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We study the field equations of the simplest SU(I,I)/U(1) no-scale model of one chiral superfield z with and without 
gravity. We find that the evolution of l m :  can have a non-trivial influence on the determination of the vacuum. In the 
presence of gravity, it is also possible that the minimum of the potential evolves together with the expansion of the universe 
which might give rise to a hierarchy of mass scales. 

The search for a satisfactory explanation of  the 
origin o f  the various mass hierarchies plays a central 
role in current theoretical physics. For instance, the 
notorious problem of  the cosmological constant con- 
sists o f  the fact that the observed vacuum energy is 
smaller than any observed mass scale associated with 
massive particles by  many orders of  magnitude. Since 
any massive particles should induce contributions to 
the vacuum energy which are at least of  the order of  
it (mass) 4, what is needed is a reason, based on either 
symmetry or dynamics, why such contributions 
should not  arise or should cancel. Supergravity offers 
such a reason. On the one hand, supersymmetry keeps 
mass scales apart, suppressing radiative corrections by 
the supersymmetry breaking scale. On the other hand, 
in a class o f  supergravity models that are characteriz- 
ed by dynamical determination of  both  M W and rn 3/2, 
and which are known as no-scale models [1], symme- 
try arguments, based on the SU(N, 1)/SU(N) × U(1) 
structure of  the KNller manifold of  the chiral super- 
fields, have been invoked to show that a vanishing 
vacuum energy might persist also at the quantum 
level [2]. Independent ly,  no-scale supergravity models 
have been shown to emerge as the low-energy limit o f  
E 8 X E 8 superstring theory which has excellent pros- 
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pects as a finite unified theory of  all known interac- 
tions [3]. 

The key feature of  no-scale supergravity models is 
that in such models the scalar potential  can vanish at 
tree level [1,2,4]. This is inseparable from the 
SU(1, 1)/U(1) or SU(N, 1)/SU(N) X U(1) structure of  
the K~/hler manifold and the residual non-compact 
U(1) symmetry.  Since the K~ihler manifold has a non- 
linear SU(1, 1 )/U(1) structure, non-canonical kinetic 
energies o f  chiral superfields arise unavoidably. In 
fact, all known examples of  supergravity models with 
naturally flat potentials go with non-compact global 
symmetries and non-canonical kinetic terms [5]. 

In realistic models, the supersymmetry breaking, 
or in other words the gravitino mass, is related to the 
vacuum expectation value of  at least one such field 
with non-canonical kinetic term and vanishing poten- 
tial along its axis in field space. Its non-zero vacuum 
expectat ion value arises from the overall minimiza- 
tion of  the energy after the radiative corrections, 
weighted by the supersymmetry breaking scale, have 
been taken into account. 

In the present paper we analyze the simplest case 
of  an SU(1,1)/U(1)  no-scale model with one complex 
field z. We show how the effects o f  Imz,  although 
not appearing in the potential,  are transmitted to the 
observable sector through the non-trivial couplings in 
the kinetic energy. These effects can have a strong in- 
fluence on the existence of  classical vacua. We also 
point  out  some possible difficulties in the cosmolog- 
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ical evolution of  Re z towards the minimum When 
gravitation is included, the time-dependent expecta- 
tion value of  Im z can lead to time-dependence of  the 
symmetry breaking scales arising from the minimiza- 
tion of  the potential. This can give rise to a hierarchy 
of  mass scales. 

Chiral superfields in N = 1 supergravity can be con- 
sidered as the coordinates of a Kffhler manifold. The 
lagrangian is then expressible in terms of  the K~ le r  
potential G(z A , ~A), a real function of  chiral super- 
fields. This serves to define the K~hler metric 

GA~ = a2G/az A a~ ~ , 

and the auxiliary fields 

G A =aG/i~z A , G~=OG/~2 B .  

The spin-zero part of  the action can be written as 

s = f d 4 x  [--GA~ataz A ~#2 ~ + eG(GABGAG~ -- 3)],  
(1) 

where we have neglected gauge interactions. The clas- 
sical vacua are the solutions of  the equations of  mo- 
tion with least energy. Assuming a trivial gravitational 
background, the equations of  motion take the form 

auaUz A + pAcauzSauzC + v A = 0.  (2) 

The Kghler connection is just I~B C = GADaBGc~, 
and V A = GABi}~V. It is perhaps suggestive to call 
these equations geodesic equations on the K~hler 
manifold. 

