used to derive the
Hawking radiation power emission spectra in terms of the number of extra dimensions,
angular-momentum of the black hole and mass of the emitted field. We compute the to-
tal emissivities in the bulk and on the brane, and demonstrate that, although the brane
channel remains the dominant one, the bulk-over-brane energy ratio is considerably in-
creased (up to 33%) when the mass of the emitted field is taken into account.
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1 Introduction

The postulation of the existence of additional spacelike dimensions in nature, that can
be as large as a few micrometers [1] or even infinite in size [2], has led to the idea of
a higher-dimensional gravitational theory with a fundamental energy scale M∗ much
smaller than the traditional Planck scale MP . If this can be realised with M∗ close to the
TeV scale, present of future experiments may accelerate particles at energies beyond this
new gravity scale. This will unavoidably lead to the occurence of strong gravity effects
in particle collisions and the production of heavy final states, including miniature black
holes [3].

The lifetime of these black holes is expected to be very short as they instantaneously
decay via the emission of Hawking radiation [4] (for detailed reviews of their properties,
see [5, 6]). Since these black holes will be created and decay in front of our detectors, it is
anticipated that the emission of Hawking radiation will be the main obervable signature
of their creation and, at the same time, a manifestation of the existence of additional
spacelike dimensions in nature. As a result, the study of the emission of radiation by
higher-dimensional black holes has been the subject of an intensive research activity over
the last years. This includes the emission from both spherically-symmetric [7, 8, 9, 10, 11,
12, 13, 14, 15, 16] and rotating [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
black holes in the form of zero and non-zero spin fields.

In order to simplify the analysis, the emitted fields are assumed to be minimally-
coupled to gravity but otherwise free as well as massless. Nevertheless, in the context of
the four-dimensional analysis [33] it was found that for certain particles and mass of the
black hole, the particle mass can significantly (up to 50%) suppress the emission rate.
Recently, a set of works [34] has addressed the question of the role of the mass of the emit-
ted field (as well as that of the charge) for emission on the brane by a higher-dimensional
black hole. Here, we extend this analysis by considering the case of a higher-dimensional
black hole with a non-vanishing angular momentum emitting massive scalar fields. We
perform a comprehensive study of the absorption probability and energy emission rate
for a range of values of the mass of the emitted field, number of extra dimensions, and
angular momentum of the black hole. By integrating over the entire frequency range, we
compute the total emissivities and obtain the suppression factors in each case. We also
consider the cases of both bulk and brane emission, and pose the additional question
of whether the presence of the mass of the emitted field can affect the bulk-over-brane
energy ratio and threaten the dominance of the brane channel.

The outline of this paper is as follows: In section 2, we study the emission of massive
scalar fields by a higher-dimensional, simply rotating black hole in the bulk; we compute
the value of the absorption probability both analytically and numerically and compare
the two sets of results; finally, we derive the exact energy emission spectra and discuss
their behaviour. In section 3, we turn to the brane and perform the same tasks. The total
emissivities for bulk and brane emission are derived in section 4, and the bulk-over-brane
ratio is computed for a large number of values of the parameters of the theory. We close
with our conclusions in section 5.
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2 Emission of Massive Scalars in the Bulk

In this work, we will consider the case of a higher-dimensional, neutral, simply rotating
black hole whose gravitational background is described by the following form of the
Myers-Perry solution [35]

ds2 = −
(

1− µ

Σ rn−1

)

dt2 − 2aµ sin2 θ

Σ rn−1
dt dϕ+

Σ

∆
dr2 + Σ dθ2

+

(

r2 + a2 +
a2µ sin2 θ

Σ rn−1

)

sin2 θ dϕ2 + r2 cos2 θ dΩ2
n, (1)

where
∆ = r2 + a2 − µ

rn−1
, Σ = r2 + a2 cos2 θ , (2)

and dΩ2
n(θ1, θ2, . . . , θn−1, φ) is the line-element on a unit n-sphere. The above line-element

is expected to describe black holes created by an on-brane collision of particles that
acquire only one non-zero angular momentum component, parallel to our brane. The
black hole’s mass MBH and angular momentum J are then related to the parameters µ
and a, respectively, as follows

MBH =
(n+ 2)An+2

16πGD

µ , J =
2

n + 2
MBH a , (3)

with GD being the (4+n)-dimensional Newton’s constant, and An+2 the area of a (n+2)-
dimensional unit sphere given by An+2 = 2π(n+3)/2/Γ[(n+3)/2]. The black hole’s horizon
radius rh follows from the equation ∆(rh) = 0, and may be written as rn+1

h = µ/(1+a2∗),
where a∗ = a/rh.

A massive scalar field, with mass mΦ, propagating in the gravitational background
(1) will satisfy the equation of motion

1√
−G

∂M

(√
−GGMN∂NΦ

)

−m2
ΦΦ = 0 , (4)

where GMN the higher-dimensional metric tensor and G its determinant satisfying the
relation

√
−G = Σsin θ rn cosn θ

n−1
∏

i=1

sini θi . (5)

Even in the presence of the mass term, the above equation can be separated [17, 36] by
assuming the factorised ansatz

Φ = e−iωteimϕR(r)S(θ) Yln(θ1, . . . , θn−1, φ) , (6)

where Yln(θ1, . . . , θn−1, φ) are the hyperspherical harmonics on the n-sphere that satisfy
the equation [37, 38]

n−1
∑

k=1

1
∏n−1

i=1 sini θi
∂θk

[(

n−1
∏

i=1

sini θi

)

∂θkYln
∏n−1

i>k sin2 θi

]

+
∂φφYln

∏n−1
i=1 sin2 θi

+l(l+n−1) Yln = 0 . (7)

2



The functions R(r) and S(θ) in turn satisfy the following decoupled radial and angular
equation

1

rn
∂r (r

n∆ ∂rR) +

(

K2

∆
− l(l + n− 1)a2

r2
− Λ̃jℓm −m2

Φr
2

)

R = 0 , (8)

1

sin θ cosn θ
∂θ (sin θ cos

n θ∂θS) +

(

ω̃2a2 cos2 θ − m2

sin2 θ
− l(l + n− 1)

cos2 θ
+ Ẽjℓm

)

S = 0 ,

(9)
respectively. In the above,

K = (r2 + a2)ω − am , Λ̃jℓm = Ẽjℓm + a2ω2 − 2amω . (10)

For the above decoupling to take place, the angular function S(θ) needs to satisfy a
modified higher-dimensional spheroidal harmonics equation: compared to the massless
case [39], it has the energy ω replaced by the momentum ω̃ ≡

√

ω2 −m2
Φ. Then, the

massive angular eigenvalue Ẽjℓm(aω̃) is related to the massless one Ejℓm(aω) by merely a
shift of its argument: aω → aω̃. Here, we will employ the power-series expression of the
angular eigenvalue [39] in terms of the parameter (aω) which, under the aforementioned
shift and up to 5th order, takes the form

Ẽjlm = j (j + n + 1)− (aω̃)2
[−1 + 2l(l − 1) + 2j(j + 1)− 2m2 + 2n(j + l) + n2]

(2j + n− 1) (2j + n + 3)

+ (aω̃)4
{

(l − j + |m|)(l + j − |m|+ n− 1)

16(2j + n− 3)(2j + n− 1)2

[

(2 + l − j + |m|)(l + j − |m|+ n− 3)

− 4(2j + n− 3)
[−1 + 2l(l − 1) + 2j(j + 1)− 2m2 + 2n(j + l) + n2]

(2j + n− 1)(2j + n + 3)

]

− (l − j + |m| − 2)(l + j + n− |m|+ 1)

16(2j + 5 + n)(2j + n + 3)2

[

(l − j + |m| − 4)(j + l + n− |m|+ 3)

+ 4(2j + n + 5)
[−1 + 2l(l − 1) + 2j(j + 1)− 2m2 + 2n(j + l) + n2]

(2j + n− 1)(2j + n+ 3)

]}

+ O
(

(aω̃)6
)

. (11)

