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Tight-binding interatomic potentials based on total-energy calculation:
Application to noble metals using molecular-dynamics simulation
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We present an alternate approach to parametrizing the expression for the total energy of solids within the
second-moment approximatig8MA) of the tight-binding theory. In order to obtain the necessary parameters,
we do not use the experimental values of the lattice constant, the elastic constants, and the cohesive energy, but
we fit to the total energy obtained from first-principles augmented-plane-wave calculations as a function of
volume. In addition, we shift the total-energy graphs uniformly so that at the minimum they give the experi-
mental value of the cohesive energy. We have applied the above methodology to perform molecular-dynamics
simulations of the noble metals. For Cu and Ag our results for vacancy formation energies, relaxed surface
energies, phonon spectra, and various temperature-dependent quantities are of comparable accuracy to those
found by the standard SMA, which is based on fitting to several measured data. However, our approach does
not seem to work as well for AyS0163-182807)00903-X

[. INTRODUCTION rates the non-band-structure parts of the total energy, includ-
ing electrostatic interactions. The expression for the total en-
In the last 15 years atomistic simulations have played amrgy contains a small set of adjustable parameters, which
increasingly important role in many areas of condensedhave typically been determined by matching to experimental
matter and materials sciente Crucial to the success of any data of cohesive energy, lattice constant, bulk modulus, and
simulation is the interatomic potential. One of the ap-elastic constants of the systéfit®It has been found that the
proaches is the first-principles molecular dynanfid®) in-  quality of the results is improved by including a sufficient
troduced by Car and Parrinelfothis scheme provides an number of interacting atoms(typically up to fifth
accurate description of atomic interactions, but requires enomeighbors.*>~17
mous computational time, so it is restricted to short simula- The aim of the present work is to use the TB-SMA model,
tion times and to a few hundred atoms. Another one dealsiith parameters determined from first-principles calculations
with empirical potentials, which in many cases reproducerather than from experimental quantities. Our approach con-
very fast and with satisfactory accuracy the thermodynamiaists in adjusting the total-energy expression of the TB-SMA
and structural properties of materials. Some of these methodeethod to augmented-plane-way&PW) total-energy re-
in metallic systems are the embedded-atom methtte  sults. We applied this method to the noble metals, and we
effective-medium theor§, the Finnis-Sinclair potentials, tested the quality of our parameters by deriving the bulk
and the second-moment approximati@MA) to the tight- modulus, elastic constants, vacancy formation energies, and
binding (TB) model® Recently, a scheme has been proposedsurface energies of each metal. In addition, we performed
which is between the above two approaches, the so-calleblD simulations at various temperatures, obtaining the tem-
tight-binding molecular dynamicsThis method is about two perature dependence of the lattice constant and the atomic
or three orders of magnitude faster thaln initio formula-  mean-square-displacemen{tdSD), as well as the phonon
tions, and at the same time describes with suitable accuragjensity of stateDOS) and the phonon-dispersion curves.
the electronic structure of the system. Nevertheless, its confFhe simulated quantities are compared with available experi-
putational cost remains much higher compared to empiricainental data. It has to be noted here that this method can be
potentials. Another TB methodology is now advocated byparticularly useful, especially in cases where all the neces-
the NRL group'®~*? This approach has been successful insary experimental valugsohesive energy, elastic constants,
accurately determining structural energy differences, elastietc) are not known, e.g., stoichiometric alloys, disordered
constants, vacancy formation energies, surface energies asgstems, etc., and hence the usual procedure of fitting to
phonon spectra for 29 elements. However, in its presenéxperimental data is not feasible.
form, this method is too slow for MD simulations. This article is organized as follows. Section Il describes
The TB-SMA method takes into account the essentiathe method of calculation and the various computational de-
band character of the metallic bond: the total energy of theails. In Sec. Il we discuss numerical results of elastic con-
system consists of a band-structure term, proportional to thstants, vacancy formation energies, surface energies, and
effective width of the electronic ban@nd so to the square temperature-dependent quantities obtained from MD simula-
root of the second moment of the local density of statestions, as well as their comparison with experimental values.
(Ref. 13 and a repulsive pair-potential term, which incorpo- Summary and conclusions are given in Sec. IV.
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Il. METHOD OF CALCULATION TABLE I. Calculated(Calc) and experimentalExpt) lattice

constantgRef. 26, a, along with the cohesive energi€Ref. 2
The band structure of the noble metals Cu, Ag, and AuEC for tr?(e threeanoble megtals. gies ?

