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Tight-binding interatomic potentials based on total-energy calculation:
Application to noble metals using molecular-dynamics simulation
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We present an alternate approach to parametrizing the expression for the total energy of solids within the
second-moment approximation~SMA! of the tight-binding theory. In order to obtain the necessary parameters,
we do not use the experimental values of the lattice constant, the elastic constants, and the cohesive energy, but
we fit to the total energy obtained from first-principles augmented-plane-wave calculations as a function of
volume. In addition, we shift the total-energy graphs uniformly so that at the minimum they give the experi-
mental value of the cohesive energy. We have applied the above methodology to perform molecular-dynamics
simulations of the noble metals. For Cu and Ag our results for vacancy formation energies, relaxed surface
energies, phonon spectra, and various temperature-dependent quantities are of comparable accuracy to those
found by the standard SMA, which is based on fitting to several measured data. However, our approach does
not seem to work as well for Au.@S0163-1829~97!00903-X#
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I. INTRODUCTION

In the last 15 years atomistic simulations have played
increasingly important role in many areas of condens
matter and materials science.1–3Crucial to the success of an
simulation is the interatomic potential. One of the a
proaches is the first-principles molecular dynamics~MD! in-
troduced by Car and Parrinello;4 this scheme provides a
accurate description of atomic interactions, but requires e
mous computational time, so it is restricted to short simu
tion times and to a few hundred atoms. Another one de
with empirical potentials, which in many cases reprodu
very fast and with satisfactory accuracy the thermodyna
and structural properties of materials. Some of these meth
in metallic systems are the embedded-atom method,5 the
effective-medium theory,6 the Finnis-Sinclair potentials,7

and the second-moment approximation~SMA! to the tight-
binding~TB! model.8 Recently, a scheme has been propos
which is between the above two approaches, the so-ca
tight-binding molecular dynamics.9 This method is about two
or three orders of magnitude faster thanab initio formula-
tions, and at the same time describes with suitable accu
the electronic structure of the system. Nevertheless, its c
putational cost remains much higher compared to empir
potentials. Another TB methodology is now advocated
the NRL group.10–12 This approach has been successful
accurately determining structural energy differences, ela
constants, vacancy formation energies, surface energies
phonon spectra for 29 elements. However, in its pres
form, this method is too slow for MD simulations.

The TB-SMA method takes into account the essen
band character of the metallic bond: the total energy of
system consists of a band-structure term, proportional to
effective width of the electronic band~and so to the squar
root of the second moment of the local density of stat!
~Ref. 13! and a repulsive pair-potential term, which incorp
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rates the non-band-structure parts of the total energy, inc
ing electrostatic interactions. The expression for the total
ergy contains a small set of adjustable parameters, wh
have typically been determined by matching to experimen
data of cohesive energy, lattice constant, bulk modulus,
elastic constants of the system.14,15 It has been found that the
quality of the results is improved by including a sufficie
number of interacting atoms~typically up to fifth
neighbors!.15–17

The aim of the present work is to use the TB-SMA mod
with parameters determined from first-principles calculatio
rather than from experimental quantities. Our approach c
sists in adjusting the total-energy expression of the TB-SM
method to augmented-plane-wave~APW! total-energy re-
sults. We applied this method to the noble metals, and
tested the quality of our parameters by deriving the b
modulus, elastic constants, vacancy formation energies,
surface energies of each metal. In addition, we perform
MD simulations at various temperatures, obtaining the te
perature dependence of the lattice constant and the ato
mean-square-displacements~MSD!, as well as the phonon
density of states~DOS! and the phonon-dispersion curve
The simulated quantities are compared with available exp
mental data. It has to be noted here that this method ca
particularly useful, especially in cases where all the nec
sary experimental values~cohesive energy, elastic constan
etc.! are not known, e.g., stoichiometric alloys, disorder
systems, etc., and hence the usual procedure of fitting
experimental data is not feasible.