The analytic form of the angular eigenvalue was studied in detail in the context of
previous works focusing on the emission of massless scalars [29, 30] and gravitons [31] in
the bulk. It was found that its value, when terms up to 5th order or higher are kept, is
remarkably close to the exact numerical value and that considerable deviations appear
only for a very large angular momentum of the black hole or energy of the emitted
particle, that lie beyond the range of values considered in this work. For this reason,
the analytic form (11) of the angular eigenvalue will be employed in the derivation of
the absorption probability in both an analytic and numerical method. We should still
demand of course the convergence of the power series by imposing restrictions on the
allowed values of the integer parameters (j, ℓ,m) that specify the emission mode : m,
that denotes the angular momentum of the mode along our brane, may take any integer
value while ℓ and j – the angular momentum number in the n-sphere and total angular
momentum number, respectively – may take any positive or zero integer value provided
[39] that j ≥ ℓ+ |m| and j−(ℓ+|m|)

2
∈ {0,Z+}.
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2.1 The Absorption Probability in the Bulk

For the derivation of the absorption probability |Ajℓm|2 we need the solution for the radial
function R(r). We will first solve Eq. (8) analytically by using an approximate method,
and we will derive an analytic expression for the absorption probability which in principle
is valid in the low-energy and low-angular-momentum limit. We will then solve the same
equation numerically to derive the exact value of |Ajℓm|2, that will subsequently be used
to derive the Hawking radiation spectrum. The two sets of results will be compared,
and the validity of the approximate method will be studied in terms of the value of the
angular-momentum parameter a, number of extra dimensions n and mass of the emitted
particle mΦ.

The approximate analytic method amounts to solving the radial equation in the
two asymptotic regimes, those of the black-hole horizon and far away from it, and then
matching them in an intermediate regime. Apart from the appearance of the mass pa-
rameter mΦ, the analysis is very similar to the one for the emission of massless scalar
fields in the bulk which has already appeared in the literature [29]. Therefore, here we
briefly present the analysis and results giving emphasis to the differences arising due to
the presence of the mass term.

In terms of the new radial variable r → f(r) = ∆(r)/(r2 + a2) [27, 28], the radial
equation (8) near the horizon (r ≃ rh) takes the form

f (1− f)
d2R

df 2
+ (1−D∗ f)

dR

df
+

[

K2
∗

A2
∗ f(1− f)

− C∗
A2

∗ (1− f)

]

R = 0 , (12)

where A∗ ≡ (n+ 1) + (n− 1)a2∗, D∗ ≡ 1− 4a2∗/A
2
∗, while K∗ and C∗ are defined as

K∗ = (1 + a2∗)ωrh − a∗m, C∗ =
[

ℓ(ℓ+ n− 1)a2∗ + Λ̃jℓm +m2
Φr

2
h

]

(1 + a2∗) , (13)

respectively. By employing the transformation RNH(f) = fα (1 − f)β F (f) the above
equation takes the form of a hypergeometric differential equation [40] as long as

α± = ±iK∗
A∗

, β =
1

2

[

(2−D∗)−
√

(D∗ − 2)2 − 4

(

K2
∗ − C∗
A2

∗

) ]

. (14)

The radial function RNH(f) must satisfy the boundary condition that no outgoing modes
exist near the black-hole horizon which then reduces the general solution of the hyper-
geometric equation to the physically acceptable one

RNH(f) = A− fα (1− f)β F (a, b, c; f) , (15)

with a = α+ β +D∗ − 1, b = α+ β, c = 1+2α and A− an integration constant. Indeed,
we may easily check that in the limit r → rh (or equivalently f → 0), and by making
the choice α = α−, we obtain

RNH(f) ≃ A− f−iK∗/A∗ = A− e−iky . (16)
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that has a form of an incoming plane-wave, as expected, in terms of a tortoise-like
coordinate defined by y = rh(1 + a2∗) ln(f)/A∗. In the above, k is given by

k ≡ K∗
rh(1 + a2∗)

= ω −mΩh = ω − ma

r2h + a2
, (17)

where Ωh is the rotation velocity of the black hole.

In the far-field regime (r ≫ rh), the substitution R(r) = r−(
n+1

2 )R̃(r) brings Eq. (8)
into the form of a Bessel equation [40]

d2R̃

dz2
+

1

z

dR̃

dz
+

(

1− Ẽjℓm + a2ω̃2 +
(

n+1
2

)2

z2

)

R̃ = 0 , (18)

in terms of z ≡ ω̃r, with solution

RFF (r) =
B1

r
n+1

2

Jν (ω̃r) +
B2

r
n+1

2

Yν (ω̃r) . (19)

In the above, Jν and Yν are the Bessel functions of the first and second kind, respectively,

and ν =
√

Ẽjℓm + a2ω̃2 +
(

n+1
2

)2
.

We now need to smoothly match the two asymptotic solutions (15) and (19) in an
intermediate regime. The near-horizon solution (15) must first be shifted, so that its
argument changes from f to (1 − f), and subsequently expanded in the r ≫ rh limit.
Then, it takes the polynomial form

RNH(r) ≃ A1 r
−(n+1) β + A2 r

(n+1) (β+D∗−2) , (20)

with A1 and A2 defined as

A1 = A−
[

(1 + a2∗) r
n+1
h

]β Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

A2 = A−
[

(1 + a2∗) r
n+1
h

]−(β+D∗−2) Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
. (21)

The far-field solution (19) is in turn expanded to small values of r leading to

RFF (r) ≃
B1

(

ω̃r
2

)ν

r
n+1

2 Γ(ν + 1)
− B2

π r
n+1

2

Γ(ν)
(

ω̃r
2

)ν . (22)

The two polynomial forms match perfectly if we take the small a∗ and ω̃∗ limit in the
power coefficients of r. In that case we can ignore terms of order (ω̃2

∗, a
2
∗, a∗ω̃∗) or higher,

and obtain −(n+1)β ≃ j, (n+1)(β+D∗−2) ≃ −(j+n+1), and ν ≃ j+(n+1)/2. We
then demand the matching of the corresponding multiplicative coefficients, which leads
to a constraint for the far-asymptotic integration constants B1 and B2, namely

B ≡ B1

B2

= −1

π

(

2

ω̃rh (1 + a2∗)
1

n+1

)2j+n+1
√

Ẽjℓm + a2ω̃2 +

(

n+ 1

2

)2

×
Γ2

(

√

Ẽjℓm + a2ω̃2 +
(

n+1
2

)2
)

Γ(α + β +D∗ − 1) Γ(α+ β) Γ(2− 2β −D∗)

Γ(2β +D∗ − 2) Γ(2 + α− β −D∗) Γ(1 + α− β)
,(23)
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that guarantees the existence of a smooth, analytic solution for the radial part of the
wavefunction for all r, valid in the low-energy and low-rotation limit. We stress that, in
order to achieve a higher level of accuracy in our analysis, no expansion is performed
in the arguments of the Gamma functions. This method has been used in the literature
before to derive analytic solutions for brane [27] and bulk [29] massless scalar fields. In
both cases, the analytic results were shown to be in excellent agreement with the exact
numerical ones in the low-energy regime and quite often at the intermediate-energy
regime too.

In the presence of the mass term, though, there is one more constraint that needs
to be satisfied for the perfect match to take place. In the low-energy and low-angular-
momentum limit, the expression for the parameter β, Eq. (14), becomes

β ≃ 1

2

[

1− 1

(n + 1)

√

(2j + n + 1)2 + 4m2
Φr

2
h

]

. (24)

For j ≥ 0 and n ≥ 1, we thus need to satisfy mΦrh < 1. In order to derive some
quantitative results, let us assume that M∗ = 1 TeV and MBH = 5 TeV. If we ignore
for a moment the angular momentum of the black hole and use the mass-horizon radius
relation for a higher-dimensional Schwarzschild black hole, we find rh ≃ (4− 2) 10−4 fm
for n = 1 − 7, respectively [5]. Then, the aforementioned constraint on the mass of the
bulk scalar field translates to

mΦ < (0.5− 1) TeV , for n = 1− 7 . (25)

If we reinstate the angular momentum of the black hole, then the value of the black-hole
horizon, for the same mass, becomes smaller since rn+1

h = µ/(1+a2∗); therefore, the upper
bound on the mass of the scalar field increases further and becomes easier to satisfy.