Let us start with the simple case of  an SU(1, 1)/U(1) 
K~'hler manifold [ 1,4] spanned by one complex field 
with 

G = - 3  ln(z + g) + const . .  (3) 

In this case the potential is exactly zero. Concentrat- 
ing on homogeneous, i.e., spatially constant, fields, 
we get 

~" - 2~2/(z + ~) = 0. (4) 

The solutions of  (4) expressed in terms of  the real 
and imaginary parts o f z  = u + iv, are 

UQ(t) = [(12CE)I/2/Q] 

X [ e x p ( - Z w / ~ t )  + Cexp(2 ~ x / ~ t ) ] - t ,  

UQ(t) = V(0) - (4%,r3E/Q) 

X {[1 + C e x p ( 4 x / ~ t ) ]  -1 - ( l  + C ) - I )  . (5) 

We have inserted into (5) the two constants of  mo- 
tion 

E= 3 l.~12/(z +2)2, 

and 

Q = - 3  i(~ - z)/(z + -~)2 = ] i,/u 2 " 

The constant of  integration C is defined as 

C = (1 - [1 -Q2u(O)2/E] 1/2) 

X {1 + [1 + QZu(O)2/E] 1/2}-1 . 

Note the qualitative difference between the solutions 
(5) for Q :~ 0 and the Q = 0 (b = 0) solution, which 
for a given E is 

Uo(t) = u(0) exp (2X/-fft/3). (6) 

In the Q 4= 0 case, limL_ ~.  UQ(t) = 0, while in the Q = 0 
case, limt_+ooUo(t ) = oo. Small fluctuations in Q for a 
given energy will drive u to exponentially small values, 
no matter what u(0) is. In terms of  the properly nor- 
malized field 

¢ - x / ]  in u (u > 0 ) ,  (7) 

this runaway behaviour translates into limt_+~$Q(t ) = 
_0% while limt_.,~ o $0(t) = +oo. The form of  the energy 
in terms of  $ suggests that the Q-term acts like a po- 
tential: 

E = ½ ~ 2 + ~ Q2 exp(2~a~_ q~). 

The situation should be contrasted with a minimal ex- 
ample. For instance, a massless complex scalar ~ --- 
oe i° exhibits a time evolution that is not  qualitatively 
altered by a non-zero ~) = 2p20. We are led to con- 
clude that the observed runaway behaviour should be 
attributed to the curved structure o f  the SU(1,1)]U(1) 
K~laler manifold. 

In general, however, a potential is present. Such a 
potential can be induced radiatively due to the pres- 
ence of  other fields. As happens in no-scale supergrav- 
ity models, the z-field of  our SU(1, I)/U(1) example 
does not participate in gauge interactions directly, 
but any loops generated by other fields will give con- 
tributions always weighted by the "gravitino mass", 
m212 = exp [G(z, 2, ...)]. Since m3/2 depends only on 
the real part o f  z, and since the z-dependence of  the 
potential is only through m312, any induced potential 
wilt be only a function of  u = Re z and not o f  u. In 
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terms of  the normalized field q~, the lagrangian can be 
written as 

-/2 = 2 'el-2"2 -4a" a exp(_2V/~qb)~2 - V(~) . (8) 

Using the equation of  motion,  b can be eliminated 
to yield an effective Q-dependent potential 

VQ = ~ Q2 exp(2vt~ q~) + V(¢) .  (9) 

To illustrate this phenomenon, let us consider the 
radiatively-induced potential o f  no-scale models. The 
general form of  such a potential is 

_ 2 2 4 2 V(c)) - m3/2(dP)Hl(lnm3/2) + m 3/2H2(ln m3/2)+ V 0 

= exp(-x/-6t~)Hl(q~ ) + e x p ( -  2X/6¢)H2(~b ) + V 0, 
(10) 

where H 1 and H 2 are polynomials and V 0 is a con- 
stant. As an example, we will disregard the logarithms 
and take H 1 = - A  2 and H 2 = C 2, where A 2 and C 2 
are positive constants. The potential (8) is then well- 
behaved and has a minimum at ¢0 = (1/x/6)ln(2 C2/A2). 
The energy is given by 

E = ~ q~2 + ½ Q2 exp(x /~b)  _ A2 exp(_x /~b)  

+ C 2 e x p ( - 2 x / 6 ~ )  + V0, (11) 

so that ~0 will be the vacuum when Q = 0. However, in 
the case Q 4= 0, one should minimize the full potential 
VQ ofeq .  (9). I f  VQ(q~) is of  the form that has a mini- 
mum, the general solution to the field equations will 
show oscillations about the minimum of  VQ(~). The 
situation that we encountered in the free case was 
simply a manifestation of  the fact that in the absence 
of  V(¢) the minimum of VQ(~) is at ~ = _oo. 