was calculated by the symmetrized APW metfoh the

muffin-tin approximation. The self-consistent semirelativistic glement a(A) E. (eV)
calculations yielded the crystal potential, the charge density;

and the eigenvalue sum, which were used in Janak’s expres- Calc. Expt. Calc. Expt.
sion for the total energ}’ The exchange and correlation was Cu 3.53 3.60 4.65 3.54
treated by the Hedin-Lundqvist formalisthThe computa- Ag 4.03 4.07 3.62 2.96
tions were done for both the fcc and bcc structures of metalsiu 4.06 4.07 3.77 3.78

we used a mesh of 88 points in the irreducible Brillouin

zone for the fcc and 5% points for the bcc structure. The
total energy was calculated for five different lattice param-hree space directions. The equations of motion were inte-
eters for each structure and the resulting variation was fittegrated by means of the Verlet algorithm and a time step
to a parabolic functioR* More details of these calculations st=5%x1015s guarantees a total-energy conservation within
are given by Sigalas, Papaconstantopoulos, and B&€alis. sg/E=10"5, The system was equilibrated at a desired tem-

~ In the TB-SMA modef;** the total energy of the system perature during 1000 integration time stefs pg, which
is written as

E=> (EB+ER), (1) 2 e
! 33 -

whereE P represents the band-structure term, B
-34 -

EB=—¢ > e llrij/ro) 11, 2

d. =35 -
J#FIi

Energy (eV)
T

andE R is a pair-potential repulsive terfBorn-Mayer type, 36 | .

R_ —pl(rjj Irg)—1 3.7
Ei _A; © " ! ’ ]. (3) 9 10 1" 12 13
In expressiong2) and(3), rj; is the distance between atoms
i andj, and the sums include interactions up to fifth neigh-
bors. ry is usually fixed to the value of the first-neighbor
distance. In our case, is an additional free parameter, as
suggested in Ref. 23. Therefore, there are five paraméters
A, g, p, andrg in our scheme, which have been determined
from Egs.(1)—(3) for each element by fitting to the APW
total-energy results as a function of lattice constant for both
the fcc and bcc structures. We used the total energies of each
metal for both the fcc and bcc structures, since it was found
that the agreement with the experimental values for the elas-
tic constants was better than the one obtained when using 14 15 16 17 18 19
only the fcc structuré® We note here that, in practice, before (b) Volume (&%)
performing the fitting procedure, we convert to cohesive en-
ergies by subtracting from both the fcc and bcc APW total 34 ' LA B B B '
energies the energy of an isolated atom, as it was calculated - Au 8
in the local-density approximatioi.DA) using a relativistic a5 | v |
formalism?* Since it is well known that the total energy of
isolated atoms is poorly described by the LDA, we shifted
the computed cohesive energies, so that the absolute mini-
mum of the fcc structure coincides with the experimental
cohesive energies. The elastic constants of the metals were 37 - .
calculated at the experimental lattice constant from the dif- L
ference in total energies of the distorted and undistorted lat- 38 L e
tlces.. ) . . 14 15 16 17 18 19

Using the above interatomic potential, we performed MD © Volume (A°)
simulations in the microcanonical ensemble in order to vali-
date the model at various temperatures. The system is made F|G. 1. Calculated cohesive energiegth opposite sighof (a)
up of 4000 particles arranged on a fcc lattice. The simulatiortu, (b) Ag, and(c) Au as a function of volume. Solid lines corre-
box contained 40 atomic layers with 100 atoms each, irspond to the APW results; filled symbols refer to the results of the
which periodic boundary conditions were imposed in thefit [Egs.(1)—(3)].
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TABLE II. Potential parameters for tight-binding second-  TABLE IV. Tight-binding second-moment approximation va-
moment approximation as obtained by fitting the computed volumesancy formation energies along with the experimental val(&e.

dependence fo the cohesive energies to Ehs:(3). 28) for the materials under study.