In order to define the absorption probability, we finally expand the far-field solution
(19) for r → ∞, and obtain

RFF (r) ≃ 1

r
n+2

2

√
2πω̃

[

(B1 + iB2) e
−i (ω̃r−π

2
ν−π

4 ) + (B1 − iB2) e
i (ω̃r−π

2
ν−π

4 )
]

= A
(∞)
in

e−iω̃r

r
n+2

2

+ A
(∞)
out

eiω̃r

r
n+2

2

, (26)

which readily leads to

|Ajℓm|2 = 1−
∣

∣

∣

∣

∣

A
(∞)
out

A
(∞)
in

∣

∣

∣

∣

∣

2

= 1−
∣

∣

∣

∣

B1 − iB2

B1 + iB2

∣

∣

∣

∣

2

=
2i (B∗ −B)

BB∗ + i (B∗ −B) + 1
. (27)

The above expression, in conjunction with Eq. (23), is our final analytic result for
the absorption probability for massive scalar fields emitted in the bulk by a higher-
dimensional, simply-rotating black hole. Summarizing all of the aforementioned assump-
tions, it is valid as long as the energy and mass of the emitted particle and the angular-
momentum of the black hole stay below unity (in units of r−1

h and rh, respectively).
Its range of validity will be shortly investigated in terms of the values of the above
parameters, as well as that of the number of extra dimensions n.
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Equation (27) is also useful for studying analytically various aspects of the absorption
probability such as its behaviour in the superradiant regime and the asymptotic limit
ω̃ → 0. If we expand Eq. (27) in the low-energy limit, a more convenient form may be
derived for both purposes – a similar analysis was presented in all detail in [27] where
the emission of massless scalar fields on the brane by the same type of black hole was
studied. From Eq. (23) we see that, in that limit, we obtain B ∝ 1/ω̃2j+n+1, and therefore

|Ajℓm|2 ≃ 2i

(

1

B
− 1

B∗

)

= Σ1 × Σ2 × Σ3 , (28)

where

Σ1 =
−2iπ (ω̃rh/2)

2j+n+1

(j + n+1
2
) Γ2(j + n+1

2
)

(1 + a2∗)
2j+n+1

n+1 Γ(2β +D∗ − 2)

Γ(2− 2β −D∗)
, (29)

Σ2 =
1

|Γ(α+ β +D∗ − 1)|2 |Γ(α+ β)|2 , (30)

and

Σ3 = Γ(2 + α− β −D∗) Γ(−α + β +D∗ − 1) Γ(1 + α− β) Γ(−α+ β)− (cc)

=
−π2 sin(2πα) sin π(2β +D∗)

sin π(α+ β +D∗) sin π(−α + β +D∗) sin π(α + β) sin π(−α + β)
. (31)

The (cc) term above stands for the complex conjugate of the corresponding expression. As
the energy of the emitted mode decreases, moving towards the asymptotic limit ω̃ → 0,
for modes with m > 0, we meet the value ω = ωs ≡ mΩh. From Eqs. (14) and (17), it is
clear that for that value α → 0, in which case Eq. (28) gets simplified to

|Ajℓm|2 =
4π (ω̃rh/2)

2j+n+1K∗ sin2 π(2β +D∗) Γ
2(2β +D∗ − 2) Γ2(1− β) (2−D∗ − 2β)

A∗ (1 + a2∗)
− 2j+n+1

n+1 (j + n+1
2
) Γ2(j + n+1

2
) Γ2(β +D∗ − 1) sin2 π(β +D∗)

.

(32)
In the above expression, all terms are positive definite, including the (2−D∗ − 2β) one,
apart from K∗ whose sign, as expected, defines the sign of the absorption probability:
for ω < ωs, (ω −mΩh) takes a negative value signalling the occurence of superradiance.

For modes with m ≤ 0, there is no superradiance effect, and we may thus approach
the asymptotic limit ω̃ → 0. From the coefficient (ω̃rh)

2j+n+1 in the expression of Σ1

it is clear that, in the massive case, too, it is the lowest partial modes that dominate
the value of the absorption probability in the low-energy regime. We will therefore focus
our attention on the dominant mode j = ℓ = m = 0, and derive the behaviour of the
absorption probability in the above asymptotic limit. Although for massive modes with
m ≤ 0 the parameter α never becomes exactly zero, it acquires its smallest possible value
as ω̃ → 0. Equation (32) therefore remains approximately valid, and, for j = ℓ = m = 0
and β = 0 +O(ω̃2), it is simplified further to give

|A000|2 =
4π(1 + a2∗)

2(ω̃rh)
n+1ωrh

A∗ 2n(n + 1)Γ2
(

n+1
2

)

(2−D∗)
+ . . . . (33)
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We may also compute the absorption cross-section σ000 for the dominant massive scalar
bulk mode in the asymptotic low-energy regime by using the formula [41, 29]

σjℓm(ω) =
2n

π
Γ2

(

n+ 3

2

)

AH

(ω̃rh)n+2

Nℓ

(1 + a2∗)
|Ajℓm|2 , (34)

that relates the absorption cross-section with the absorption probability for a scalar mode
propagating in the background of a higher-dimensional, simply rotating black hole. In
the above

Nℓ =
(2ℓ+ n− 1)(ℓ+ n− 2)!

ℓ! (n− 1)!
, AH =

2π
n+3

2 rnh (r
2
h + a2)

Γ
(

n+3
2

) (35)

are the multiplicity of the ℓ-th partial wave in the expansion of the wave function over
the hyperspherical harmonics on the n-sphere [29], and the horizon area of the (4 + n)-
dimensional rotating black hole, respectively. Substituting for the absorption coefficient,
we obtain

σ000(ω) ≃
(n+ 1)(1 + a2∗)AH

A∗(2−D∗)

(ω

ω̃

)

+ . . . . (36)

For a∗ = 0 andmΦ = 0, the above reduces to the horizon area AH of a higher-dimensional,
spherically-symmetric black hole, as was found in [8]. For a∗ 6= 0 and mΦ = 0, it was
shown in [29, 23] that the value of σ000 remains very close to the area of the corresponding
rotating black hole as long as a∗ is not large. FormΦ 6= 0, we observe significant deviations
from this behaviour as the value of the absorption cross-section for the lowest partial
mode is not only energy-dependent but deviates as ω̃ → 0 – this is in accordance with
previous results derived in the cases of a massive field propagating in the background of
a 4-dimensional Kerr [33] or of a (4 + n)-dimensional, spherically-symmetric black hole
[23]. This behaviour is observed only in the case of the lowest mode; higher modes have
a ω̃2j+n+1 leading factor in their absorption probability, and a ω̃2j−1 dependence for their
absorption cross-section – for j ≥ 1, this leads to a vanishing value in the asymptotic
limit ω̃ → 0.

For the derivation of the value of the absorption probability, that would be valid
for arbitrary values of the energy of the emitted particle and angular momentum of the
black hole, we need to solve Eq. (8) numerically. To this end, a MATHEMATICA code was
constructed that numerically solved for the value of the radial function R(r) from the
horizon outwards. The boundary conditions for the second order differential equation
was the value of R(r) and its first derivative at the horizon. The asymptotic solution
(16) was used for that purpose, with the boundary conditions at r → rh having the form

R = 1 ,
dR

dr
= −ik

dy

dr
= −ik(1 + a2∗)

∆(r)
. (37)

The first condition was imposed to ensure that |A−|2 = 1 since no outgoing mode is
allowed to exist at the horizon. The second follows readily from the asymptotic solution
(16) and the use of the first condition. The integration proceeds until we reach radial
infinity (in practice, this happens for r ≃ 1000rh) where, according to Eq. (26), the
radial function is a superposition of incoming and outgoing modes. The corresponding

8
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Figure 1: Absorption probabilities for the bulk scalar mode j = ℓ = m = 0, for (a) a∗ =
1, mΦ = 0, 0.6, 0.8 (from left to right) and various n, and (b) n = 4, mΦ = 0, 0.4, 0.6, 0.8
(from left to right) and various a∗.

amplitudes are then isolated and the value of the absorption coefficient follows by use of
the definition (27).

