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We investigate the class of static abelian magnetic fields which are localized in the sense rA -* 0 at infinity, A being the 
gauge potential. We find that those admitting fermion bound states form a wide subclass of "non-zero measure". We give a 
method to construct all such fields starting from appropriate conserved mtegrable ferrnionic currentsJ(x). The motivation 
for this work is that fermions similarly bound in non-abelian gauge fields may induce chiral symmetry breakdown in QCD. 

1. Introduction. A specific dynamical mechanism 
was recently proposed [ 1 ] for the formation of  pseu- 
doscalar quark-ant iquark bound states in QCD as 
Goldstone bosom of  spontaneously broken chiral 
symmetry. The idea is based on the observation that 
fermions might be bound in suitable localized gauge 
field configurations which need not be solutions o f  
the classical field equations but may nevertheless be 
sufficiently numerous to saturate functional averages 
like (~tq(x)), (?:lq(x)qq(Y)) etc. q(x) being the quark 
field. 

In ref. [2] it had akeady been shown that certain 
gauge field configurationsAt*(x)may be responsible 
for (F:lq) #: 0. Specific examples o f  static fields At, 
were given in which the nonvanishing of  the trace o f  
the fermion propagator was related to the existence 
o f  fermion bound states (zero modes). 

I f  the above suggestions are to have any relevance 
for chiral symmetry breakdown in QCD the class o f  
gauge field configurations in which fermions can be 
"appropriately bound"  must claim a substantial meas- 
ure in function space. Obviously, one can not limit 
oneself to static fields; and for general time-dependent 
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A u one cannot speak o f  bound states in the ordinary 
sense. Presumably, the required property then would 
be the existence of  solutions o f  the Dirac equation 
which remain spatially normalizable at all times. 

In this paper we investigate in some detail the case 
of  localized static abelian magnetic fields. We find 
that indeed a large class of  such fields admits fermion 
bound states. 

2. Threshold bound states. We shall work in the 
temportal gauge: A 0 = 0 in which we shall assume aA/at  
=0  and [xlA(x)-}O as [xl-}oo. This last "localization" 
condition is intended to ensure that the Dirac equa- 
tion is approximated asymptotically by the free Dirac 
equation. We shall also assume that the cartesian com- 
ponents o f  A are smooth functions o f  the coordinates 
x 1 , x 2, x 3 in the sense o f  having continuous partial 
derivatives o f  all required orders. 

The Dirac equation for a fermion of  mass m and 
unit charge 

[Tu(a/ax z - iAt*) + m] ~k = 0 ,  

for stationary solutions 
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• . / U l ( X ) \  
~k(x) = exp(-iEt) ~ u2(x ) ) ,  

reads as 

( m -  E)u 1 + ~" DAU 2 = 0 ,  
(1) 

--if" DAU 1 + (m + E ) u  2 = 0 ,  

where D A - - i 0  - A .  
We are interested in bound states i.e. solutions 

with normalizable u I and u 2. From the second-order 
equation that both  u 1 and u 2 satisfy, 

[. 'DA]2U/=(E2-m2)u/ ( / = 1 , 2 ) ,  

we see that, since [a"  DA]2 -~ - 0  2 as I x l ~  ~,  there 
can only be a continuum of  nonnormalizable solu- 
tions for IEI > m. Furthermore, since [~" DA]2 is a 

nonnegative operator there can be no bound states 
for IE[ < m either. Therefore bound states can exist 
only for the two '~threshold" values o f  the energy E = 
-m. 

For E = m eq. (1) yields ~" DAU 2 = 0, u 2 = (2m) -1 
X a" DAU 1 . But then [ a .  DA]2U 1 = 0 and I1~" DAU 1 I12 
= 0. Thus 

a"  D A U l = 0 ,  u 2 = 0 .  

Similarly, f o r e  = - m  we obtain 

• DAU 2 = 0 ,  u I = 0 .  

Thus the Dirac equation (1) has bound state solu- 
tions if and only if the two component equation 

~" (i• + A(x))u(x) = O, (2) 

has normalizable solutions. Our primary goal in this 
paper is to characterize the class o f  localized vector 
potentials A(x) O.e. potentials satisfying ]xlA -~ 0 at 
inf'mity) for which eq. (2) admits normalizable solu- 
tions. 

3. Solving for the potential A. We begin by  noting 
that eq. (2) implies that the fermionic current 

Jr(x) = u + ( x ) o u  (x)  , (3) 

is locally conserved i.e. 0 • J = 0. It is not difficult to 
see that, provided l) • J = 0 and J = u+u 4= O, one can 
solve eq. (2) with respect to A: 

A = [u+0u -(Ou+)u]/2iu+u +ox(u÷ou)/2u+u. (4) 

Furthermore, using eq. (3) u can be expressed in terms 
of  the three component o f  J and the phase × o f  one 
o f  the components o f  u, say the upper one: 

1 ~ (J + J3) 1/2 1 
u(x) ei×. (5) =~/2~(J-J3)l/2 exp [1 tan- l (J2/J1)]  ] 

Substituting this into eq. (4) we obtain A in terms of  
J and X: 

A = ~(1 -J3/J)  0 t an - l ( J2 / J1)  + (1/2J)(OXJ)+ OX. 
(6) 

Since u÷u = J, the normalizability condition reads 

f d3x  J(x) < oo. (7) 

Thus one can characterize the class of  gauge fields 
A for which eq. (2) admits normalizable solutions by 
means o f  formula (6) where J(x) may be any conserv- 
ed integrable vector field which is smooth and vanishes 
nowhere (expect, o f  course, at infinity). An addinon- 
al important restriction on J is that its asymptotic be- 
havior at infinity must be of  the form 

J+f+of  ( I x l ~ ° ° ) ,  (8) 

where f i s  a solution to the free equation ¢r • a f =  0. 