This article is organized as follows. Section II describ
the method of calculation and the various computational
tails. In Sec. III we discuss numerical results of elastic co
stants, vacancy formation energies, surface energies,
temperature-dependent quantities obtained from MD sim
tions, as well as their comparison with experimental valu
Summary and conclusions are given in Sec. IV.
2150 © 1997 The American Physical Society
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55 2151TIGHT-BINDING INTERATOMIC POTENTIALS BASED . . .
II. METHOD OF CALCULATION

The band structure of the noble metals Cu, Ag, and
was calculated by the symmetrized APW method18 in the
muffin-tin approximation. The self-consistent semirelativis
calculations yielded the crystal potential, the charge dens
and the eigenvalue sum, which were used in Janak’s exp
sion for the total energy.19 The exchange and correlation wa
treated by the Hedin-Lundqvist formalism.20 The computa-
tions were done for both the fcc and bcc structures of met
we used a mesh of 89k points in the irreducible Brillouin
zone for the fcc and 55k points for the bcc structure. Th
total energy was calculated for five different lattice para
eters for each structure and the resulting variation was fi
to a parabolic function.21 More details of these calculation
are given by Sigalas, Papaconstantopoulos, and Bacalis22

In the TB-SMA model,8,13 the total energy of the system
is written as

E5(
i

~Ei
B1Ei

R!, ~1!

whereE i
B represents the band-structure term,

Ei
B52jA(

jÞ i
e22q@~r i j /r0!21#, ~2!

andE i
R is a pair-potential repulsive term~Born-Mayer type!,

Ei
R5A(

jÞ i
e2p@~r i j /r0!21#. ~3!

In expressions~2! and~3!, r i j is the distance between atom
i and j , and the sums include interactions up to fifth neig
bors. r 0 is usually fixed to the value of the first-neighb
distance. In our caser 0 is an additional free parameter, a
suggested in Ref. 23. Therefore, there are five parametej,
A, q, p, andr 0 in our scheme, which have been determin
from Eqs. ~1!–~3! for each element by fitting to the APW
total-energy results as a function of lattice constant for b
the fcc and bcc structures. We used the total energies of
metal for both the fcc and bcc structures, since it was fou
that the agreement with the experimental values for the e
tic constants was better than the one obtained when u
only the fcc structure.23We note here that, in practice, befo
performing the fitting procedure, we convert to cohesive
ergies by subtracting from both the fcc and bcc APW to
energies the energy of an isolated atom, as it was calcul
in the local-density approximation~LDA ! using a relativistic
formalism.24 Since it is well known that the total energy o
isolated atoms is poorly described by the LDA, we shift
the computed cohesive energies, so that the absolute m
mum of the fcc structure coincides with the experimen
cohesive energies. The elastic constants of the metals
calculated at the experimental lattice constant from the
ference in total energies of the distorted and undistorted
tices.

Using the above interatomic potential, we performed M
simulations in the microcanonical ensemble in order to v
date the model at various temperatures. The system is m
up of 4000 particles arranged on a fcc lattice. The simulat
box contained 40 atomic layers with 100 atoms each,
which periodic boundary conditions were imposed in t
u
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three space directions. The equations of motion were in
grated by means of the Verlet algorithm and a time s
dt55310215 s guarantees a total-energy conservation wit
dE/E51025. The system was equilibrated at a desired te
perature during 1000 integration time steps~5 ps!, which

FIG. 1. Calculated cohesive energies~with opposite sign! of ~a!
Cu, ~b! Ag, and~c! Au as a function of volume. Solid lines corre
spond to the APW results; filled symbols refer to the results of
fit @Eqs.~1!–~3!#.

TABLE I. Calculated~Calc.! and experimental~Expt.! lattice
constants~Ref. 26!, a, along with the cohesive energies~Ref. 27!
Ec , for the three noble metals.

Element a ~Å! Ec ~eV!