As a consistency check, we have succesfully reproduced the numerical results pre-
sented in [30] for the case of massless scalar fields emitted in the bulk by a simply rotating
black hole - the case with mΦ = 0 is also included in our plots for the easy comparison
with the massless case. In Fig. 1 we plot the absorption probability for the dominant
mode j = ℓ = m = 0 as a function of the three parameters, mΦ, n and a, respectively.
Figure 1(a) was drawn for fixed angular-momentum parameter (a∗ = 1), and depicts the
dependence of |A000|2 on the value of mass of the field and number of extra dimensions:
we observe that as mΦ increases the value of the absorption probability decreases as
expected, since a larger amount of energy is necessary for the emission of an increasingly
more massive field. This pattern holds independently of the value of n, nevertheless, the
suppression with mΦ becomes less important as the number of extra dimensions gets
larger. Figure 1(a) reveals also that the suppression of the absorption probability with
the number of extra dimensions, found previously for massless scalar fields in the bulk
[29, 30], holds also for massive fields. In Fig. 1(b), we keep fixed the number of extra
dimensions (n = 4) and vary mΦ and a∗: again the suppression with the mass of the
field is evident - contrary to what happens with n, the suppression is more prominent as
a∗ increases, particularly in the low- and intermediate-energy regimes. The enhancement
of the absorption probability as a∗ itself increases, found again previously in [29, 30],
persists also in the massive case.

It would be interesting to compare the exact numerical results for the value of the
absorption probability with the ones following from the analytical expression (27) with
B given by Eq. (23). In Fig. 2 we plot both sets of results for a range of values of the
parameters mΦ, n and a∗ – we consider again the dominant scalar bulk mode j = ℓ =
m = 0. Figure 2(a) reveals that the agreement between numerical and analytical results
holds for a wide range of values of the mass parameter below unity (in units of r−1

h ), as
indeed expected from the discussion below Eq. (23) regarding the values of mΦ. On the
other hand, in terms of the number of extra dimensions, the agreement is case-dependent:
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Figure 2: Comparison of the analytical (solid lines) and exact numerical (data points)
results for the absorption probability for the bulk scalar mode j = ℓ = m = 0, for (a)
a∗ = 1, n = 4 and mΦ = 0, 0.5, 0.8, (b) a∗ = 1, mΦ = 0.4 and n = 2, 4, 7, and (c) n = 4,
mΦ = 0.4 and a∗ = 0.5, 1, 1.5, 2.5.

as we see from Fig. 2(b), it is remarkably good for n = 4, for n = 7 it is limited in the
lower part of the curves while for n = 2 it stops abruptly as the analytical result suffers
from the existence of poles in the arguments of the Gamma functions that force the
value of |A000|2 to dip towards smaller values and eventually vanish. The expression for
B, Eq. (23), is clearly the result of an approximation method valid for small values of the
angular-momentum parameter, and thus we expect the agreement between the two sets
of results to become worse as the value of a∗ increases gradually; however, in Fig. 2(c),
we see that the agreement is actually improving as the angular-momentum parameter
increases reaching values even beyond unity, a result that holds only in the presence of
the mass term of the scalar field.

Let us finally comment on the behaviour of the superradiance [42] on the parameters
of the theory. In the context of the general suppression of the value of the absorption
probability as the mass of the field increases, we expect that the effect of the superra-
diance will also be suppressed – this is indeed depicted in Fig. 3(a) where the value of
|Ajℓm|2 is plotted for various values of mΦ for the indicative modes (jℓm = 101) and
(jℓm = 202). Despite the observed dominance of the superradiance effect for the mode
(jℓm = 202) over the one for (jℓm = 101), this pattern does not hold indefinitely as the
angular momentum numbers increase: in fact, from Fig. 3(b), where we plot the super-
radiant regime for the modes j = m = 1, 2, ..., 7 for mΦ = 0.2, n = 2 and a∗ = 1.5, it is
clear that the mode j = m = 3 is the dominant superradiant one, a result that was also
found in the massless case [30]. The suppression of the superradiance with the number of
extra dimensions observed in [30] for massless bulk scalar modes holds also in the massive
case, and thus we do not comment further. A feature that has not been noted before is
the non-monotonic behaviour of both the magnitude of the superradiance effect and the
extent of the superradiant regime in terms of the angular-momentum parameter a∗: in
Fig. 3(c), we see that, as a∗ increases from zero to 1.5, the superradiance effect is indeed
enhanced, however, this behaviour is reversed when a∗ increases further. In addition,
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Figure 3: The dependence of superradiance for bulk massive scalar modes on (a) the
mass, for a∗ = 1.5, n = 2 and mΦ = 0, 0.2, 0.4 (from bottom to top), (b) on the angular
momentum numbers, for a∗ = 1.5, n = 2, mΦ = 0.2 and j = m = 1, 2, 3, 4, 5, 6, 7 (from
left to right), and (c) on the angular momentum parameter, for n = 2, mΦ = 0.2 and
a∗ = 0.5 (red), 1 (green), 1.5 (blue), 2.5 (magenta).

superradiance occurs for frequencies mΦ < ω < ωs = ma/(r2h + a2): the latter restriction
is imposed by the vanishing of the value of the absorption probability; the former by the
demand that its value is a real number, and signifies the fact that no particles of mass
mΦ can be created if energy less than that is available. Interestingly enough the width of
the superradiance regime, δω = ma/(r2h + a2)−mΦ, does not monotonically grow with
the increase of the angular momentum of the black hole, as one could instictively expect.
Indeed, its value reaches a maximum for a particular value of the angular-momentum
parameter, namely a = ±rh, which is in fact independent of the mass and angular mo-
mentum numbers of the mode as well as of the number of extra dimensions 1. For the
case depicted in Fig. 3(c), where we have fixed the horizon value at rh = 1 and considered
only positive values of a∗, the superradiant regime takes its maximum value at a∗ = 1,
beyond which it starts to shrink, for both modes (jℓm = 101) and (jℓm = 202).

2.2 Energy Emission Rate in the Bulk

We will next compute the rate of energy emission in the bulk in the form of massive
scalar fields by using the exact numerical results for the absorption probability found
in the previous section. The emission of energy per unit frequency and unit time in the
bulk is given by the expression [33, 29, 30]

d2E

dtdω
=

1

2π

∑

j,ℓ,m

ω

exp [k/TH]− 1
Nℓ |Ajℓm|2 . (38)

The multiplicity of states Nℓ from the expansion of the wavefunction of the field in the
n-dimensional sphere is given in Eq. (35) and the parameter k is defined in Eq. (17).

1The monotonic behaviour of the width and depth of the superradiance regime found in [29] is not
in contradiction with the results found here as only low values of the angular momentum of the black
hole, lower than the turning points found here and in agreement with the low-a∗ approximation used in
[29], were considered in there.
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Figure 4: Energy emission rates for bulk scalar fields for: (a) for a∗ = 1, n = 2, 4, 7 and
mΦ = 0, 0.4, 0.8 (from top to bottom in each set of curves with fixed n), and (b) n = 4,
a∗ = 0.4, 1, 1.5 and mΦ = 0, 0.4, 0.8 (from top to bottom in each set of curves with fixed
a∗).

Finally, the temperature of the higher-dimensional, simply-rotating black hole (1) is

TH =
(n+ 1) + (n− 1)a2∗

4π(1 + a2∗)rh
. (39)

Equation (38) is identical in form with the expression for the emission of massless scalar
fields in the bulk, nevertheless, there are two major differences: the calculation of the
spectrum starts from ω = mΦ instead of zero, and the value of the absorption probability
depends, apart from the spacetime parameters, on the characteristics of the emitted field
including its mass.