4. Axially symmetric fields. How restrictive are the 
above conditions on J? Are there any such currents at 
all? To explore this matter further we shall focus now 
on the class o f  axially symmetric fields i.e. we shall 
take d and X to be symmetric under rotations about, 
say, the 3-axis. 

The most general divergenceless, axially symmetric 
2 2 1/2 vector field J i s  o f t h e  form [ p = ( x  1 +x2)  ]: 

J = ( - x  2, x 1, 0) (1/p)J,(p, x3) (9) 

+ (X 1 ,X 2 , O)(1/O)Jp(p, x 3) + (0,0,  1)J3(p, x3 ) ,  

where (10) 

jp = p-1 ~(P,x3)/Ox3 ' J3 =-p-10~(p,x3)/Op" 

Note that smoothness for the cartesian components 
o f  J implies that at p = 0 we have 

~I'(p, x3) p~*o p2 (or faster), (11) 

J~Co,x3)a~oO (or faster). (12) 
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Because of  the axial symmetry the spinor function 
u can be taken to be an eigenfunction of the three- 
component of the (total) angular momentum with 

1 
eigenvalue M/= M - ~ where M is an integer. Accor- 
dingly, the ~0-dependence of the components of u is 
given by 

( e x p l i ( M -  1)~1 gl(P, x3)~ (13) 

u = ~exp [iMp0] g2(P, x3)]  " 

Asymptotically, u ~ UAs where UAs satisfies the 
free equation e" aUAs = 0. Since (e" a) 2 = _~2 the 
components of UAs are harmonic functions, so for 
Ixl ~ 0 they must be of the form r - i -1  times a sphe- 
rical harmonic of order l for some l > 0. Taking (13) 
into account we have, forM/> 1, 

UAs = const. × r - l -1  

X ( - ( l - M +  1)P~/-X(cos 0)exp [i(M - 1)~0] ) 

P~//(cos0)exp [iMp] / i14) 

The functions ~ and/~/ -1  are the usual associated 
Legendre functions [3]. The coefficient - ( l  - M + 1) 
is the right one so e" ~u As vanishes. The restriction 
M )  1 is no loss of  generality because of  the conjuga- 
tion symmetry: to each solution u with angular mo- 
mentum M/for  the potential A corresponds the solu- 
tion t~2u* for the potential - A  with angular momen- 
tum -/k~. 

From eq. (14) we calculate the asymptotic form of 
+ 

the current jAs = UAsgUAs. 

j A s = 0 ,  

j ; s  = Xr-2/-2 2 V 1 V2, 

jAs= Xr-21-2(V 2 _ V2) , (15) 

where X is some positive constant and 

V 1 = --(l - M  + 1)eM-l(cos O), 

V 2 =Pff/(cosO), (16) 

l = 1 ,2 ,3 , . . . .  

From eqs. (15), (16) and (10) we also obtain the 
asymptotic form of ~' 

~As ~ (p /Z l ) (o jAS_x3 joAs ) .  (17) 

Thus in order to generate an acceptable fermionic 
current J to use in formula (6) for A we choose: 

(i) The pair of integers 1(> 0) and M which deter- 
mines UAs , ,/As and ~k As. 

(ii) A function ~(p,  x3) having the asymptotic 
form ~as  and such that p-2xI' is smooth. 

(iii) A function J~(p, x 3) vanishing asymptotically 
faster than r -2/-2 and such that p - l j ~  is smooth. 

These choices of xI, and J~o must be made so that J 
does not vanish anywhere (except at infinity). 

5. An  example. For l = M = 1 we have 

c°sO/r2 1 i 
UAs ~ ~e i~ sin O/r 21 ' 

j ; s  ~ 2pxa/r6 ' jAs  ~ (x 2 3 3 - P2)/r6 

x~As .,. _p2  /2r4 . 

For • we choose the simple form 

= --~p2/2(r 2 +a2) 2 , 

which gives 

Jp = ~;2 px 3/(r2 +a2) 3 , 

J3 = ~ ( a2 + x2 - P2)/( r2 + a2) 3, 

where the parameter ~ > 0 will be determined to nor. 
malize u. Note that Jp = J3 = 0 at exactly one point 
of the px 3 plane: (p = a, x 3 = 0). To prevent J from 
vanishing on the circle p = a, x 3 = 0 we simply pick 
J~(P,x3)  so it does not also vanish at (p = a ,x  3 = 0). 
A simple choice is 

J~ = ~2ap/(r 2 + a2) 3 , 

which also happens to lead to a simple expression for 
J (normalized for ~ = (a/rr2): 

J = (a/rt2)(r 2 + a2) -2 . 

