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Abstract

We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to
different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices.
We consider two possibilities for the suppression of baryon and lepton number violation. The first is based
on Flipped SU(5) with gauge group SU(5) × U(1)χ × SU(4)⊥ in which U(1)χ plays the role of a gener-
alised matter parity. We present an example which, after imposing a Z2 monodromy, has a U(1)2⊥ family
symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark,
charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the
symmetry of the underlying compactification manifold and the flux. We construct an example of a model
with viable masses and mixing angles based on the gauge group SU(5) × SU(5)⊥ with a U(1)3⊥ family
symmetry after imposing a Z2 monodromy.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The origin of quark and lepton masses and mixing remains one of the key unanswered ques-
tions in the Standard Model. Recently there has been much interest in the possibility that the
fermion mass structure might emerge from F-theory [1–6]. Most of the analyses to date have
focused on the possibility that the families belong to a single matter curve and the fermion mass
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hierarchy results from the case that the mass matrices have rank one in the absence of fluxes
[7–19]. While this provides a promising structure it requires that there is only a single intersec-
tion of the matter and Higgs curves in the up down and charged lepton sectors. However explicit
calculations [20] for simple geometries suggest that the number of intersections must be even.
Although there are ways to recover the rank one starting point, for example imposing factoriza-
tion of the matter curves into irreducible pieces [11,12,21–23], it does not seem to be the norm
with the generic case having, a large number of intersections.

An alternative possibility that can lead to fermion mass hierarchy even for the case of multiple
intersections has been explored by Dudas and Palti [24]. Starting with the group SU(5)×SU(5)⊥
they explored the possibility that the family fields belong to different matter curves. As the fields
carry different charges under the U(1) factors of SU(5)⊥ (after identifying the monodromy
group) the latter act as family symmetries. Allowing for spontaneous breaking of these sym-
metries can lead to an hierarchical structure for the fermion masses. As we shall discuss in this
case multiple intersections do not disturb the hierarchy. Note that, unlike Dudas and Palti, we
will also consider cases with more than one state on a matter curve.

The survey of all possible monodromies presented in [24] gave rise to models with promising
mass structure but they all suffered from the problem that some R-parity violating term(s) was
not forbidden by the family symmetries and thus the models had unacceptable levels of baryon
and/or lepton number violating processes. In this paper we shall discuss how this conclusion can
be avoided and illustrate the possibilities by constructing two models with viable fermion mass
matrix structure. The first model is based on the ‘flipped’ SU(5) group, SU(5)×Uχ(1), in which
the SU(2) singlet, charge conjugate down and up quarks belong to the 10 and 5̄ representations
respectively, the opposite assignment to the case of conventional SU(5). In this case the U(1)χ
acts as a generalised matter parity and eliminates the leading unwanted baryon and lepton number
violating terms. The second model invokes the R-parity that the authors of [20] argue can arise
in F-theory models through a symmetry of the underlying Calabi–Yau manifold and the flux. In
this case one can build viable models based on the normal SU(5) multiplet assignments.

Of course the ultimate aim is to obtain phenomenologically acceptable quark and lepton mass
matrices. The structure of the quark mass matrices is not completely determined by the measured
quark masses and mixing angles. To a good approximation for the hierarchical structure that
follows from spontaneously broken family symmetries it is the terms on the diagonal and above
the diagonal (assuming left–right convention) in the current quark basis that are fixed by the quark
masses and the Cabibbo–Kobayashi–Maskawa (CKM) matrix. The terms below the diagonal
(again assuming left–right convention) depend on the rotation of the right-handed (RH) quark
components needed to diagonalise the mass matrix and, due to the absence of charged gauge
bosons coupling to the RH quark sector, we have no constraint on it. Assuming a symmetric
structure a fit to the available data [25] has the form1

Md =
⎛
⎝ 0 −1.9iε3 2.3ε3e−iπ/3

−1.9iε3 ε2 2.1ε2

2.3ε3e−iπ/3 2.1ε2 1

⎞
⎠mb0 (1)

Mu =
⎛
⎝ 0 0.4ε4 0

0.4ε4 0.8ε3 0

0 0 1

⎞
⎠mt0 (2)

1 Ref. [25] also discusses further ambiguities associated with the phases and threshold effects.
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where ε = 0.15. Note that CKM mixing matrix is unchanged if Md and Mu are rotated by the
same amount (of course the eigenvalues are unchanged by rotations). This will be important when
we discuss the form of the mass matrices in the flipped SU(5) case. The structure of Eqs. (1), (2)
has a texture zero in the (1,1) position that leads to the prediction [26]

Vus(MX) ≈
∣∣∣∣
√

md

ms

+ i

√
mu

mc

∣∣∣∣
that gives an excellent fit to Vus .

Note also that the magnitude of the (2,3) element of Md is comparable to the (2,2) ele-
ment; this is potentially a problem for mass matrices ordered by U(1) symmetries that typically
give O(ε). A non-zero entry in the (1,3) position of O(ε3) is necessary to avoid the relation
Vub/Vcb = √

mu/mc .2

As discussed above the data does not strongly constrain the elements of Mu,d below the
diagonal and they are limited only by the constraint that the eigenvalues should approximately
remain the same. The same is true of the (1,3) and (2,3) elements of Mu.

With this brief summary of the desired form of the quark mass matrices we turn to the structure
that can come from F-theory in the case that the mass hierarchy is controlled by the Abelian
symmetries.

