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Abstract

We present a supersymmetric model of fermion masses with SU(4)×SU(2)2×U(1)X gauge group with matter in fundame
tal and antisymmetric tensor representations only. The up, down, charged lepton and neutrino Yukawa matrices are dis
by different Clebsch–Gordan coefficients due to contracting over SU(4) and SU(2)R indices. We obtain a hierarchical light ne
trino mass spectrum with bi-large mixing. The condition that anomalies be cancelled by a Green–Schwarz mechanism
fractional U(1)X charges which excludeB violation through dimension-4 and -5 operators.
 2004 Elsevier B.V. All rights reserved.

The values of the adjustable parameters of the Standard Model (SM) Lagrangian may be an important clue
physics beyond it (BSM). Thus, the experimentally measured values of gauge coupling constants, fermion ma
and quark mixing angles, and now neutrino mass-squared differences and mixing angles (strictly, alread
effect), can be compared to the predictions of various types of model with full or partial[1] gauge unification
and/or flavour symmetries. Recent data on atmospheric and solar neutrinos[2], implying large 1–2 and 2–3 mixin
angles, present challenges for any unified framework in which neutrinos form part of a multiplet with quark[3].

In this Letter we revisit the string-inspired 4–2–2 models[4] (see also[5]), whose implications for fermion
masses were previously investigated in[6,7] and which have several attractive features. Large Higgs representatio
(problematic to obtain in string models) are not required, the doublet–triplet splitting problem is absent, thir
generation fermion Yukawa couplings are unified[8] up to small corrections, and unification of gauge coupling
allowed and, if one assumes the model embedded in supersymmetric string, might be predicted[9].

Small effective Yukawa couplings arise from nonrenormalizable superpotential operators involving a
charged under U(1)X [10] and Higgses which receive vevs at the SU(4) × SU(2)R breaking scale. A particula
feature of the model is the presence of two a priori independent expansion parameters depending on

E-mail address: george.leontaris@cern.ch(G. Leontaris).
0370-2693/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2004.11.032

http://www.elsevier.com/locate/physletb
mailto:george.leontaris@cern.ch


400 T. Dent et al. / Physics Letters B 605 (2005) 399–405

,
up (

nt

gh non-
l with
ss
large
ly

e

a

lies has

m
ng”
te

om

ict
of the U(1)X charge. For nonrenormalizable operators involving products of SU(4) × SU(2)R breaking Higgses
different contractions of gauge group indices lead to effective Yukawa couplings which differ between theu)
and down (d) quarks and the charged leptons (e) and neutrinos (ν). This freedom is exploited to fit the differe
mass hierarchies in theu, d ande sectors and produce the CKM mixing.

Right-handed neutrinos (RHNs) are automatically present and obtain Majorana masses, again throu
renormalizable couplings to the U(1)X-charged singlet and to Higgses. Their mass spectrum is hierarchica
the lightest RHN around 1011 GeV and the heaviest just below the Pati–Salam breaking scale. The RHN ma
hierarchy cancels off against the hierarchical neutrino Dirac mass matrix to yield a seesaw mass matrix with
off-diagonal elements. The Green–Schwarz anomaly cancellation conditions can always be satisfied, and imp
fractional U(1)X charges which disallow manyB- andL-violating operators.

1. The model

The field content is summarized inTable 1, wherei ranges from 1 to 3. The twoD fields are introduced to giv
mass to colour triplet components ofH andH̄ once their sneutrino-like components obtain vevs as follows:

〈H 〉 = 〈Hν〉 = MG, 〈H̄ 〉 = 〈H̄ν〉 = MG.

In the stable SUSY vacuum the singletφ obtains a vev to satisfy the anomalousD-flatness condition. This is
natural mechanism in the context of string models which results to the spontaneous breaking of the U(1)X about an
order of magnitude below the string scale. In fact, the part of the effective Lagrangian cancelling the anoma
a supersymmetric counterpart which is a sort of field-dependent Fayed–Iliopoulos term[11] and leads to U(1)X
breaking. Thus, the string scenario provides a natural explanation why the extra U(1)X symmetry required to
generate the fermion mass patterns does not survive down to low energies[11–13].