The field oscillations are damped by particle pro- 
duction which dissipates the energy of  the oscillations. 
In principle, this dissipation can be evaluated by com- 
puting quantum corrections to the field equations. In 
the absence of  such a computation for K~aler models, 
we can only argue that it is unlikely that the initial 
value o f  Q, certainly present because of  field fluctua- 
tions, will not be eroded through dissipation, since v = 
Im z is massless. Therefore, the theory will not settle 
to a vacuum with Q = 0. Indeed, one can verify that 
this is true for small Q and for small oscillations about 
the minimum of  any potential, where the effects o f  
damping [6] can be expected to be the same as in the 
case o f  ordinary field theories with minimal kinetic 

energies. Such a situation may be a source of  diffi- 
culty for SU(1,1)/U(1)models ,  because conceivably 
the initial value of  Q should vary randomly at a length 
scale of  the horizon distance. 

A very interesting situation arises when V(¢) does 
not possess any minimum. Then it is nevertheless pos- 
sible that the Q 4= 0 theory has a vacuum. Consider 
for example 

V(¢) = A 2 e x p ( a G )  = A2exp( -ax /bq~) ,  (12) 

which does not have a minimum, a is a parameter. In 
contrast, the full effective potential VQ [see eq. (9)] 
has a minimum at 

¢0 = ( ~ -  + x/-6°t) -1 In [(9A2/2Q2) a ] . 

The gravitino mass term at this minimum reads (here 
a =  1) 

m~/2 = ~ (2Q2/9A2) 9/11 . 

It is therefore possible that a small but non-zero value 
of  Q, due to quantum fluctuations, could easily in- 
duce a hierarchy of  mass scales. In the case where the 
vacuum has Q :/= 0, there might even exist stable space- 
dependent configurations [7]. 

Let us also point out that in SU(1,1)/U(1), Q:/: 0 
will always induce a positive contribution to the vac- 
uum energy, which may counterbalance the usually 
negative contribution from the electroweak radiative 
corrections. The appearance o f  the Q-term is a conse- 
quence of  the direct coupling of  Im ~ to Re z in the 
kinetic energy. 

This is a general feature of  any model with a flat 
direction. Consider a single complex field z and let 
the K~der  metric and potential depend on z + z* 
only. Then the equations o f  motion yield 

6 = QGz-I~, 

&" + ~(fi2 _ Q2Gzl)8lnGz_e/3u + ~Gz13V/3 u =0.  
(13) 

Defining ~ = fiGz 1/2, the second field equation above 
becomes 

t~ + ageff /a t  ~ = 0 ,  

where 

Vef f = ~Q2Gzl+ ~ V(@). (14) 

Therefore, at the classical level, the field theory of  
the lagrangian 
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~? = Gz-z(z +~)l~l 2 - V(z + 5 ) ,  

is equivalent to the field theory of A2' = ~ ~2 _ Veff 
with Vef f given in eq. (14). Of course, at the quan- 
tum level, differences may arise. 

It is important to investigate to what extent the 
somewhat unusual properties of  the model in ques- 
tion are modified due to a non-trivial gravitational 
background induced by the stress energy of  the field 
z. Starting with the Einstein action 

S=fd4x,fY-g(-½ ~ -  GA~gu~auzA a ~  + V), 
(15) 

one obtains, upon variation of  the metric guy, 
1 c~uv ~guvC/~ = - -2GABauzAa~B-  g u ~ .  (16) 

For the Robertson-Walker  metric 

ds 2 = d t  2 - [R2(O/(1 + ½kr2)](dr 2 +r  2 d$22), (17) 

one obtains from (12) 

(3/R2)(k+R 2) = GA~zA~B + V, 

2R/R + (R/R) 2 + k/R 2 = --GA~z,A~B+ V .  (18) 