2. Flipped SU(5)

In flipped SU(5) [28,29] the chiral matter fields of a single generation, as in ordinary
SU(5), constitute the three components of the 16 ∈ SO(10), (16 = 10−1 + 5̄3 + 1−5 under the
SU(5) × U(1)χ decomposition). However, the definition of the hypercharge includes a compo-
nent of the external U(1)χ in such a way that flips the positions of uc, dc and ec , νc within
these representations, while leaves the remaining unaltered. Indeed, employing the hypercharge
definition

Y = 1

5

(
x + 1

6
y

)

where, x is the charge under the U(1)χ and y the ‘non-flipped’ SU(5) hypercharge generator,
we obtain the following ‘flipped’ embedding of the SM representations

Fi = 10−1 = (
Qi,d

c
i , ν

c
i

)
(3)

f̄i = 5̄+3 = (
uc

i , �i

)
(4)

�c
i = 1−5 = ec

i (5)

In the field theory model the Higgs fields are found in

H ≡ 10−1 = (
QH ,Dc

H , νc
H

)
, H ≡ 10+1 = (

Q̄H , d̄c
H , ν̄c

H

)
(6)

h ≡ 5+2 = (Dh,hd), h̄ ≡ 5̄−2 = (D̄h, hu) (7)

When H,H acquire non-zero vacuum expectation values (vevs) along their neutral components
〈νc

H 〉 = 〈ν̄c
H 〉 = MGUT , they break the SU(5) × U(1)χ symmetry down to the Standard Model

2 However an alternative symmetric fit (not considered here) is possible with (1,3) elements of both Mu and Md being

zero providing one allows for a non-zero (1,1) element in Mu (maintaining a zero (1,1) element of Md ) [27]. Such a
fit allows a simple explanation of the right unitarity triangle via a phase sum rule.
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(SM) one. The breaking of the SM gauge symmetry occurs via vev’s of the two fiveplets h, h̄

of (7) while the coloured triplets become heavy via the superpotential terms HHh + HHh →
〈νc

H 〉Dc
H Dh + 〈ν̄c

H 〉D̄c
H D̄h. In F-theory the breaking of the GUT may be due to the fluxes rather

than fundamental Higgs fields.
Note that matter antifiveplets (4) are completely distinguished from the Higgs antifiveplets (7),

since they carry different U(1)χ charges and they do not contain exactly the same components.
As a result U(1)χ or a discrete factor of it can be used to forbid the R-parity violating terms.
This will be crucial in the F-theory version of the model that we turn to now.

2.1. Flipped SU(5) in F-theory

Our starting point is the sequence

E8 ⊃ E5
{= SO(10)

} × SU(4) → [
SU(5) × U(1)χ

] × SU(4)

→ [
SU(5) × U(1)χ

] × U(1)3 (8)

The adjoint representation of E8 then has the SO(10) × SU(4),SU(5) × U(1)χ × SU(4) decom-
position given by

248 → (45,1) + (16,4) + (16,4) + (10,6) + (1,15)

→ (24,1)0 + (1,15)0 + (1,1)0 + (1,4)−5 + (1,4)5 + (10,4)−1 + (10,1)4

+ (10,4)1 + (10,1)−4 + (5,4)3 + (5,6)−2 + (5,4)−3 + (5,6)2 (9)

respectively. We further assume that appropriate fluxes exist to induce the required chirality for
the matter fields. At the SO(10) level in particular, this means that #16’s − #16’s = 3.

To accommodate the U(1)χ we see that the monodromies must lie in the U(1)3 ⊂ SU(4).
There are three possible choices for the monodromy group, namely S3, Z2 × Z2 and Z2. The
first two cases reduce the number of the available matter curves to two. The Z2 case gives three
matter curves and only it has the possibility of distinct localization of the three families. Although
the first two cases are not a priori excluded, in this paper we will consider in detail only the Z2
monodromy.

We label the weights of the SU(4) factor in Eq. (9) by ti , i = 1, . . . ,4, with
∑4

i=1 ti = 0.
The Z2 monodromy acts on {t1, t2}. The SU(5) matter representations F1,2,3 ∈ 10 belong to
(10,4)−1. There are three matter curves and we assign one family to each:

10(3)
−1 : {t1, t2},10(2)

−1 : {t3},10(1)
−1 : {t4} (10)

The fiveplets, h, h̄, f̄i , accommodating the Higgs and matter fields must lie on a subset of the
following curves: The Higgs fiveplet responsible for up quark masses is in h̄ ∈ (5̄, 6̄)−2 so there
are four possible Higgs curves

h̄ ∈ 5̄(h1)
−2 : {−t1 − t2}, 5̄(h2)

−2 : {−t3 − t4}, 5̄(h3)
−2 : {−t1 − t3,−t2 − t3},

5̄(h4)
−2 : {−t1 − t4,−t2 − t4} (11)

The down quark Higgs is in h ∈ (5,6)2 and lies on one of the curves3

3 Since
∑4 ti = 0, we could also label h-curves as 5

(h1) : {t3 + t4}, 5
(h2) : {t1 + t2} and so on.
i=1 2 2
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Table 1
Field representation content under SU(5) × U(1)χ × SU(4)⊥ .