In general a string model may have more than one singletφi and more than one set of HiggsesHi , H̄i , with
different U(1)X charge; the Higgses may obtain masses throughHH̄φ couplings. In order to break the Pati–Sala
group while preserving SUSY we require that oneH–H̄ pair be massless at this level. This “symmetry-breaki
Higgs pair may be a linear combination of manyHi andH̄i in the charge basis, which will in general complica
the expressions for fermion masses (as will the presence of manyφi fields).

However, if we impose that all productsHiH̄j have the same sign of U(1)X charge, and that allφi likewise
have the same sign of charge (opposite to that ofHH̄ ), then the leading contributions to fermion masses fr
nonrenormalizable operators arise from theHH̄ pair andφ field which have the smallest absolute value of U(1)X
charge; other vevs will enter at higher order and will be small corrections. Hence, and for simplicity, we restr
ourselves to a single copy ofH , H̄ andφ.

Table 1
Field content and U(1)X charges

SU(4) SU(2)L SU(2)R U(1)X

Fi 4 2 1 αi

F̄i 4̄ 1 2̄ ᾱi

H 4 1 2 x

H̄ 4̄ 1 2̄ x̄

φ 1 1 1 z

h 1 2̄ 2 −α3 − ᾱ3
D1 6 1 1 −2x

D2 6 1 1 −2x̄
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Standard Model fermion mass terms arise after electroweak symmetry-breaking from the operators

(1)WD = y33
0 F3F̄3h + δ

∑
m>0

y
ij
mFiF̄jh

(
φ

MS

)m

+ δ
∑
n>0

y
′ij
n Fi F̄j h

(
HH̄

M2
S

)n

+ · · · ,

whereMS is the “string scale” which governs the suppression of nonrenormalizable terms in the effective
and only the 33 element is nonvanishing at renormalizable level. Nonrenormalizable terms may be suppr
an overall factorδ of order 1. The couplingsyij

n andy
′ij
n are nonvanishing and generically of order 1 whenever

U(1)X charge of the corresponding operator vanishes. Other higher-dimension operators may arise by multiplying
any term by(HH̄)aφb/M2a+b

S for positive integera andb such thata(x + x̄) + bz = 0; however such terms ar
negligible unless the leading term vanishes.

Majorana masses arise from the operators

(2)WM = F̄i F̄jHH

MS

(
µ

ij

0 +
∑
p>0

µ
ij
p

(
φ

MS

)p

+
∑
q>0

µ
′ij
q

(
HH̄

M2
S

)q)
.

Again, the U(1)X charges̄αi + ᾱj + 2x + pz or ᾱi + ᾱj + 2x + q(x + x̄) must be zero if the couplingsµij
p and

µ′ij
q , respectively, are not to vanish.

For nonrenormalizable Dirac mass terms involvingn productsHH̄/M2
S the gauge group indices may be co

tracted in different ways[7] leading to Clebsch factorsCij

n(u,d,e,ν) multiplying the effective Yukawa coupling: thes
are generically numbers of order 1 and may be zero in some cases. Although the Clebsch coefficient for a p
operatorOn may vanish at ordern, the coefficient for the operatorO(n+a);b containinga additional factors(HH̄)

andb factors ofφ is generically nonzero.
Dirac mass terms at the unification scale are then

(3)
mij

m3
= δi3δj3 + δ

y
ij
n

y33
0

( 〈φ〉
MS

)m

+ δ
y ′ij

n

y33
0

C
ij
n

(
M2

G

M2
S

)n

� δi3δj3 + δ
(
ε|m̂| + Cij ε′|n̂|)

,

wherem3 ≡ vu,dy33
0 with vu andvd being the up-type and down-type Higgs vevs respectively, and we define

ε ≡
( 〈φ〉

MS

)|1/z|
, ε′ ≡

(
M2

G

M2
S

)1/|x+x̄|
.

We suppress higher-order terms involving productsεε′. Thusm̂ = −(αi − α3 + ᾱj − ᾱ3) and n̂ = −(αi − α3 +
ᾱj − ᾱ3). The signs ofm̂ andn̂ must be the same asz andx + x̄, respectively, for the mass term to exist. Since
integersm andn are always positive, we haveε|m̂| ≡ (〈φ〉/MS)m. Majorana mass terms are

(4)M
ij

M = MR

(
µ

ij
p ε|p̂| + µ

′ij
q ε′|q̂|) � MR

(
ε|p̂| + ε′|q̂|)

,

whereMR ≡ M2
G/MS ≡ ε′MS , the term withp = q = 0 is understood, and̂p = −(ᾱi + ᾱj + 2x) andq̂ = −(ᾱi +

ᾱj + 2x). The full neutrino mass matrix in the basis(ν, νc) is of the “seesaw” form and the resulting light neutri
mass matrix is

(5)mν = −mDνM
−1
M mT

Dν.