Element £ (eV) A (eV) q p ro (A) Element Vacancy formation energgV)

Cu 1.9840 13.1610 1.0844 9.3582 1.5564 Present work Experiment

Ag 0.7824 0.5354 0.9248 15.8659 3.4733 Cu 1.50 1.28-1.42

Au 10.9249 13.5959 2.7381 6.3469 1.7517 Ag 1.33 1.11-1.31
Au 0.49 0.89-0.04

were sufficient to obtain stationary values for the potential

and kinetic energies. Another 5000 additional st&fs p9 agreement is much better for Au, @ Bnetal, where there is
were performed to calculate time averages. By performinga remarkable accuracy. On the other hand, the cohesive en-
four times longer trajectories, we did not find significant ergies of Cu and Ag are overestimated by 31% and 22%,
changes in the computed quantities. The vacancy formatiorespectively, a result reflecting the well-known deficiency of
and surface energies were calculated a0 K by perform-  the LDA for atoms, while for Au, surprisingly, the agree-
ing a quasidynamic minimization procedtiténtegrated in  ment is very good.

the MD code. The free surfaces were produced by fixing the In Figs. 1@-(c) we show the opposite of the computed
dimensions of the computational box at a value twice asohesive energies of noble metals as a function of the vol-
large as the thickness of the crystal along thdirection; an  ume in the fcc and bce structurésolid lineg after the ap-
infinite slab was thus constructed delimited by two free surpropriate energy shift, as discussed in Sec. Il. In the same
faces parallel tq100), (110, or (111 planes. figure we also present the results of thefiited symbolg as

The value of the lattice constant at each temperature wasomputed by Eqs(1)—(3). We note that the maximum dif-
chosen so as to result in zero pressure in the system, whiference between the TB-SMA fitted energies and the first-
the atomic mean-square displacements were determined orpanciples energies for Cu and Ag is about 0.02 eV, and even
layer-by-layer basis from equilibrium averages of the atomicsmaller for the case of Au.
density profiles. Finally, the phonon DOS was obtained from The potential parameters of the TB-SMA scheme, are
the Fourier transform of the velocity autocorrelation func-given in Table Il for the three materials under study. We
tion, and the phonon spectral densities were calculated bsemind the reader that, is taken as a free parameter, and
Fourier transforming the velocity- and position-dependenthus it has nothing to do with the first-neighbor distance, the
autocorrelation function for a given polarization and a spevalue that is usually used, and which is kept fixed at the
cific k vector in the Brillouin zone. Details of this computa- experimental value of the fcc structure in other works.’
tional procedure can be found elsewhtreConsequently, In Table Il we report the computed bulk modulus and
the phonon-dispersion curves were deduced from frequenciedastic constants of noble metals, along with the correspond-
found in the corresponding spectral densities. In particularing measured value$. The calculations were performed in
we used a mesh of tdnvectors along each symmetry direc- the TB-SMA scheme using the experimental lattice constants
tion, and then we performed a cubic spline interpolation. at room temperature. The accuracy of the elastic constants,

showing a deviation of 10—20 % from experiment is compa-
lIl. RESULTS AND DISCUSSION rable to that of first-principles calculations, and to the TB
method of Ref. 12.