Field Representation SU(4) component

Q3,Dc
3, νc

3 103−1 {t1, t2}
Q2,Dc

2, νc
2 102−1 t3

Q1,Dc
1, νc

1 101−1 t4

Uc
3 ,L3 53

3 {t1, t2}
Uc

2 ,L2 51
3 t4

Uc
1 ,L1 51

3 t4

lc3 1
c3−5 {t1, t2}

lc2 1
c2−5 t3

lc1 1
c1−5 t4

hu 5
h1−2 −t1 − t2

hd 5
h1
2 −t1 − t2

θij 1ij
0 ti − tj

103
H

103−1 {t1, t2}
103

H
103

1 −{t1, t2}

h ∈ 5(h1)
2 : {−t1 − t2},5(h2)

2 : {−t3 − t4},5(h3)
2 : {−t1 − t3,−t2 − t3},

5(h4)
2 : {−t1 − t4,−t2 − t4} (12)

The fiveplets accommodating the matter fields belong to (5̄,4)3 so there are three possibilities

f̄i ∈ 5̄(3)
3 : {t1, t2}, 5̄(2)

3 : {t3}, 5̄(1)
3 : {t4} (13)

Charged singlet fields accommodating the right handed electrons belong to (1,4)−5 curves

�c
i ∈ 1c(3)

−5 : {t1, t2},1c(2)
−5 : {t3},1c(1)

−5 : {t4} (14)

The neutral singlets descending from the decomposition of (1,15) lie on the curves ti − tj and
designated as θij and

θij = 1(ij)

0 : {ti − tj }, i = j, i, j = 1,2,3,4 (15)

2.2. Fermion masses

2.2.1. Rank-1 structure for the quarks and charged leptons
As discussed above the U(1)χ plays the role of an R-symmetry. As we shall see the Abelian

symmetries in the SU(4) factor play the role of family symmetries. We want to have rank one
mass matrices in the absence of family symmetry breaking so it immediately follows for the
down quarks that the down quark Higgs should lie in 5(h1) giving mass to the third generation
through the superpotential coupling Wdown = 10(3) · 10(3) · 5(h1).

Similarly for the up quarks, assigning f̄3 to 5̄(3) we must choose the up quark Higgs to lie on
5̄(h1) and the third generation up quark gets mass from the coupling 10(3) · 5̄(3) · 5̄(h1). Turning
to the charged lepton mass matrix we must assign the RH τ -lepton to the 1c(3) matter field and
it gets mass from the coupling 1(c3) · 5̄(3) · 5(h1). The assignment of the fields is summarised in
Table 1.
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Note that the rank one structure of these mass matrices follows from the U(1) symmetries and
does not require a single intersection of the matter curves with the Higgs curve.

2.2.2. The light quark masses
In order to generate masses for the first two generations of quarks and charged leptons it is

necessary to break the family symmetries. This will happen if some of the singlet (familon) fields
θij develop non-vanishing vevs. In fact, as discussed in Appendix A, two fields, θ13 and θ14,
do acquire vevs due to the Fayet–Iliopoulos (FI) terms [30] associated with the family U(1).
Allowing for these vevs the down quark mass matrix, which is symmetric as it comes from the
10 · 10 · 5 coupling, has the form (O(1) couplings are suppressed)

Md =
⎛
⎝

θ2
14 θ13θ14 θ14

θ13θ14 θ2
13 θ13

θ14 θ13 1

⎞
⎠mb0 (16)

Here vevs are understood for the familon fields and we have suppressed the messenger mass
scale, M , associated with the higher dimension operators, i.e. θ13 ≡ 〈θ13〉/M , etc. Comparing
this with Eq. (1) one sees that the down quark eigenvalues are reproduced with the choice θ13 = ε

and θ14 = ε2.
At this stage we cannot yet determine the CKM matrix as it involves the up quark mass

matrix. The form of the latter requires assignment of the two light generations of SU(2) singlet
up quarks to matter curves. If, as for the SU(2) doublet assignment, we assign them to different
matter curves they have the same weight structure as the doublets and the form of the up quark
mass matrix is the same as for the down quarks. Unless there are unnatural cancelations involving
the O(1) couplings this means the up quark eigenvalues hierarchy will be similar to that of the
down quarks and hence unacceptable. To avoid this we assign both light generations of SU(2)

singlet up quarks to the same matter curve 5̄(1). Then we have

Mu =
⎛
⎝ λ1θ

2
14 θ2

14 θ14

λ2θ13θ14 θ13θ14 θ13

λ3θ14 θ14 1

⎞
⎠mt0 (17)

In this matrix we have explicitly included the factors λi that determine the ratios of the (i,1) to
(i,2) elements because they play an important role in generating an acceptable up quark mass
matrix. Since we have assigned two families to a single matter curve, if there is only a single
intersection of the matter and Higgs curves generating each of the entries in the first two columns
of the mass matrix, then the λis are equal and, by a rotation acting on the first two families of
SU(2) singlet up quarks, we can make λi = 0. However, as discussed above, we expect multiple
intersections and in this case the λis need not be equal and the rotation can only change them by
a common constant λ. Thus the mass matrix can have rank three. However, for a large number of
intersections or if the intersections are very close together, we expect (λi − λ) � λ and so in the
rotated basis we arrive at the form of Eq. (17) but with small λis.

With this preamble we can now ask whether the form of Eq. (17) gives an acceptable mass
matrix. The eigenvalues are in the ratio 1 : θ13θ14 : λiθ

2
14 = 1 : ε3 : λiε

4. Comparing this with
Eq. (2) we see an acceptable pattern of mass eigenvalues is possible if λi = O(ε2).

2.2.3. The CKM matrix
Finally what about the CKM matrix? Clearly the up and down quark mass matrices are not of

the form given in Eqs. (1) and (2). However a simultaneous rotation of the up and down quark
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mass matrices (which leaves the CKM matrix unchanged) can make the (1,3) and (2,3) elements
of Mu and Md vanish provided the O(1) coefficients of these elements in the up and down sectors
are equal. The latter is expected to be the case if the symmetry at the intersection point of the
quark and Higgs curves is enhanced to SO(10) as is possible since the weight structure of the
matter curves in the up and the down sector involved in the (i,3) Yukawa couplings are the same.
In this case the CKM elements V13 and V23 (approximately) vanish. However we know SO(10)

must be broken by fluxes so the equality of the (1,3) and (2,3) elements of Mu and Md can
only be approximate. Taking this into account and performing a common rotation of the up and
down quark mass matrices we obtain the form

Md =
⎛
⎝

θ2
14 θ13θ14 δ1θ14

θ13θ14 θ2
13 δ2θ13

δ1θ14 δ2θ13 1

⎞
⎠mb0 (18)

Mu =
⎛
⎝ λ1θ

2
14 θ2

14 0

λ2θ13θ14 θ13θ14 0

λ3θ14 θ14 1

⎞
⎠mt0 (19)

where δ1 ≈ δ2 takes account of the flux breaking effects. Choosing δ1 ≈ δ2 = O(ε) we obtain the
same form as is given in Eqs. (1) and (2) and hence an acceptable CKM matrix.