The field equation (2) is modified to 

[A + 3(k/R)~A + FAckakC + V A =0.  (19) 

Let us first examine the case of  vanishing potential. 
It is obvious from eqs. (18) that the curvature of  the 
K~ihler manifold will not affect gravity, and one can 
solve R(t) implicitly by 

R(t) 3 
t = f dR3(A - 9kR4)l/2 , (20) 

R (0) a 

where A = 9R4(0) [/~2(0) + k] > 0. For k = 0, the so- 
lution is 

g(t) = g (0 )  { 1 + 3 [/~(0)]g(0)] t) 1/3, (21) 

whereas for k > 0 one obtains oscillating solutions 
(with singularities) and for k < 0 one has asymptoti- 
cally R "" t. 

Gravity, however, will affect the evolution of  the 
scalar field z. In the S U( 1, I) /U( I ) mo de1 with vanish- 
ing potential, the equations of  motion can now be 
solved to yield 

u(t) = {2A/~ + [4A2R 2 + 4k (A  2 + ~- Q2R-4)] 1/2) 

X (A 2 + ~- QZR-4)-I  , (22) 

where 

A = - [R(O)/u(O)] [fi(0)/u(0) - 2/~(0)/R(0)],  

is an integration constant. If  k ~< 0, the boundary 
conditions must satisfy the condition A2C < 2 IklQ 2. 
Asymptotically 

UQ(t) -~ (21A)Ikt ,  (23) 

which is independent o f  Q. We therefore conclude 
that gravity affects strongly the evolution of  u. Of 
course, the presence of  other matter  may modify con- 
siderably the result (23). 

In order to examine what happens in the presence 
of  potential energy, it is more convenient to use the 
normalized field 4~ defined in eq. (7). Let us assume 
that VQ(~) possesses a minimum that depends on Q, 
as in the case of  the potential (14). Now the crucial 
parameter is the effective time-dependent charge 
Q(t) - Q/R3(t). A time-dependent "gravitino mass" 
would then be 

m2/2(t)=l 2 g [~ Q2/A2R6(t)]9/11 (24) 

Let us now assume that the vacuum energy is zero at 
this time-dependent minimum (oo(R(t)). From the 
equations of  motion (18), we then find that 

dln(~R3)/dt  = 0, ~2 _ 6(/~/R)2 = 0 ,  (25) 

which yield 

R = R(0) {1 + 3 [R(O)/R(O)lt) 1/3 , 

¢ = ¢(0) +w/] ln  [Ra(t)/R3(O)]. (26) 

Is the solution for ¢ compatible with being the mini- 
mum of  any reasonable potential? The answer is yes, 
as we will demonstrate below by considering the ex- 
ample (12). The minimum of VQ(~b) occurs at 

¢0(t) = ( a V e +  X/~-~) -1  In [9~A2R6(t)/ZQ21 

= const. + 2(aVrd+V/~)-lln[R(t)]R(O)] 3 . (277 

This is compatible with (26) provided that a = ½. 
Therefore (27) serves as a proof  of  existence for 
potentials in supergravity which may have time-de- 
pendent minima. These co-evolve with the expansion 
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o f  the universe. Therefore, one could expect hierar- 
chically separated scales arising from the evolution of  
R.  The above example also illustrates that  although 
gravity couples directly only to the kinetic terms, it 
can influence indirectly the mass scales appearing at 
the minimum of  the potential .  

In conclusion, in this paper we have considered the 
vacua and field equations o f the simple st SU(1,1)/U(1) 
no-scale model with and without  gravity. We found 
that the coupling of  Im z to Re z can greatly affect 
the evolution of  the latter. The runaway behaviour 
encountered in the absence o f  a potential  is, however, 
modified due to a non-trivial gravitational background. 
In the presence of  a potential ,  we found that  a time- 
dependent expectat ion value of  Im z has a decisive in- 
fluence on the stability properties of  the classical vac- 
ua. In particular, the coupling o f  Im z may render 
the settling of  Re z to a minimum of  a potential  not  a 
straightforward matter .  However, in the absence o f  
quantum corrections to the field equations one cannot 
make very precise claims, and clearly these questions 
merit further investigation. In the presence of  gravity, 
there are cases where the t ime-dependent universal 
scale will determine the symmetry breaking scales of  
the induced potential .  
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