2. Parameter choices and mass matrices

So far the discussion has been independent of the choice of U(1)X charges. The fermion mass terms are invar
under the family-independent shifts of U(1)X charge

αi → αi + ζ, ᾱi → ᾱi + ζ̄ ,
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(6)x → x − ζ̄ , x̄ → x̄ + ζ̄

(as are theHHD1 andH̄ H̄D2 couplings). Thus for the purpose of investigating fermion masses, we are f
assignα3 = ᾱ3 = 0 and applyζ andζ̄ shifts at the end of the calculation. The charges are thenx + x̄ = 1, z = −1,
α1 = −4, ᾱ1 = −2, α2 = −3, ᾱ2 = 1, which generate the charge matrices

(7)QX[MD] =
(−6 −3 −4

−5 −2 −3
−2 1 0

)
, QX[MM ] = 2x +

(−4 −1 −2
−1 2 1
−2 1 0

)
.

We setδ = 1 and substituteε andε′ by a single expansion parameterη � 0.06 (or
√

η � 0.24) viaε = η, ε′ = √
η.

Thus the neutral gauge singletHH̄φ/M3
S has a vev ofη3/2 � 0.015.

We obtain a hierarchical common Dirac mass matrix and (x-dependent) Majorana RHN mass matrix in pow
of η. We then have to specify Clebsch coefficients for operators involving one or more powers ofHH̄/M2

S . By
taking linear combinations of operators with different contractions over SU(4) × SU(2)R indices one can obtai
any vector in the space(u, d, ν, e), since the operators constitute a complete set over this space. Thus at firs
the model has little prodictivity.

However, in specific string models these coefficients are calculable in terms of cocycle factors[14]; in the
absence of a specific string construction we impose that theC

ij
n should be either small integers or simple ratio

numbers. We can take allCij equal to unity apart from the following, where we quote coefficients up to a pos
complex phase:C12

d = C22
d = 1/3, C23

u = 3, C11
u = C12

u = C21
u = C22

u = C31
u = 0, all multiplying the leading

nonvanishing entry. The ratioC22
e /C22

d = 3 is the usual Georgi–Jarlskog choice to fit the different ratiosms/mb

andmµ/mτ . As explained above, whenCij
n vanishes for the leading term, the next-to leading term is smaller

factorη3/2. Hence the Dirac mass matrices at the GUT scale take the following form, up to complex phases a
factors of order 1:

(8)

mu

mt0
=


η9/2 η3 η2

η4 η5/2 3η3/2

η5/2 η 1


 ,

md

mb0
=




η3 η3/2

3 η2

η5/2 η
3 η3/2

η η 1


 ,

me

mτ0
=


 η η3/2 η2

η5/2 η η3/2

η η 1


 ,

wheremt0 is the top mass at the GUT scale andmb0 = mτ0 = mt0/ tanβ . For this simple choice, the resultin
eigenvalues and quark mixings can be RG evolved to observable energies, where they yield acceptable fi
example, the CKM mixing angleθ12 is

√
η � 0.24, while the angleθ13 is η2 � 0.0035; the ratio(mu/mt)|MZ is

η9/2/ζ 3 � 6× 10−6, whereζ � 0.83 accounts for the RG evolution ofyu,c,t in the large tanβ (fixed point) regime.
No fine-tuned cancellations between unknown order 1 coefficients are needed. Such coefficients arise
couplingsyij

m , etc., which are SU(4) symmetric, and thus affect the Dirac mass matrix in the same way in
sector. This constraint may have consequences for a more detailed comparison with data.

The light neutrino mass matrix depends onx through the Majorana RHN matrix: we find two possible value1

(9)x = 1 and x = 3

2
.