2.3. The lepton sector

In flipped SU(5) leptons and down quarks receive masses from couplings not related by
SU(5). Geometrically, RH electrons and down quarks reside on different matter curves. Thus,
in contrast to SU(5), in flipped SU(5) there is no GUT relation between the Yukawa couplings
of the down quarks and the leptons. However, if we distribute lepton doublets to distinct curves
as we did for the down quarks, the structure of Md and M� will be the same. In this case the
situation is similar to that in normal SU(5) and one expects the magnitude of the coefficients to
be similar if the geometrical structure of the relevant intersections giving rise to the Yukawa cou-
plings in the down quark and charged lepton sectors are the same. Since the situation is the same
as for ordinary SU(5) we postpone a discussion of how this can lead to an acceptable charged
lepton mass matrix to Section 3.2.

Turning to neutrino masses, note that the Dirac neutrino mass matrix originates from the
coupling 10 · 5̄ · 5̄ and therefore is related to the up quarks. Since the latter is related to the
CKM mixing and has small mixing angles, the large neutrino angles must be attributed to the
see-saw mechanism [31] and the specific form of the RH Majorana mass matrix. Doing this is
a non-trivial task but may be possible [32]. Starting from a near diagonal Dirac neutrino mass
matrix Mν

Dirac ≈ diag(mu,mc,mt ) the condition on the heavy RH Majorana mass matrix MR in
order to yield bi-large neutrino mixing is obtained from the following generalization of the string
instanton results in [33] to the case of right-handed neutrinos and arbitrary lepton mixing:

MR = AAT

m1
+ BBT

m2
+ CCT

m3
(20)

where A = Mν
DiracΦ1, B = Mν

DiracΦ2, C = Mν
DiracΦ3, with Φi being the three columns of the

lepton mixing matrix U = (Φ1 Φ2 Φ3), while mi are the physical neutrino masses.
We now turn to the question whether it is possible to achieve such right-handed neutrino

masses in flipped SU(5). For this purpose we introduce 103 additional heavy fields, part of
H
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additional vectorlike pairs, 103
H , 103

H living on the matter curves. The relevant superpotential
couplings needed to obtaining right-handed neutrino masses are given by (suppressing dimen-
sionless order one coefficients),

103
H

(
103 + θ13102 + θ14101)S1,2,3 (21)

where S1,2,3 are singlet fields, part of the massive string sector with masses MS . After integrating
out these fields we find effective operators of the form,

MR ∼
⎛
⎝

θ2
14 θ14θ13 θ14

θ14θ13 θ2
13 θ13

θ14 θ13 1

⎞
⎠〈

103
H 103

H

〉
(22)

where we have suppressed not only the dimensionless order one coefficients but also all the
dimensional mass scales of order MS in the denominators which if reinserted would lead to a rank
3 right-handed neutrino mass matrix after the 103

H acquires a vacuum expectation value 〈103
H 〉 =

〈νc
H 〉. Its magnitude fixes the magnitude of the right-handed neutrino masses, the heaviest of

which should have an approximate mass 〈103
H 103

H 〉/MS ∼ O(1014–15) GeV in order to get light
neutrino masses in the observed range, and this is readily achieved.

Comparing Eq. (22) here to the desired form (20) we see that each of the column vectors A,
B , C has the general form (θ14 θ13 1)T ∼ (ε2 ε 1)T to be compared to the desired general form
(mu mc mt)

T ∼ (ε6 ε3 1)T . This demonstrates the underlying difficulty in obtaining bi-large
mixing in flipped SU(5). It is insensitive to the precise details of the see-saw, following simply
from the observation that the field combinations 103, θ13102 and θ14101 have the same U(1)3⊥
charges and thus are always generated with the same coefficients. The only way we can see to get
bi-large mixing without fine tuning combinations of O(1) coefficients is to have strong SU(5)

breaking so that the messenger mass, Mνc , in the νc sector is much greater than the messenger
mass M in the quark and charged lepton sector. Then terms proportional to θ13/Mνc can be
of order ε3 as required for bi-large mixing provided M/Mνc = ε2. Terms involving θ14 require
a further suppression and this will be the case if we replace θ14/M in the quark and charged
lepton sector by θ13θ34/M

2 where θ34/M = ε. Then the term θ13θ34/M
2
νc = ε6 as required for

bi-large mixing (up to the O(1) coefficients). While this may be a possible solution to get a viable
neutrino mixing pattern it is certainly not very convincing. The price one pays for a viable mass
matrix is a complicated choice of vevs and messenger masses; essentially one exchanges the
parameters in the neutrino mass matrix for another set of parameters, the vevs, and the problem
of understanding the neutrino mass matrix structure is replaced by the problem of determining
the vacuum structure of the multi-field familon potential. As we shall discuss the situation is
better in the normal SU(5) case where the Dirac neutrino mass matrix is not related to the quark
mass matrices.