Substitution into formula (6) gives the gauge field 

A = ( - x  2, x 1 , O)6a2/(r 2 + a2) 2 

+ (x 1, x2, 0)6ax3/(r2 + a2) 2 

+ (0, 0, 1)3a(a 2 +x 2 -- p2)/(r2 +a2) 2 

+ a tan- l ( x3 /a )  + ~×. 

Finally, with the choice X "-" - t a n - l ( x 3 / a )  we ob- 
tain from eq. (5) the wave function 

_ V ~  ( x 3 - i a  I 
u lr( r2+a2)3/2 \Xl +ix2/ .  
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6. A lower bound on the magnetic flux. The radial 
part o f J i s  a vector field defined on the P3 halfplane: 

Jr = (Jp, J3)  = P-l(axI'/Ox3, - a ~ / b p ) ,  (18) 

Jr is orthogonal to the gradient o f  • and the zeroes 
o f J  r are the stationary or critical points o f  ~ ,  where 
J~ must be chosen not to vanish. We will assume that 
they are nondegenerate, namely, that the matrix o f  
second derivatives o f  • is nonsingular at its stationary 
points. (This is not  too severe a restriction since the 
thus excluded fields are "o f  measure zero".)  Nonde- 
generate critical points can be maxima, minima of  
saddle points. Moreover, l f N + , N _  and N s is the total 
number o f  maxima, minima and saddle goints  in the 
px 3 halfplane, respectively, the integer N+ + N _  - N  s 
must equal the index ,1 o f  the vector field ~ '  (which 
is the same as that o f J  r since Jr I ~xI,) for a semicircle 
centered at the origin whose radius is large enough so 
that xI, ~ xI ,As on its circumference. By looking at the 
number and the relative distribution o f  the zeroes o f  
/ ~ / - 1  a n d / ~ / o n e  finds that the index equals l - M  + 1. 
Thus we have (for M~> 1): 

N+ + N _  - N  s = l - M +  1 . (19) 

Actually, f o r M  >/1,  there is always at least one 
minimum i . e .N_ i> 1 since g '  is always negative for 
small 0 or small rr - 0 in the asymptotic region (Ix31 
>> p, r-+ ~) .  This is because, as eq. (17) shows, for 
Ix 31 >> P, ~As has the sign o f  - x 3  JAs i.e. the sign o f  
--cos 0 P~t --l/if//which is positive for cos 0 near -+ 1. 
Thus ~I, being negative in the neighbourhood o f  the 
three-axis and being zero on it must necessarily have 
a minimum in px  3 halfplane (similarly f o r M  ~< 0 we 
haveN+ ~> 1). 

Suppose now (P0,2)  is a zero o f J  r. Then the azi- 
muthal component o f  ~ X J at any point on the circle 
C: (p = P0, x3 = ~) is given by 

(a x ] )~ lc  = aYp/ax3 - i)J3/ap 

= pffl(a2,i,/ap2 + a2,i, lax2)oo~.  

Noting that on C we have 

J = ( - x 2 ,  ~1, ° ) o - l J ~ ,  

we may express the magnetic flux ~c through C as a 
line integral on C in the positive ¢ direction o f  A given 
by formula (6). 

¢b c = f d l "  A = ~ fMtan- l (x2 /x l )+OrPo/ IJ~ l ) (a  XJ)~ 

c c 

= ~ + (lr/IJ, I)(~2~P/Op 2 + 02xp/Ox2)vo ~ • (20) 

Thus if (P0, x) is a minimum of  xt, the second term 
above is posative and we have the bound 

¢c  > 7r. (21) 

Thus a necessary condition for a localized magnetic 
field to have a fermion bound state is that the magnetic 
flux through some circle centered on the three-axis 
and whose plane is perpendicular to the three-axis be 
greater than ~r. It would be interesting to explore 
whether this condition is also sufficient. 

7. Conclusion. We have studied the class o f  admiss- 
ible fermion currents J which inserted into formula 
(6) yield nonsingular localized static magnetic fields 
which admit fermionic (threshold) bound states. 
Although we have not obtained a direct description 
o f  this class o f  gauge fields, it is encouraging that at 
least it is not "o f  measure zero" within the class o f  
static fields. The cholse of  the conserved current J re- 
volves essentially two arbitrary functions and so does 
B = 0 X A. In this paper we have ocnsidered only 
axially symmetric fields but it seems that the above 
qualitative statement should be true quite generally. 
One might perhaps expect some generalization o f  the 
magnetic flux condition • > 7r o f  section 6 which re- 
presents a minimum of  strength for the magnetic field 
configuration to be able to sustain a fermion bound 
state. 
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,1 The index of a closed curve C with respect to a vector field 
t~ is def'med as the total angle by which t~ rotates as one 
moves on C once around counterclockwise (see ref. [4]). 
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