In order to derive the energy emission spectrum, we need to sum over a significantly
large number of partial waves labeled by the set of (j, ℓ,m) quantum numbers. For each
value of n, a∗ and mΦ, we aimed at deriving the complete spectrum, i.e. to reach values
of the energy parameter ωrh where the corresponding value of the energy emission rate
would be less than 10−6. At the same time, the number of partial waves summed had to be
large enough so that the derivation of the energy spectrum would be as close as possible to
the real one – especially for the computation of the total emissivity presented in section
4. Taking all these constraints into account, we were able to sum the contribution of
all bulk scalar modes up to j = 30, that brings the total number of summed modes
to Nbu = 5456. According to our estimates, the contribution of all modes higher than
j = 30 should be less than 5%, for the higher values of parameters considered, namely
n = 7 and a∗ = 1.5, an error that falls below 0.001% for the lowest values considered,
i.e. n = 2 and a∗ = 0.4.

In Fig. 4, we depict the energy emission rate on the brane in the form of massive
scalar fields in terms of the number of extra dimensions, value of the angular-momentum
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parameter, and mass of the emitted field itself. Thus, Fig. 4(a) shows the energy emission
rate for fixed a∗ (a∗ = 1) and variable n = 2, 4, 7 and mΦ = 0, 0.4, 0.8, while Fig.4(b)
plots the same quantity but for fixed n (n = 4) and variable a∗ = 0.4, 1, 1.5. In terms
of the spacetime parameters n and a∗, these plots confirm the behaviour found in the
case of massless fields [29, 30]: the power spectrum is enhanced as the number of extra
dimensions increases while its dependence on the angular momentum parameter is not
monotonic but differs as n and/or ω varies. More detailed features, like the oscillatory
pattern of the emission curves for low values of n and a∗, that are replaced by more
smoother curves as the values of these parameters increase, are also recovered.

In terms of the mass of the scalar field, we observe the expected suppression of the
emission rate, for fixed n and a∗, as mΦ increases – the suppression is more prominent
in the low- and intermediate-energy regimes whereas the effect of the mass becomes
negligible at the high-energy regime. Compared to the case of the emission of masless
scalar fields, the suppression in the low-energy regime becomes even more significant
if the disappareance of the frequency range with ω < mΦ is taken into account. The
magnitude of the suppression with mΦ depends strongly on the particular value of n and
a∗ – the exact effect will be computed in section 4 where the total emissivities in bulk
and brane will be calculated.

3 Emission of Massive Scalars on the Brane

In this section, we turn our attention to the emission of massive scalar fields by a higher-
dimensional simply-rotating black hole on the brane. The analysis for the derivation of
the absoprtion probability, both analytical and numerical, is quite similar to the one
performed for the emission in the bulk; aspects of it have also been recently addressed
in a set of publications [34] that appeared while this work was still in progress. For the
sake of comparison and completeness of the analysis, we will still present in this section
the most important points of our calculation on the brane and focus our discussion to
aspects not covered before; these include, for example, the analytic study of the low-
energy asymptotic behaviour of the absorption probability and cross-section, the role of
the angular momentum of the black hole, that was ignored in [34], and the form of the
energy emission spectrum, instead of the number flux that was studied in the same work.

Let us start with the form of the gravitational background that a massive scalar field
sees as it propagates on the brane and its corresponding field equation. The 4-dimensional
induced background will be the projection of the higher-dimensional one (1) onto the
brane, and follows by fixing the values of the angular variables of the n-sphere. Then,
the induced-on-the-brane line-element takes the form

ds2 =
(

1− µ

Σ rn−1

)

dt2 +
2aµ sin2 θ

Σ rn−1
dt dϕ− Σ

∆
dr2

− Σ dθ2 −
(

r2 + a2 +
a2µ sin2 θ

Σ rn−1

)

sin2 θ dϕ2 ,

(40)

which is very similar to the usual 4-dimensional Kerr one but carries an explicit depen-
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dence on the number of additional spacelike dimensions n. The field equation is still given
by the covariant form (4) but with the higher-dimensional metric tensor GMN replaced
by the 4-dimensional one gµν defined above. The field factorization

Φ(t, r, θ, ϕ) = e−iωt eimϕ P (r) T (θ) , (41)

leads again to the decoupling of variables and to the following set of radial and angular
equations

d

dr

(

∆
dP

dr

)

+

(

K2

∆
− Λ̃jm −m2

Φr
2

)

P = 0 , (42)

1

sin θ

d

dθ

(

sin θ
dT

dθ

)

+

(

ω̃2a2 cos2 θ − m2

sin2 θ
+ Ẽjm

)

T = 0 , (43)

respectively. In the above, we have defined Λ̃jm = Ẽjm + a2ω2 − 2amω, while ω̃ is

again given by ω̃ =
√

ω2 −m2
Φ and K by Eq. (10). The angular function T (θ) satisfies

again a modified spheroidal harmonics equation with ω → ω̃. The corresponding massive
eigenvalue Ẽjm(aω̃) is thus related to the massless one through the same shift, and in
terms of a power series [43] is given by

Ẽjm = j (j + 1) + (aω̃)2
[2m2 − 2j (j + 1) + 1]

(2j − 1) (2j + 3)

+ (aω̃)4
{

2 [−3 + 17j (j + 1) + j2(j + 1)2(2j − 3) (2j + 5)]

(2j − 3) (2j + 5) (2j + 3)3(2j − 1)3

+
4m2

(2j − 1)2(2j + 3)2

[

1

(2j − 1) (2j + 3)
− 3j (j + 1)

(2j − 3) (2j + 5)

]

+
2m4 [48 + 5(2j − 1) (2j + 3)]

(2j − 3) (2j + 5) (2j − 1)3(2j + 3)3

}

+O
(

(aω̃)6
)

, (44)

The above form will be used in the computation of the absorption probability both
analytically and numerically.

3.1 The Absorption Probability on the Brane

The approximation method employed in section 2 can again be used to solve the radial
equation (42) analytically. The same change of variable r → f(r) = ∆(r)/(r2 + a2), in
the near-horizon regime (r ≃ rh), leads to an equation of the form (12) where now

D∗ ≡ 1 +
n (1 + a2∗)

A∗
− 4a2∗

A2
∗
, C∗ ≡ (Λ̃jm +m2

Φr
2
h) (1 + a2∗) , (45)

while A∗ and K∗ are defined as in the bulk. The field redefinition P (f) = fα(1−f)βF (f)
reduces the above differential equation to a hypergeometric one with the physically ac-
ceptable solution in the near-horizon regime given by

PNH(f) = A−f
α (1− f)β F (a, b, c; f) . (46)
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In the above, A− is again an arbitrary integration constant, and a = α + β + D∗ − 1,
b = α+β, c = 1+2α. The power coefficients α and β are given by the expressions in Eq.
(14), with D∗ and C∗ now taken their brane values. Under the choice α = α−, that we
will henceforth use, the above solution reduces, as expected, to an ingoing plane wave,
PNH ≃ A− f−iK∗/A∗ = A− e−iky with k defined in Eq. (17).

In the far-field regime (r ≫ rh), the radial equation (42), under the substitution
P (r) = 1√

r
P̃ (r), takes again the form of a Bessel differential equation leading to the

general solution

PFF (r) =
B1√
r
Jν (ω̃r) +

B2√
r
Yν (ω̃r) , (47)

where now ν =
√

Ẽjm + a2ω̃2 + 1/4.