2.4. Nucleon decay

A big advantage of flipped SU(5) is that the U(1)χ factor eliminates the unacceptable dimen-

sion 4 baryon- and lepton-number violating operators of the form 10i
M 5̄j

M 5̄k
M . The symmetry

does however allow baryon and lepton number operators of dimension five that mediate nucleon
decay. They have the form 10i

M10j
M10k

M 5̄l
M and their family structure is given by

W5 ⊃ 1031031025̄1 + 1031031015̄2 + 1031021015̄3
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Table 2
Field representation content under SU(5) × SU(5)⊥ .

Field Representation SU(5)⊥ component R-parity

Q3,Uc
3 , lc3 (10,5) t1,2 −

Q2,Uc
2 , lc2 (10,5) t3 −

Q1,Uc
1 , lc1 (10,5) t4 −

Dc
3,L3 (5,10) t3 + t5 −

Dc
2,L2 (5,10) t1 + t3 −

Dc
1,L1 (5,10) t1 + t4 −

Hu (5,10) −t1 − t2 +
Hd (5,10) t1 + t4 +
θij (1,24) ti − tj +
θ ′
ij

(1,24) ti − tj −
S′ (1,1) − −

Note that since we have not assigned matter to the 5̄2 curve the second operator is absent. The
remaining operators are generated via heavy triplet mediated graphs and are expected to be sup-
pressed by the string scale. By itself this is not sufficient suppression but note that each of the
allowed operators involves two matter fields belonging to the third family of current quarks. This
means that the proton decay operators involving light quarks are further suppressed by small
mixing angles and this can provide the additional suppression needed to bring nucleon decay
within experimental limits.

3. An SU(5) model

As pointed out by Hayashi et al. [20] it is possible that the F-theory has an R-symmetry that
descends from a symmetry of the underlying Calabi–Yau manifold and the flux. In this case it
was shown that there may be both R-parity odd and even zero modes on a given curve. Assigning
the quarks and leptons to odd R-parity states and the Higgs to even R-parity states, the leading
baryon and lepton number violating interactions are forbidden even though the U(1)s may allow
them. This opens up the possibilities for constructing realistic models based on SU(5) so one
must reconsider the models first analyzed by Dudas and Palti [24]. Here we present a model that
can closely duplicate the phenomenologically viable mass matrices of Eqs. (1) and (2).

3.1. Quark masses

The starting point is the SU(5) × SU(5)⊥ group. The weights of SU(5)⊥ are labeled by ti ,
i = 1, . . . ,5. We will analyse the model with monodromy group Z2 relating t1 ↔ t2. We assign
the quarks and Higgs fields to the curves as shown in Table 2. In addition there are familon fields
θij belonging to the (1,24) representation. With these assignments the up quark matrix mass
matrix has the form:

Mu/mt =
⎛
⎝

θ2
14 θ13θ14 θ14

θ13θ14 θ2
13 θ13

⎞
⎠ (23)
θ14 θ13 1
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where we have written θ(1,2)j = θ1j and, for the moment, we allow for all possible vevs of the
familon fields.

The down quark mass matrix has the form:

Md/mb =
⎛
⎝ θ54θ34 θ54 θ14

θ54 θ53 θ13

θ31θ54 + θ34θ51 θ51 1

⎞
⎠ (24)

For θ34 = 0 there is a (1,1) texture zero in the down quark mass matrix. The choice θ51 = 0
gives further zeros in the (3,1) and (3,2) positions, consistent with the data since the elements
below the diagonal are poorly determined. To determine the non-zero familon vevs consider the
magnitudes of the quark masses. We assume that there are no (unnatural) cancelations involving
the unknown O(1) coefficients in determining the eigenvalues. Then mc/mt = θ2

13, mu/mt =
θ2

14, ms/mb = θ53 and md/mb = θ2
54/θ53. The choice θ53 = ε2, θ54 = ε3, θ13 = 3ε2, θ14 = ε3

and θ31 = 0 gives a good description of these mass ratios (up to O(1) coefficients) and has the
mass matrices

Mu/mt =
⎛
⎝ ε6 3ε5 ε3

3ε5 9ε4 3ε2

ε3 3ε2 1

⎞
⎠Md/mb =

⎛
⎝ 0 ε3 ε3

ε3 ε2 3ε2

0 0 1

⎞
⎠ (25)

again up to O(1) coefficients.
Of course one must check that this choice is consistent with the familon potential and this

is discussed in Appendix A. Since the theory has three anomalous U(1)s we expect at least
three familon fields should acquire vevs. As discussed in Appendix A, because the soft SUSY
breaking parameters are scale dependent, it may readily happen that additional familon fields
acquire vevs. The important thing to check is that the theory is F-flat with this choice of vevs and
this is demonstrated in Appendix A.

Turning to the mixing angles one may see that the contribution to Vcb from the up and the
down matrices is of the same order and, as discussed above for the case of flipped SU(5), allowing
for some cancelation between them one may readily obtain the measured value. The same is
true for Vub . Finally consider the effect of the texture zero in the (1,1) position of Md . If the
symmetry at the intersection points of the quark and Higgs curves that generate the Yukawa
couplings in the (1,2) block is enhanced to SO(10) the (1,2) couplings will be symmetric as
they correspond to the SO(10) coupling 16 ·16 ·10. This with the texture zero gives a down quark
contribution to Vus = √

md/ms . Including the contribution from the up quark sector gives Vus =√
md/ms + O(

√
mu/mc ), again in good agreement with the measured value. It is interesting

to note that geometry could ensure a further texture zero in the (1,1)) of the up quark mass
matrix so that one obtains the full Gatto–Sartori–Tonin relation [26]. This happens if there is no
intersection of the up quark and Higgs curves corresponding to the Yukawa coupling in the (1,1)

position.