In Table | we present results for the calculated equilib- We also determined the vacancy formation energies, us-
rium lattice constanté and cohesive energiésof the three  ing the quasidynamic minimization method integrated in the
materials under study, along with the corresponding experi-
mental value$®2” The predicted lattice constants are consis- TABLE V. Surface energies of noble metals, obtained from our
tent with the known effects of the scalar relativistic LDA: for molecular-dynamics simulations, along with the experimental val-
Cu, a 3 element, the errofcompared to experimefij is  ues(Refs. 29 and 30
1.9%, while for Ag, a 41 element, the calculated lattice pa-

rameter is 0.7% smaller than the measured v&u€he Surface energyJ/n?)
TABLE lll. Bulk modulus B and elastic constantin GP3g for Element Surface Calculated Experimental
the noble metals computed in the TB-SMA method. The calculacy (100 1.76
tions were performed at the experimental lattice constants, and the (110 1.89 1.77
measured elastic constants are taken from Ref. 26. (111 1.68
Calculated Experimental Ag (100 1.39
Element (GPa (GPa (110 1.47 1.25-1.32
(111 1.38
B Cu Cip Cuy B Cu Cip Cuy
Cu 118 155 99 85 137 168 121 75 Au (100 0.44
Ag 82 109 68 53 103 124 93 46 (110 0.45 1.50-1.54

Au 169 184 161 28 169 189 159 42 (111 0.37
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FIG. 2. Temperature dependence of lattice constants)atu, FIG. 3. Mean-square displacements(af Cu, (b) Ag, and(c)

(b) Ag, and(c) Au. The open and filled circles correspond, respec-AU as a function of temperature. The open Ci_rcles afld the_ lines
tively, to the results of the simulation and the experiment. Thetorrespond to the results of our simulation, while the filled circles
experimental data for Cu are taken from Ref. 31, and for Ag and Aiare the experimental data from Refs. 34, 35, and 36 for Cu, Ag, and
from Ref. 32. Au, respectively.

MD code and the procedure described in Sec. Il. Results fofaces. Our MD simulations follow the trends usually ob-
this quantity, after relaxation of the whole system, are sumserved on fcc metal surfaces: the smallest surface energy is
marized in Table IV together with the available experimentalthat of the (111) face, while the largest one is that of the
values?® We see that the TB-SMA method predicts vacancy(110) face. These results are compatible with the fact that
formation energies for Cu and Ag, which are close to expericlose-packed surfaces are the most stable for the fcc metals.
ment, but for Au this energy is much lower than the experi-The surface energies for Cu and Ag are very close to experi-
mental value. Furthermore, our values compare well withment, while for Au the predicted values are smaller than the
those of another TB-SMA simulatiofl,where the necessary experimental value by a factor of 3.
parameters have been obtained by fitting to experimental In the following we present some finite-temperature prop-
quantities. It is interesting to note that the elaborate TBerties. In Figs. 29)—2(c) we show the lattice constants of
method of Ref. 12 gives a better value of the formation ennoble metals as a function of temperature, as deduced from
ergy of Au. our MD simulations, along with the corresponding experi-
We have also calculated the relaxed surface energies ofiental values3? It is clear, from this figure, that the best
low index faceg100), (110), and(111) for the noble metals. agreement with the measured values is achieved forg)
Table V compares these results to experintéif.We note  2(b)], while for Cu there is a deviation of 1.9% between the
that the experimental energies refer to polycrystalline surecomputed and the experimental values at low temperature,
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2 .04 — Au, the disagreement is evideliig. 3(c)]; for example, the
s - MSD’s at 700 K are more than twice as large as the experi-
é 0.02 = mental value, a fact which has been also found in the TB-
- SMA Monte Carlo study® According to Lindemann’s
0.00 L criterion?’ the melting point can be empirically estimated by
6 10 the MSD values; therefore, it is clear that the present model
() f (THz) results in an anticipated melting of the gold. A similar un-

derestimation of the melting point has been also found by

FIG. 4. Phonon DOS ofa) Cu, (b) Ag, and(c) Au at 300 K Cleri and Rosatd® although they have fitted the free param-

derived from our MD simulation. eters of their TB-SMA scheme to the experimental values of
cohesive energy, lattice constant, and elastic constants for