The process of the matching proceeds as in the case of bulk emission. The near-
horizon solution (46), after it is shifted, is expanded in the limit r ≫ rh, while the
far-field one (47) is expanded in the r → 0 limit. Both reduce to polynomial forms
similar to those in Eqs. (20) and (22). If we again ignore terms of order (ω̃2

∗, a
2
∗, a∗ω̃∗) or

higher in the power coefficients, we obtain −(n+1)β ≃ j, (n+1)(β+D∗−2) ≃ −(j+1),
and ν ≃ j+1/2. These simplifications hold provided that the mass of the scalar field on
the brane does not exceed an upper value: following a similar argument to the case of the
bulk emission, this constraint is found to be mΦ < (250− 500)GeV for n = 1− 7 – note
that the upper value of the mass on the brane is reduced by a factor of two compared
to the one in the bulk. Then, the matching of the corresponding multiplicative in the
coefficients, leads to the constraint

B ≡ B1

B2
= −1

π

(

2

ω̃rh (1 + a2∗)
1

n+1

)2j+1
√

Ẽjm + a2ω̃2 + 1/4

×
Γ2

(

√

Ẽjm + a2ω̃2 + 1/4

)

Γ(α+ β +D∗ − 1) Γ(α+ β) Γ(2− 2β −D∗)

Γ(2β +D∗ − 2) Γ(2 + α− β −D∗) Γ(1 + α− β)
.(48)

The above completes the derivation of the analytic solution for the radial part of the
massive scalar field on the brane. By expanding the far-field solution (47) at asymptotic
infinity, we recover again a superposition of spherical waves

PFF (r) ≃ 1√
2πω̃

[

(B1 + iB2)

r
e−i (ω̃r−π

2
ν−π

4 ) +
(B1 − iB2)

r
ei (ω̃r−

π
2
ν−π

4 )
]

. (49)

The absorption probability for the brane emission |Ajm|2 is then given again by the
right-hand-part of Eq. (27) with B in this case defined in Eq. (48).

At the very low-energy regime, we may again derive a simplified, compact expression
for the absorption probability. Following the same analysis as in the case of bulk emission,
we obtain |Ajm|2 = Σ1 × Σ2 × Σ3, where

Σ1 =
−2iπ (ω̃rh/2)

2j+1

(j + 1
2
) Γ2(j + 1

2
)

(1 + a2∗)
2j+1

n+1 Γ(2β +D∗ − 2)

Γ(2− 2β −D∗)
, (50)
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while Σ2 and Σ3 are given by the corresponding bulk equations (30) and (31) but with the
parameters α, β and D∗ now taken their brane values. For modes with m > 0, the limit
α → 0, will give us the behaviour of the absorption probability at the upper boundary
of the superradiance regime which is given by

|Ajm|2 =
4π (ω̃rh/2)

2j+1K∗ sin2 π(2β +D∗) Γ
2(2β +D∗ − 2) Γ2(1− β) (2−D∗ − 2β)

A∗ (1 + a2∗)
− 2j+1

n+1 (j + 1
2
) Γ2(j + 1

2
) Γ2(β +D∗ − 1) sin2 π(β +D∗)

.

(51)
As expected it is again the sign of K∗ that defines the sign of the absorption probability
in this energy regime since K∗ = rh(1 + a2∗)(ω − mΩh). By setting j = m = 0 and
expanding further in the limit ω → 0, Eq. (51) can also give us the asymptotic value of
|A00|2 for the dominant scalar mode, which is

|A 00|2 =
4ωω̃r2h (1 + a2∗)

A∗ (1 + a2∗)
−1/(n+1) (2−D∗)

+ ... . (52)

Equation (34) may also provide the relation between the absorption cross-section and
the absoprtion probability for a massive scalar field living on the brane. By setting n = 0
and Nℓ = 1, since the brane modes do not ‘see’ the n-sphere, we obtain the 4-dimensional
formula

σ 00 =
π

ω̃2
|A 0|2 = 4π

(ω

ω̃

)

(r2h + a2)
(1 + a2∗)

1/(n+1)

[(n + 1) + (n− 1) a2∗] (2−D∗)
+ ... . (53)

Again, for mΦ = 0 and a∗ = 0, the value of the absorption cross-section reduces to the
area 4πr2h of the 4-dimensional Schwarzschild black hole, as expected [7, 8]; for a∗ 6= 0, it
approaches the area 4π(r2h+a2) of the 4-dimensional rotating black hole for small values
of the angular-momentum parameter [27]. However, as soon as the mass of the scalar
field becomes larger than zero, the aforementioned constant values of σ 00 are replaced
by diverging ones for both rotating and non-rotating black holes – in the latter case,
this is again in accordance with previous analyses [33, 23]. As in the case of the bulk
scalar field, and due to the ω̃2j+1 factor in Eq. (51), all higher modes with j ≥ 1 have a
vanishing asymptotic value as ω̃ → 0.

The derivation of the complete energy spectrum demands once again the calculation
of the value of the absorption probability by numerical means. The asymptotic behaviour
of the brane massive scalar field close to and far away from the black hole horizon is
similar to the one of a bulk field: it is an incoming plane wave in the near-horizon
regime, as discussed below Eq. (46), and a spherical wave at radial infinity according to
Eq. (47). The numerical integration of the radial differential equation (42) on the brane
is performed by using the same method as in the bulk: the integration starts very close
to the black-hole horizon with boundary conditions given again by Eq. (37) and proceeds
until we reach radial infinity, where the amplitudes of the incoming and outgoing modes
are isolated to compute the value of the absorption probability |Ajm|2.

Therefore, in Fig. 5, we depict the exact numerical results for the value of the ab-
sorption probability of the dominant mode j = m = 0. In Fig. 5(a), the value of |A00|2
is plotted for fixed angular momentum (a∗ = 1) and variable mΦ, equal to 0, 0.4, 0.8
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Figure 5: Absorption probabilities for the brane scalar mode j = m = 0, for (a)
a∗ = 1, mΦ = 0, 0.4, 0.8 and n = 2 (solid lines) and 7 (dashed lines), and (b) n = 4,
mΦ = 0, 0.4, 0.6, 0.8 and a∗ = 0.5 (solid lines) and 2.5 (dashed lines).

(from left to right), and for two different values of the number of extra dimensions, n = 2
(solid lines) and n = 7 (dashed lines). As expected, the value of the absorption probabil-
ity is suppressed with the number of extra dimensions, as noted before in the literature
[20, 24, 27]. The suppression becomes significantly more important as the value of the
mass of the brane scalar field increases – this is also in agreement 2 with the results
derived recently in [34], therefore, we do not comment on this further. On the other
hand, Fig. 5(b) depicts the dependence of |A00|2 on the angular-momentum parameter,
that takes the values a∗ = 0.5 and a∗ = 2.5, while n remains fixed (n = 4) and mΦ

changes from 0 to 0.8 (from left to right again). For mΦ = 0, the absorption probability
increases as a∗ increases, too, in accordance again with the literature [20, 24, 27] - the
same behaviour is observed as the mass of the scalar field becomes larger but with the
enhancement becoming increasingly less significant. For the purpose of the analysis pre-
sented in section 4, where the bulk and brane energy spectra are compared, let us note
here that both effects, the suppression with n and the enhancement with a∗, are much
more prominent for massive bulk scalar fields than for brane fields of the same type.

As in the case of the emission in the bulk, we would like to investigate the validity
of the analytic method used above to derive the value of the absorption probability for
the emission of massive scalar fields on the brane, and how this is affected by the value
of the mass and angular-momentum numbers of the emitted field, the number of extra
dimensions and the magnitude of the angular momentum of the black hole. To this end,
in Fig. 6(a), we plot both the analytical (solid lines) and numerical (data points) results
for the absorption probability of the indicative mode (j,m) = (1,−1), for fixed angular-
momentum parameter (a∗ = 1) and number of extra dimensions (n = 4) and mΦ =
0, 0.4, 0.6, 0.8. We observe that the agreement between the two sets of results remains

2The agreement is mainly qualitative as our results are derived for non-vanishing angular momentum
parameter a∗ while in [34] the effect of the rotation of the black hole was ignored and the role of the mass
and charge of the brane field was studied instead. Nevertheless, there is a general agreement between
the two sets of results in terms of both the number of extra dimensions and the value of the mass of the
brane scalar field.
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Figure 6: Comparison of the analytical (solid lines) and exact numerical (data points)
results for the absorption probability for: (a) the brane scalar mode (j,m) = (1,−1),
for a∗ = 1, n = 4 and mΦ = 0, 0.4, 0.6, 0.8, and (b) the superradiant brane scalar modes
(j,m) = ((1, 1), (2, 2)) for a∗ = 1, n = 2, and mΦ = 0, 0.2, 0.4 (from bottom to top).

particularly good even well beyond the low-energy regime. The solid lines terminate
again due to the existence of poles in the arguments of the Gamma functions in the
analytic expression of the absorption coefficient. We find that the appearance of the
poles, for modes with given j, takes place much earlier for the modes with m = 0 than
for m > 0, while for the ones with m < 0 this happens at much higher values of the
energy, a fact which significantly extends the range of validity of the analytic results in
the latter case as is clear from Fig. 6(a). In Fig. 6(b), we focus on the low-energy regime
of two superradiant modes, (j,m) = (1, 1) and (j,m) = (2, 2): in agreement with results
drawn in the massless case [27], we find that the analytic results for the value of the
absorption probability start to deviate from the exact numerical ones as the angular-
momentum numbers of the mode increase; this is due to the shift of the curve towards
higher values of the energy – note that the range of agreement extends well beyond the
value ωrh = 0.6 for both modes, however, for the (j,m) = (2, 2) mode this covers only a
part of the superradiant regime contrary to what happens for the (j,m) = (1, 1) mode.
It deserves to be noted that the value of the mass of the emitted field affects the relative
values of the absorption probability of different superradiant modes: while for mΦ = 0,
the (j,m) = (1, 1) mode dominates over the (j,m) = (2, 2) one, this radically changes as
soon as the mass of the scalar field exceeds the value mΦ = 0.2.