The seesaw mass matrix is then

(10)mν = (mτ tanβ)2

η2xMR


 η

√
η

√
η√

η 1 1√
η 1 1




1 For x < 1, mν no longer has a form consistent with bi-large mixing; ifx > 3/2 then the RHNs are too light and the lightν masses too
large.
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up to order 1 factors (different from those in the Dirac matrices), where we display leading terms inη. With a
mildly fine-tuned (at the 20% level) choice of order 1 coefficients one can obtain a neutrino mass spectru
normal hierarchy and bi-large mixing. We did not find any charge assignments consistent with an inverted h
or degenerate light neutrino spectrum.

If we takex = 1, tanβ = 40 andMR ≡ η1/4MG to be 1.2 × 1016 GeV, then the largest entries inmν are of
order 0.12 eV. The spectrum of RHNs comprises two superheavy states of mass(1± η/2)MR and one light state
of massη4MR � 1.5× 1011 GeV.

Alternatively, withx = 3/2, tanβ = 45 andMR being
√

η times the reduced Planck mass 2.4× 1018 GeV, i.e.,
MR � 6 × 1017 GeV, the largest entries inmν are of order 0.05 eV. The RHN masses are now of order

√
ηMR,

η3/2MR andη5MR � 5 × 1011 GeV. Thus the correct scale of lightν masses follows, with RHN mass term
derived from either the SUSY-GUT or heterotic string scale via nonrenormalizable operators. The lighte
masses are rather large for standard thermal leptogenesis[15] if one takes into account gravitino production (giv
m3/2 = 1–10 TeV), but might be considered for nonthermal leptogenesis[16] or in case the gravitino is light o
very heavy.

3. Anomalies and B and L violation

For gauge coupling unification at the string scale (up tothreshold corrections) the non-Abelian gauge groups
required to have equal Kač–Moody levelsk4 = k2L = k2R = 1. The U(1)X mixed anomalies can only be cancell
by a Green–Schwarz mechanism if anomaly coefficients obey the relationA = const× k, hence we require th
4–4–1X , 2L–2L–1X and 2R–2R–1X coefficients to be equal:A4 = A2L = A2R. We have (up to an overall factor)

A4 = 2
∑

i

(αi + ᾱi) + 2(x + x̄) + 2(−2x − 2x̄), A2L = 4
∑

i

αi + 2(−α3 − ᾱ3),

(11)A2R = 4
∑

i

ᾱi + 4(x + x̄) + 2(−α3 − ᾱ3),

from which we obtain the requirements

(12)α3 + ᾱ3 − 2(x + x̄) = 0,

(13)
∑

i

(αi − ᾱi ) − (x + x̄) = 0.

The generation-independent shifts of Eq.(6) produce shifts in the L.H.S. of Eqs.(12) and (13), of ζ + ζ̄ and
3(ζ − ζ̄ ), respectively. Thus, given an initial U(1)X charge assignment, it is always possible to satisfy the ano
conditions, without altering the fermion mass matrices.

For our chosen set of charges we haveζ = 13/6 andζ̄ = −1/6. The shifts make many operators fractiona
charged: theFFFF operator which would lead toD = 5 proton decay has charge

∑
α + 26/3, which cannot be

cancelled by any singlet combination ofH , H̄ andφ fields. The only surviving operators coupling matter to Hig
triplets areFFD1 andFFH̄ H̄ , whose charges are both shifted by 2(ζ + ζ̄ ) = 4. ForD = 5 proton decay one
would also require appropriate mass terms for intermediate states, eitherD1D1 or D1H̄ H̄ ; but the charges of thes
operators are both shifted by 4ζ̄ = −2/3, hence one cannot construct the mass terms.

We must also verify that all Higgs triplet states are massive enough to evade bounds fromD = 6 operators
Down squark-like states 3H and3̄H̄ in H andH̄ respectively survive after breaking to the SM group. Mass te
for theH–H̄–D1–D2 system follow from the superpotential operators

(14)Wh = HHD1 + H̄ H̄D2 + D1D2
HH̄HH̄

M3
S

,
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inserting vevs we obtain up to factors of order 1

(15)Wh = ( 3̄1 3̄H̄ 3̄2 )


MG µD 0

0 MG 0

0 0 µD





3H

32

31


 ,

whereµD = M4
G/M3

S ≡ η3/4MG and we decompose each sextetD1,2 into a 3 and 3̄ of SU(3). There are two
mass eigenvalues of approximatelyMG and one eigenvalueµD from the combination̄32–31. Clearly there is no
transition between 31 and either̄31 or 3̄H , at any order.