3.2. Charged lepton masses

There are hints at a stage of Grand Unification coming from the structure of the charged
lepton masses. In particular, after including radiative corrections corresponding to threshold cor-
rections and the running to low scales, they can be consistent with the mass relations mb = mτ

and Det(Md) = Det(M�) at the GUT scale [25,34]. In F-theory it is possible to explain the origin
of such relations provided we assign the LH and charged conjugate RH charged leptons to the
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same SU(5) representations as the charge conjugate RH down quarks and LH quark doublets
respectively as given in Table 2. Then the structure of the charged lepton mass matrix will be the
same as that of the down quarks, Eq. (26), although the O(1) coefficients may differ. However,
provided the symmetry at the intersection points of the lepton, Higgs and familon curves that
generate the Yukawa couplings in the (1,2), (2,1) and (3,3) positions is enhanced to SU(5), the

O(1) coefficients in the down quark mass matrix will be the same as that for the charged leptons,
giving the mass relations mb = mτ and Det(Md) = Det(Ml). Of course these relations will have
corrections due to flux breaking but this may be small. However the big problem is to explain
why there is no equivalent relation for the second generation, namely mμ = ms . Taking account
of the radiative corrections, the measured values of the masses are in gross disagreement with
this relation and favour instead mμ ≈ 3ms .4 In an SU(5) GUT one may explain the factor of 3 by
arranging through additional symmetries that the (2,2) element involves a coupling to the vac-
uum expectation value of a 45-dimensional representation which is proportional to B − L [35].
As required this gives a relative enhancement by a factor 3 for the muon compared to the strange
quark. In the case of F-theory this option is not available as, cf. Eq. (9), the 45 representation
of SU(5) are not present. If the SU(5) were enhanced to SO(10) then the 45 representation of
SO(10) could in principle be used in a similar way but since, cf. Eq. (9), it is a family singlet it
cannot selectively couple to the (2,2) element. However in F-theory a geometrical explanation
is possible because the intersection points of the lepton, Higgs and familon curves that generate
the Yukawa couplings in the (2,2) element need not be at an SO(10) enhanced symmetry point
relating the strange quark and muon couplings. In particular if there happens to be a single in-
tersection for the strange quark and a triple intersection for the muon one expects there to be the
required factor of 3 enhancement for the muon mass.

3.3. Neutrino masses

Finally we consider the neutrino masses. The R-parity allows operators quadratic in the matter
fields and so we can construct operators that violate lepton number by 2 units provided they are
invariant under the gauge symmetries. We note that the combinations L1h

uθ14 and L2h
uθ13 are

invariant under the gauge symmetries and so any combination of two of these operators will be
allowed. These give rise to a Majorana mass matrix for neutrinos given by

Mν
Majorana =

⎛
⎝

9ε4 3ε5 0

3ε5 ε6 0

0 0 1

⎞
⎠ (hu)2

M
(26)

For the messenger scale M at the string scale M � 1010 GeV and these masses are negligible.
This means there should be light messengers and the obvious possibility is that there are light
right-handed neutrinos. The R-parity odd SU(5) singlet fields θ ′

ij and S′ are candidate right-
handed neutrinos.

A choice that can accommodate the observed neutrino masses starts with the odd R-parity
zero modes θ ′

15 and S′. Through the superpotential coupling λSS′2 the field S′ acquires a Ma-
jorana mass, M ′

S = λS, if the R-parity even field S acquires a vev. As shown in Appendix A
F-flatness requires that θ51 also acquires a vev of O(S

θ53
θ13

) and this in turn generates a Majorana

mass, M15 for θ ′
15, M15 = O(λ′2θ2

51/MS) through the coupling λ′S′θ ′
15θ51, assuming a hierarchy

4 But see [34] for more general possibilities.
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M15 � MS′ . With such a hierarchy the right-handed neutrinos θ ′
15 and S′ have suppressed mix-

ing and we may apply the conditions of sequential dominance [36,37] to achieve a neutrino mass
hierarchy with large atmospheric and solar mixing as discussed below.

Now the coupling of the LH-neutrino states to θ ′
15 and S will generate Majorana masses for

two combinations of the LH neutrino states. The dominant term generating the heaviest (at-
mospheric) neutrino mass involves the lightest RH neutrino state, θ ′

15. Its coupling to the light
neutrinos is through the term (suppressing the O(1) coefficients) (L3θ13 + L2θ53 + L1θ54)θ

′
15h

u

and, through the see-saw mechanism generates the neutrino mass term

(L3θ13 + L2θ53 + L1θ54)
2〈hu

〉2
/M15 (27)

In the fit to the quark masses quoted above we had θ13 = 3ε2, θ53 = ε2, θ14 = ε3 and θ54 = ε3.
This does not give the observed atmospheric neutrino mixing angles unless the O(1) coefficients
play a role. As a simple example of this we suppose that the coefficient of the (2,3) entry of Mu

has a relative factor of 3 in its coupling (as mentioned above this could readily happen if there
are three intersections generating the coupling). Then the fit to Mu gives θ13 = ε2, θ53 = ε2,
θ54 = ε3 and θ14 = 3ε3. In this case, up to O(1) coefficients, we have the atmospheric neutrino
mass term given by

m@(ντ + νμ + ενe) (28)

where m@ = ε4〈Hu〉2/M15. To O(ε) one obtains near-maximal atmospheric mixing in agree-
ment with the observed value.