which becomes smaller with increasing temperatiffy.  Au. We can thus conclude that this discrepancy for Au is not
2(a)]. It is worth noting that the resulting thermal-expansiondue to the quality of our TB-SMA parameters, but it is prob-
coefficients are in good agreement with the experiment forbly related to the second moment approximation.
both metals. In the case of Au, despite the accuracy obtained Following Lindemann’s criterion, we deduce the approxi-
at low temperatures, the discrepancy increases progressivelyative melting temperatures of Cu, Ag, and Au to be 1450
at high temperatures, where the simulation predicts larger-50, 1100-50, and 85650 K, respectively, to be com-
lattice dilation from the measuremefitig. 2(c)]. A similar  pared to the experimental values of 1358, 1235, and 1338
behavior has been also found in a Monte Carlo stidging K.’
a TB-SMA potential model, where the parameters were ad- The phonon DOS’s for the elements under study are pre-
justed to the experimental data. sented in Figs. @)—4(c) at room temperature. We see that

In Figs. 3a)—3(c) we compare the temperature depen-the main features of the phonon frequency spectra are well
dence of our computed atomic MSD(solid curve$ with reproduced; we note that, since in our calculations we use the
experimental data for Ctf, Ag,%® and Au®® Our values are Fourier transform of the velocity autocorrelation function,
slightly underestimated for CFig. 3], a fact which is the DOS shape is smoothed. Comparing our phonon DOS of
consistent with the lower values of the lattice constant aCu [Fig. 4@)] with previous works based on TB-SMA
various temperatures by our TB-SMA potential. The agreepotentials:>*® resulting from fitting to experimental quanti-
ment for Ag is again very goodlFig. 3(b)], denoting the ties, we observe a reasonable agreement, except of a slight
success of the proposed scheme for this element. Concernisift toward higher frequencies, present in our spectrum. In
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the case of AdFig. 4(b)] the cutoff frequency is well pre- obtained the bulk modulus, elastic constants, vacancy forma-
dicted by our simulations, in agreement with a previoustion, and surface energies for each metal. We found a good
computatioh® and measurements.For Au [Fig. 4(c)] the  agreement with the experiment, except for the vacancy for-
same quantity is considerably underestimdted find about mation energy and surface energy of gold, which were con-
3.25 THz compared to 4.7 THz, which is the experimentalsiderably underestimated. Furthermore, we performed finite-
valug, a result also found in Ref. 15. The phonon DOS oftemperature molecular-dynamics simulations to determine
Au is thus too narrow, compared to the experinf@this is  the temperature dependence of the lattice constants and
consistent with the previous remarks about large lattice dilaatomic mean-square displacements, as well as the phonon
tion at high temperature, excessive MSD'’s, and anticipatedensity of states and phonon-dispersion curves. The pre-
melting of the system. The failure of the model for Au can bedicted values compare very well with the experimental data
attributed to the contribution of noncentral many-bodyfor silver, while they are in acceptable agreement for copper.
forces, not included in the second-moment approximafion. It should be mentioned that, despite the fact that we did not
One could overcome this discrepancy by taking into accountise the experimental data to determine the necessary TB-
higher-order moments. Furthermore, in a recent work usingMA parameters, we obtained a comparable accuracy to that
the tight-binding total-energy methdf without the limita-  found by the standard SMA, in which the parameters are
tions of the SMA, the phonon frequency spectrum of Au isadjusted to the experimental quantities. Concerning gold, the
better reproduced than in the present study. model fails to reproduce its high-temperature properties. It

The phonon-dispersion curves of @0 K) and Ag(300  should be noted that this is not due to the quality of our
K) are displayed in Figs.(8) and 8b), respectively, together TB-SMA parameters, but to the failure of second-moment
with the experimental resulf$:*® The agreement between approximation. Including higher-order moments, the agree-
simulation and measurements is excellent for Ag, while forment with experiment could be improved. The procedure de-
Cu the main features are reproduced, but there is an overeseribed here can be extended to binary stoichiometric or even
timation of the cutoff frequency in the vicinity of the disordered systems, especially in cases where there are not
Brillouin-zone boundaries. enough available experimental data to obtain the TB-SMA

parameters.
IV. CONCLUSIONS
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