OtherB- andL-violating operators which might endanger the proton’s longevity are

(16)FiH̄h, εabFiAF̄Aa
j FkBH̄Bb, F̄i F̄j F̄kH̄ , FiFjFkHh,

where we have indicated SU(4) and SU(2)R summations in the second term.2 These give rise to superpotent
termsLHu; QDcL andLEcL; UcDcDc ; andQQQHd , respectively. Out of these,FH̄h is not shifted, hence i
allowed (suppressed by some powers ofη) if x̄ is integer;FF̄FH̄ is shifted by 4 and is allowed under the sa
condition;F̄ 4 is shifted by−2/3, hence is disallowed; andF 3Hh is shifted by 14/3, hence also disallowed.

Regarding theR-parity violatingLHu term, this is allowed only in the casex = 1 and forbidden in the cas
x = 3/2. If it is allowed,R-parity violation in the lepton sector also has potentially dangerous effects. The bi
operatorLiH2 is known to contribute to neutrino masses[17] and there are experimental bounds on trilinearLLE

couplings[18]. For x = 1, if there are no other discrete or continuous symmetries in the model, we expe
(mass dimension 1) coefficient ofLiHu to be a few orders of magnitude below the GUT scale, which is obvio
unacceptable. Thus if no additional symmetries (such asR-parity) are present at the effective Lagrangian the c
x = 1 seems to be excluded by these effects. However, in the casex = 3/2 potentially problematicL-violating
terms are absent. In a more general model with manyH–H̄ pairs and singlets, with a range of U(1)X charges, the
analysis of anomaly coefficients, proton decay operators andR-parity violation will be different. But at least in th
minimal version, all dangerousB-violating operators vanish automatically.

The presence ofR-parity violating operators at low energy implies an unstable LSP, which cannot be a
matter particle (unless its lifetime is much longer than the age of the Universe). This may widen the av
MSSM parameter space, since an unstable LSP cannot overclose the Universe, and a charged LSP is poss
The LSP lifetime and abundance should however satisfy other cosmological constraints[19]. The details of such
a scenario likely depend on how the bilinearLHu and mu-terms are suppressed, hence it is beyond the sco
this Letter to discuss the possibilities in detail. There are well-studied candidates in string models for dark
beyond the LSP, including axions and superheavy hidden sector bound states[20].

The “mu-term” of the MSSM originates from the producthh whose U(1)X charge is−4: hence it receives onl
a mild suppression. Thus the “mu-problem” is not solved by the U(1)X symmetry alone. This is a rather gene
problem in string model building[21]. Contrary to the fermions that are chiral and thus protected from direct
terms the Higgs doublet mass is generically allowed. In realistic string models however, there are two additio
mechanisms of mass term suppression. The first is additional Abelian symmetries that are generically present
the second is string related selection rules[22]. As an example for the latter one could refer to a configura
where one of the Higges arises from the untwisted sector while the singlet and the other Higgs come f
twisted sector. In this case theµ-term is forbidden in the effective superpotential. It can be however generat
the Kähler potential[23]. String selection rules and/or additional Abelian symmetries could also account f
elimination of theLHu mixing term.

In conclusion, we have presented a string-inspired supersymmetric SU(4)× SU(2)2 × U(1)X model with 5 dis-
cretely adjustable charges, 8 discretely adjusted Clebsch factors, 1 adjustable expansion parameter and 1 adjustab

2 The conventionalR-parity may be obtained from aZ2 symmetry acting either onF andF̄ , or onH andH̄ .
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mass ratio (v/MG), which is consistent with gauge unification and with all known elementary fermion masse
mixings, if the spectrum of light neutrinos is hierarchical. The simplest version of the model is also free fB

violation through dimension-4 and -5 operators, but may allowL violation. The lightest RHN mass is a few tim
1011 GeV, the lightest neutrino mass eigenstate is of orderη/2 � 0.03 times the heaviest, and the neutrino mix
angleθ13 is of order

√
η/2 � 0.12. Other issues for further investigation include gauge unification, CP viola

supersymmetry-breaking and flavour-changing effects in both quark and lepton sectors, and cosmology i
inflation, baryogenesis and dark matter.
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