Let us finally comment on the range of validity of the analytic results in terms of
the parameters of the higher-dimensional spacetime. In Fig. 7(a), we plot both sets of
results for the mode (j,m = 1,−1) for fixed angular-momentum parameter (a∗ = 1)
and mass of the field (mΦ = 0.4) while the number of extra dimensions takes the values
n = 2, 4, 7. From the plot, it is clear that the agreement between the analytic and
numerical results is excellent for low values of n while it quickly worsens as the number
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Figure 7: Comparison of the analytical (solid lines) and exact numerical (data points)
results for the absorption probability for the brane scalar mode (j,m = 1,−1), for (a)
a∗ = 1, mΦ = 0.4 and n = 2, 4, 7, and (b) mΦ = 0.4, n = 4 and a∗ = 0.5, 1, 1.5, 2.5.

of extra dimensions increases. Figure 7(b) plots the two sets of results for the same mode
for fixed mass (mΦ = 0.4) and number of extra dimensions (n = 4), but variable angular-
momentum parameter (a∗ = 0.5, 1, 1.5, 2.5). Again, the agreement extends well beyond
the intermediatate-energy regime for low values of a∗ while it is gradually restricted in the
low-energy regime as the value of a∗ increases. The observed behaviour is in agreement
with the one found in the massless case [27] and stems from the fact that several of our
approximations in the analytic method become less accurate as either n or a∗ increases.

3.2 Energy Emission Rate on the Brane

The exact value of the absorption probability |Ajm|2 for massive scalar fields on the brane,
as this followed after the numerical integration of the radial equation of the wavefunction,
will now be used for the computation of the corresponding energy emission rate. The
higher-dimensional, simply-rotating black hole emits massive scalar particles on the brane
with a rate given by the exression [18, 20, 21, 24]

d2E

dtdω
=

1

2π

∑

j,m

ω

exp [k/TH]− 1
|Ajm|2 . (54)

In the above, k is defined in Eq. (17) as before, while the temperature for the emission
on the brane is that of the higher-dimensional black hole given in Eq. (39). As in the case
of bulk emission, the formula of the emission rate for massive fields is the same as the
one for massless, with the effect of the mass being encoded in the value of the absoprtion
probability and the frequency range of the emission.

As in the case of the bulk emission, for the derivation of the energy emission spectrum
on the brane we need to sum over a significantly large number of partial waves labeled
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Figure 8: Energy emission rates for brane scalar fields for: (a) for a∗ = 1, n = 2, 4, 7 and
mΦ = 0, 0.4, 0.8 (from top to bottom in each set of curves with fixed n), and (b) n = 4,
a∗ = 0.4, 1, 1.5 and mΦ = 0, 0.4, 0.8 (from top to bottom in each set of curves with fixed
a∗).

by the (j,m) quantum numbers. The absence of the ‘internal’ quantum number ℓ, that
further characterizes the bulk modes, makes the brane summation easier, nevertheless
the process remained significantly time-consuming 3. We summed the contribution of all
modes up to j = 40, that brings the total number of brane modes to Nbr = 1681, and
computed the spectrum up to the value of energy where the power rate dropped again
below 10−6. According to our estimates, the error in our results by leaving out the higher
modes is less than 5%, for the higher values of n and a∗ considered, and below 0.001%
for the lowest.

In Fig. 8, we plot the energy emission rate on the brane in the form of massive scalar
fields in terms of the number of extra dimensions, value of the angular-momentum param-
eter, and mass of the emitted field – we have kept the same values of these parameters as
in the case of bulk emission for easier comparison. Figure 8(a) shows the energy emission
rate for fixed a∗ (a∗ = 1) and variable n = 2, 4, 7 and mΦ = 0, 0.4, 0.8, while in Fig. 8(b)
we keep n fixed (n = 4) and vary a∗ = 0.4, 1, 1.5. Again, our results reproduce succesfully
the behaviour found in the case of massless fields [20, 24, 29], and demonstrate that the
enhancement of the emission spectrum as either the number of extra dimensions or the
angular momentum of the black hole increases persists even for non-vanishing values of
the mass of the emitted field. The mass of the scalar field causes again the suppression
of the spectrum in all energy regimes, apart from the very high-energy one where its
effect becomes negligible. The suppression is again strongly dependent on the particular
value of n and a∗. By comparing Figs. 4 and 8, we see that the brane emission is larger

3For the largest values of the parameters considered, i.e. n = 7, and a∗ = 1.5, the derivation of the
complete spectrum for each value of the mass mΦ lasted more than 4 days - this is to be contrasted
with the corresponding summation in the bulk where a single run lasted more than 6 days.
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than the bulk emission by more than an order of magnitude - accordingly, we expect the
suppression with mΦ to be larger on the brane than in the bulk. The exact role of mΦ

in the total emissivity of the black hole, in conjunction with the parameters (n, a∗) and
the type of emission channel (brane or bulk), will be investigated in the next section.

4 Bulk and Brane Total Emissivities

Although the global properties of the absorption probability and energy spectra do not
change when the mass of the scalar field is introduced, important variations in their values
appear which differ as the value of mΦ, together with that of either n or a∗, changes. For
this reason, we expect that differences will appear when the spectra for the emission of
massive and massless fields are compared. These differences may be evident at particular
energy regimes or range of values of the parameters (n, a∗), and may significantly affect
the total energy emissivities. The modifications in the spectrum may also be different
when bulk or brane emission is considered, therefore, in this section we compute the total
emissivities for both emission channels and compare them.

To this end, we have integrated the differential energy rates per unit time and unit
frequency, computed in sections 2 and 3, over the entire frequency range of emission.
In Tables 1 and 2, we present the corresponding total emissivities for bulk and brane
emission, respectively, for some indicative values of the number of extra dimensions
(n = 2, 4, 7), angular-momentum parameter of the black hole (a∗ = 0.4, 1, 1.5) and mass
of the emitted field (mΦ = 0, 0.4, 0.8). The values of the total emissivities are normalised
to the one for n = 2, a∗ = 0.4 and mΦ = 0, in each case, for easy comparison.

The entries of both tables confirm the enhancement of the total emissivities as either
n or a∗ increases and the suppression with mΦ. As it was anticipated from the plots,
the suppression is strongly dependent not only on mΦ but also on both n and a∗. We
obsereve that, as either n or a∗ increases, the suppression of the total emissivity with the
mass of the scalar field decreases in magnitude. Starting from the bulk channel (Table
1), we see that for a fixed, low value of n, i.e. n = 2 the total emission for a scalar field
with mass mΦ = 0.8 drops to 52% of the emission for a massless field, if a∗ = 0.4, but
to 71% if a∗ = 1.5. The suppression is even more limited when the value of n takes a
much higher value: thus, for n = 7, the emission for a mΦ = 0.8 scalar field in the bulk
drops only to the 92% of the massless value if a∗ = 0.4 and to 95% if a∗ = 1.5. It seems
that both the number of extra dimensions and the rotation of the black hole subsidize
the emission of massive scalar fields.