A second Majorana mass is generated through the see-saw mechanism via the coupling
(L2θ13 + L1θ14)S

′hu ≈ ((−ντ + νμ)θ13/2 + νeθ14)S
′hu where we have kept only the compo-

nents left light by the dominant first Majorana mass term. This gives the second neutrino mass
term

m�(−ντ + νμ + 6ενe)
2 (29)

where m� = ε4〈hu〉2/(4mS). Since 6ε ≈ 0.9 this gives large solar mixing. The absolute value
of the neutrino masses requires that S = O(ε9) corresponding to Majorana masses for the RH-
neutrinos of O(1010 GeV). The ratio of the solar to atmospheric masses is of O(1/4) up to the

O(1) factors. Our analysis assumes M15 < M ′
S and this can be justified with a reasonable choice

of the O(1) factors since several of these factors are involved. The estimates above of the bi-
large mixing pattern are only valid up to O(ε) corrections and further (small) corrections from
the charged lepton sector.

A final comment is in order. The assumption that there are light singlet fields S and S′ can
be questioned as they do not couple to fluxes and so fluxes cannot ensure their chirality. An
alternative is to replace S and S′ by θ31 and θ ′

31. Then with θ31 = ε7 one generates a singlet vev
for θ31θ13 of the required order. Similarly we can replace S′ by θ13θ

′
31. One may readily check

that the structure of the light neutrino masses and mixing remains the same.

4. Doublet–triplet splitting, the μ term and FCNC

So far, we have discussed how the above GUT models are capable of reproducing the fermion
mass hierarchy and the CKM mixing. However it is also necessary to inhibit nucleon decay by
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making the colour triplets of the fiveplet Higgs fields h, h̄ heavy. In the Flipped SU(5) model
we have already argued that in the presence of Higgs tenplets H,H , there is a doublet–triplet
splitting mechanism and triplets acquire a mass due to the missing partner mechanism. In the
normal SU(5) case this solution is not possible. It has been suggested that the splitting can be
achieved by putting the up and down Higgs on different matter curves. As a result there is no
direct mass term inducing a dimension-five proton decay operator, whilst heavy mass terms for
the triplets are generated when combined with the heavy KK-modes [4]. However it was shown in
[24] that this solution is not available in the case that the matter fields reside on different matter
curves. Given this we must assume that the geometry accommodates Wilson line breaking in
which case it is possible to project out the light triplet states.

It is also necessary to have a mechanism to generate the μ-term. For the case that the up
and down Higgs curves intersect each other, a μ term can be naturally generated through their
interaction with a chiral superfield localised on a curve normal to the GUT surface [4].

Finally we consider the bounds on family symmetries imposed by requiring consistency
with the measurements sensitive to flavour changing neutral currents (FCNC). In supersym-
metric models the limits on FCNC give rise to stringent bounds on dimension 2 and 3 soft
supersymmetry breaking terms [38]. The latter are very dependent on the precise origin of su-
persymmetry breaking and can be suppressed in specific schemes so we concentrate here on
the former. Of these the strongest bound in the squark sector is on the left-handed ΔLL

ds φ
†
dLφsL

and right-handed ΔRR
ds φ

†
dRφsR soft mass terms mixing the first two generations.5 For gaugino

and squarks of comparable order and allowing for the running between the mediator scale and
the SUSY breaking scale [40] the most stringent experimental bounds are ΔLL

ds /m̃2 < O(ε)

and
√

ΔLL
ds ΔRR

ds /m̃2 < O(ε3), where m̃2 is the mean squark mass squared taken here to be

(350 GeV)2. Both the models discussed here φ
†
dL,RφsL,R have weight structure t4 − t3 and the

associated mass terms will arise at O(θ31θ
†
14). In the flipped SU(5) case these terms are of O(ε3)

while in the normal SU(5) case it is of O(3ε5), both consistent with the bounds. In gauge family
symmetry models there is a second source of these terms coming from the D-terms of the family
symmetry. On rotating to the down quark mass eigenstate basis these induce the off-diagonal
d–s mixing terms. The D-terms are proportional to the familon soft mass squared masses [41,40]
and if these are of the same order as the mean squark mass the contribution is of O(ε), violating
the bounds. Allowing for mean squark masses to be of O(1) TeV only reduces the experimental
bound by a factor ε so it is necessary that the familon soft masses should be somewhat smaller
than the squark masses, a factor of ε being consistent with a (350 GeV)2 mean squark mass.
This may readily happen if the SUSY breaking messenger fields are more weakly coupled to the
familons than the squarks.

These estimates readily extend to the slepton sector. In this case the predicted value of the μ–e

mixing terms at the messenger mass scale is reduced by approximately 1/3 because md/mμ ≈
1/3 at that scale giving a reduction in the mixing angle needed to diagonalise the lepton mass
matrix. The experimental bounds on Δeμ and Δds are comparable and so the overall bound on
the familon soft mass coming from the slepton sector is somewhat weaker than that coming from
the squark sector.

5 For an updated summary of results and extensive references see [39].
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5. Summary and conclusions

In this work we have presented two examples of viable fermion mass textures of quarks
charged leptons and neutrinos in the context of local F-theory GUTs. In these models the fermion
mass hierarchy is ensured by family symmetries and spontaneous breaking of these symmetries
can give viable masses and mixings even in the absence of flux corrections.

The first example is based on the Flipped SU(5) × U(1)χ gauge symmetry in which the
fermion generations carry charges under the two Abelian factors of the enhanced (family) gauge
symmetry U(1)2⊥, left after imposing a Z2 monodromy relating two Abelian factors of SU(4)⊥.
A fermion mass pattern consistent with the low energy data arises when matter assigned in 10’s
resides on different matter curves and matter transforming under 5̄ is accommodated only in
two matter curves. Furthermore, it is shown that U(1)χ acts as a generalised matter parity, pre-
venting all dangerous R parity breaking (dimension-four) operators. While it may be possible to
accommodate a viable pattern of neutrino masses and mixings it must be admitted the resulting
structure looks very contrived.