The same behaviour is observed for emission on the brane (Table 2) although here
the suppression is larger: for n = 2 the total emission for a brane scalar field with mass
mΦ = 0.8 drops to 39% of the emission for a massless field, if a∗ = 0.4, but to 72% if
a∗ = 1.5; for n = 7, the emission for a mΦ = 0.8 scalar field on the brane drops to the
80% of the massless value if a∗ = 0.4 and to 91% if a∗ = 1.5.

Since the suppression of the total emissivities between brane and bulk emission differ,
it is imperative to calculate the relative emissivities to find out whether the mass of the
emitted field changes the energy balance in the bulk-brane channels. These, derived
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Table 1: Total energy emissivities for massive scalar fields in the bulk

a∗ = 0.4 a∗ = 1.0 a∗ = 1.5

n = 2 mΦ = 0 1.00 1.54 3.46
mΦ = 0.4 0.84 1.34 3.05
mΦ = 0.8 0.52 0.95 2.46

n = 4 mΦ = 0 6.29 9.57 19.22
mΦ = 0.4 5.97 9.13 18.61
mΦ = 0.8 5.12 7.99 16.74

n = 7 mΦ = 0 131.47 202.48 327.37
mΦ = 0.4 128.56 197.27 322.87
mΦ = 0.8 121.57 188.58 310.18

Table 2: Total energy emissivities for massive scalar fields on the brane

a∗ = 0.4 a∗ = 1.0 a∗ = 1.5

n = 2 mΦ = 0 1.00 3.37 13.18
mΦ = 0.4 0.75 3.10 11.98
mΦ = 0.8 0.39 2.16 9.51

n = 4 mΦ = 0 6.56 25.73 89.89
mΦ = 0.4 5.73 23.75 84.18
mΦ = 0.8 4.14 19.51 83.39

n = 7 mΦ = 0 36.75 144.53 483.83
mΦ = 0.4 34.48 138.86 471.08
mΦ = 0.8 29.28 126.53 440.77

by dividing the actual values of the bulk and brane emissivities for each set of values
(n, a∗, mΦ), are displayed in Table 3. Our results confirm and extend the ones of [30]
where the emission of massless scalar fields was studied. In there, it was found that
the bulk emission channel was becoming increasingly sub-dominant as the value of the
rotation parameter increased from a∗ = 0 to a∗ = 1 - here, we show that this behaviour
persists for higher values of the angular momentum parameter. Also, we confirm that the
bulk-over-brane ratio take its lower value for an intermediate value of the number of extra
dimensions (a result that was found in the case of both rotating [30] and non-rotating
[8] black holes) but starts increasing again as n > 4.

Overall, it is clear that the brane channel remains the dominant one over the bulk
channel, during the emission of both massless and massive fields. Nevertheless, we find
that the presence of the mass gives a considerable boost to the bulk-over-brane energy
ratio, especially for low values of the angular momentum parameter. The boost depends
also on the number of extra dimensions: for n = 2, the mass of a mΦ = 0.8 scalar field
increases the bulk-over-brane energy ratio of a black hole with a∗ = 0.4 by 33%, while
for n = 7 the increase is 16%. We thus conclude that, when the effect of the mass of the
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Table 3: Bulk-over-brane relative energy emissivities for massive scalar fields

a∗ = 0.4 a∗ = 1.0 a∗ = 1.5

n = 2 mΦ = 0 0.180 0.076 0.0451
mΦ = 0.4 0.202 0.078 0.0458
mΦ = 0.8 0.24 0.079 0.0466

n = 4 mΦ = 0 0.173 0.067 0.038
mΦ = 0.4 0.188 0.069 0.039
mΦ = 0.8 0.223 0.074 0.040

n = 7 mΦ = 0 0.645 0.253 0.122
mΦ = 0.4 0.673 0.256 0.124
mΦ = 0.8 0.749 0.269 0.127

emitted field is taken into account, it is the fast-rotating black holes living in a spacetime
with a fairly large number of extra dimensions that lose the smallest part of their energy
into invisible bulk emission.

Let us finally note that the results presented in this work not only extend previous
analyses for massless fields, but also improve those, too. For instance, our results for the
total bulk emissivities when mΦ = 0 agree in the first or second decimal point (depending
on the value of n and a∗) with those derived in [30] - the agreement is reassuring as a
different numerical code was used. Small deviations between our results may be due
to the fact that, in the calculation of the total emissivities, we have not imposed any
cut-off on the frequency but instead tried to obtain the complete spectrum by keeping a
realistically large number of scalar modes.

5 Conclusions

In this work, we have moved towards the direction of considering the emission of realistic
particle states by a higher-dimensional, simply rotating black hole. We have studied the
emission of massive scalar fields both in the bulk and on the brane, and investigated the
role that the mass of the field plays in the corresponding energy spectra profiles and in
the bulk-over-brane energy ratio.

The emission of Hawking radiation in the bulk in the form of massive scalar fields
was studied first. The radial part of the field equation was first solved analytically, and
an expression for the absorption probability was found that helped us investigate low-
energy aspects of the emission. Next, by using numerical analysis, the exact value of the
absorption probability was determined and its dependence on the mass of the emitted
field, in conjunction with the number of extra dimensions and angular-momentum of
the black hole, was studied. As expected, the presence of the mass term caused the
suppression of the absorption probability as additional energy is required for the emission
of a massive field. Our numerical and analytical results were directly compared, and found
to be in excellent agreement in the low and intermediate energy regimes for scalar fields
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with a mass smaller than (0.5-1) TeV.

The exact numerical value of the absorption probability was subsequently used to
derive the differential emission rate per unit time and unit frequency in the bulk. Par-
ticular care was taken so that a large enough number of scalar modes (Nbu ≃ 5500)
was summed up in our computation of the energy spectra. The mass term caused the
suppression of the energy spectra in the low and intermediate-energy regimes, compared
to the massless case: for low values of n and a∗ and mΦ = 0.8, the suppression is of the
order of 50%, while it becomes smaller in magnitude as either n or a∗ increases.

The same task was performed for the emission of massive scalar fields on the brane.
The value of the absorption probability was again found both analytically and numeri-
cally, and it was shown that the two sets of results are in very good agreement, in the
lowest part of the spectrum, up to masses of order (250-500) GeV. The exact profile of
the energy spectra on the brane was found next in terms of the parameters (mΦ, n, a∗),
with the mass term causing again a significant suppression in their value. The suppres-
sion was larger than the one in the bulk decreasing the value of the energy emission rate
to approximately 40% of that in the massless case, for low values of n and a∗ and for
mΦ = 0.8. As in the case of bulk emission, a considerable number of modes (Nbr ≃ 1700)
was summed up in our calculation so that the computed spectra are as close as possible
to the real ones.

The role of the mass of the emitted field in the bulk-over-brane energy ratio was
also investigated. The total energy emissivities of bulk and brane emission were derived
and directly compared. In agreement with previous analyses [44, 8, 30] – that we have
generalised by considering a larger range of parameters of both n and a∗ – we found that
the bulk channel remains sub-dominant to the brane one; nevertheless, the bulk-over-
brane ratio takes a considerable value especially for a large number of extra dimensions
and a slowly rotating black hole. We further found that the presence of the mass of the
emitted field increases the percentage of energy which is spent by the black hole in the
bulk. For a small number of extra dimensions and a low value of the angular-momentum
of the black hole, the enhancement of the bulk channel over the brane one can reach the
value of 33% if mΦ = 0.8.

In conclusion, in this work we have performed a comprehensive study of the emission
of massive scalar fields by a higher-dimensional, simply rotating black hole both in the
bulk and on the brane. We have studied the dependence of the absorption probabilities
and energy emission rates on all parameters of the theory, and compared analytic and
numerical methods for the computation of their value. We have confirmed the importance
of the emission of a higher-dimensional black hole both in the bulk and on the brane,
and demostrated that properties of the emitted field, such as its mass which was up to
now largely ignored, can play a significant role in the bulk-over-brane energy balance.
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