The second example is based on the SU(5) GUT gauge symmetry with matter transforming
under the family symmetry U(1)3⊥ ⊂ SU(5)⊥, while again a Z2 monodromy is imposed among
two U(1)⊥ factors of SU(5)⊥. Invoking an R-parity that can arise in certain Calabi–Yau com-
pactifications with appropriate fluxes, we construct an R-parity conserving model capable of
generating the observed quark and lepton masses and mixing angles. In contrast to the previous
example, each fermion family is localised on a different matter curve. Giving vevs to only a
few familon fields we break the U(1)⊥ family symmetries and generate charged fermion mass
matrices with the required hierarchy of masses and mixing angles. In addition, using parity-odd
singlet fields for right-handed neutrinos, and mildly extending the singlet (familon) field content
that acquire vevs along F- and D-flat directions, we demonstrate how to construct an effective
light neutrino Majorana mass matrix with bi-large mixing and mass squared differences in the
experimentally required region.
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Appendix A

A.1. The familon potential in flipped SU(5)

The superpotential terms involving the familon fields θij is

Wθ = λijkθij θjkθki

= λ′
1θ13θ34θ41 + λ′

2θ31θ14θ43 (30)

If only θij acquire vevs at a high scale, the flatness conditions read
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∂Wθ

∂θij

= λijkθjkθki = 0 (31)

For our choice of non-zero vevs (〈θ13〉 = 0, 〈θ14〉 = 0) conditions (31) are automatically satisfied.
To write down the corresponding D-flatness conditions, we must take into account the mon-

odromies. For the Z2 monodromy, t1 ↔ t2 the D-flatness conditions can be written in compact
form ∑

j=3,4

∣∣〈θnj 〉
∣∣2 − ∣∣〈θjn〉

∣∣2 + ξn = 0, n = 3,4 (32)

where ξn are – moduli dependent – FI terms. For the specific choice of vevs these read,

−∣∣〈θ13〉
∣∣2 + ξ3 = 0

−∣∣〈θ14〉
∣∣2 + ξ4 = 0

Note that these equations require two familon fields acquire vevs and these must be θ13 and θ14
if ξ3 and ξ4 are positive.

In the presence of large vevs for possible Hi = 10i , Hi = 10i Higgs fields, the D-flatness
conditions are modified as follows

10
(∣∣〈Hn〉

∣∣2 − ∣∣〈Hn〉
∣∣2) +

∑
j=1,3,4

∣∣〈θnj 〉
∣∣2 − ∣∣〈θjn〉

∣∣2 + ξn = 0, n = 3,4 (33)

and an analogous solution can be worked out.

The familon potential in SU(5)

In this case there are twelve familon fields of the form θij i, j = 1,3,4,5 and three U(1)s.
This means we expect at least three vevs for the familon fields to be required by the D-flatness
condition. To generate the quark and charged lepton masses we require vevs for four fields θ53,
θ54, θ13 and θ14 and so we must check that it is possible for more than three familons to get vevs.
From Eq. (31) we see that the choice of vevs is F-flat. The D-flatness conditions are

−∣∣〈θ13〉
∣∣2 − ∣∣〈θ53〉

∣∣2 + ξ3 = 0

−∣∣〈θ14〉
∣∣2 − ∣∣〈θ54〉

∣∣2 + ξ4 = 0∣∣〈θ53〉
∣∣2 + ∣∣〈θ54〉

∣∣2 + ξ5 = 0 (34)

and clearly can be satisfied for ξ5 negative and ξ3, ξ4 positive. However these equations have a
flat direction corresponding to the fact that we require four familon vevs but there are only three
D-terms. The familon potential also has soft SUSY breaking mass terms. If these are constant
then only the three familon fields with the smallest (positive) mass squared will acquire vevs.
However the mass squared terms are scale dependent due to the Yukawa couplings that increase
the soft mass squared as the scale is increased. Thus the contribution to the potential of the soft
mass squared terms has the form

V (θij ) = m2
13(φ13)

∣∣〈θ13〉
∣∣2 + m2

14(φ14)
∣∣〈θ14〉

∣∣2 + m2
53(φ53)

∣∣〈θ53〉
∣∣2

+ m2
54(φ54)

∣∣〈θ54〉
∣∣2 (35)

Minimising Eqs. (34) and (35) can readily require all four vevs to be non-zero.
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The discussion has so far dealt with the vevs required to give the quarks and charged leptons
a mass. However in order to generate a mass for the neutrinos further (much smaller) vevs were
needed. Consider the case where the additional vevs are for the fields S and θ51. In this case the
F-term conditions may change due to the additional couplings of the form Sθij θji . If only the
fields acquiring vevs are light no additional F-terms appear. If however the field θ35 is also light
we have non-trivial term given by∣∣〈F35〉

∣∣2 = ∣∣〈θ13θ51 + Sθ53〉
∣∣2

This requires S = O(θ51
θ13
θ53

). The D-term conditions can be satisfied with only very small
changes in the dominant vevs because they are quadratic in the fields. This changes the F-terms
(linear in the fields) by small corrections and they can be compensated by small corrections to
the S and θ51. Repeating the procedure one obtains a rapidly convergent perturbative solution to
the D- and F-flatness conditions. No additional non-trivial F-terms are generated in the case that
S is replaced by the field θ31 that acquires a vev.
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