Calc. Expt. Calc. Expt.
Cu 3.53 3.60 4.65 3.54
Ag 4.03 4.07 3.62 2.96
Au 4.06 4.07 3.77 3.78
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2152 55G. C. KALLINTERIS et al.
were sufficient to obtain stationary values for the poten
and kinetic energies. Another 5000 additional steps~25 ps!
were performed to calculate time averages. By perform
four times longer trajectories, we did not find significa
changes in the computed quantities. The vacancy forma
and surface energies were calculated atT50 K by perform-
ing a quasidynamic minimization procedure25 integrated in
the MD code. The free surfaces were produced by fixing
dimensions of the computational box at a value twice
large as the thickness of the crystal along thez direction; an
infinite slab was thus constructed delimited by two free s
faces parallel to~100!, ~110!, or ~111! planes.

The value of the lattice constant at each temperature
chosen so as to result in zero pressure in the system, w
the atomic mean-square displacements were determined
layer-by-layer basis from equilibrium averages of the atom
density profiles. Finally, the phonon DOS was obtained fr
the Fourier transform of the velocity autocorrelation fun
tion, and the phonon spectral densities were calculated
Fourier transforming the velocity- and position-depend
autocorrelation function for a given polarization and a s
cific k vector in the Brillouin zone. Details of this computa
tional procedure can be found elsewhere.17 Consequently,
the phonon-dispersion curves were deduced from frequen
found in the corresponding spectral densities. In particu
we used a mesh of tenk vectors along each symmetry dire
tion, and then we performed a cubic spline interpolation.

III. RESULTS AND DISCUSSION

In Table I we present results for the calculated equil
rium lattice constants22 and cohesive energies24 of the three
materials under study, along with the corresponding exp
mental values.26,27The predicted lattice constants are cons
tent with the known effects of the scalar relativistic LDA: fo
Cu, a 3d element, the error~compared to experiment26! is
1.9%, while for Ag, a 4d element, the calculated lattice pa
rameter is 0.7% smaller than the measured value.26 The

TABLE II. Potential parameters for tight-binding secon
moment approximation as obtained by fitting the computed volu
dependence fo the cohesive energies to Eqs.~1!–~3!.

Element j ~eV! A ~eV! q p r0 ~Å!

Cu 1.9840 13.1610 1.0844 9.3582 1.556
Ag 0.7824 0.5354 0.9248 15.8659 3.473
Au 10.9249 13.5959 2.7381 6.3469 1.751

TABLE III. Bulk modulusB and elastic constants~in GPa! for
the noble metals computed in the TB-SMA method. The calcu
tions were performed at the experimental lattice constants, and
measured elastic constants are taken from Ref. 26.

Element
Calculated

~GPa!
Experimental

~GPa!

B C11 C12 C44 B C11 C12 C44

Cu 118 155 99 85 137 168 121 75
Ag 82 109 68 53 103 124 93 46
Au 169 184 161 28 169 189 159 42
l
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agreement is much better for Au, a 5d metal, where there is
a remarkable accuracy. On the other hand, the cohesive
ergies of Cu and Ag are overestimated by 31% and 22
respectively, a result reflecting the well-known deficiency
the LDA for atoms, while for Au, surprisingly, the agree
ment is very good.

In Figs. 1~a!–~c! we show the opposite of the compute
cohesive energies of noble metals as a function of the
ume in the fcc and bcc structures~solid lines! after the ap-
propriate energy shift, as discussed in Sec. II. In the sa
figure we also present the results of the fit~filled symbols! as
computed by Eqs.~1!–~3!. We note that the maximum dif
ference between the TB-SMA fitted energies and the fi
principles energies for Cu and Ag is about 0.02 eV, and e
smaller for the case of Au.

The potential parameters of the TB-SMA scheme,
given in Table II for the three materials under study. W
remind the reader thatr 0 is taken as a free parameter, an
thus it has nothing to do with the first-neighbor distance,
value that is usually used, and which is kept fixed at
experimental value of the fcc structure in other works.14–17

In Table III we report the computed bulk modulus an
elastic constants of noble metals, along with the correspo
ing measured values.26 The calculations were performed i
the TB-SMA scheme using the experimental lattice consta
at room temperature. The accuracy of the elastic consta
showing a deviation of 10–20 % from experiment is comp
rable to that of first-principles calculations, and to the T
method of Ref. 12.

We also determined the vacancy formation energies,
ing the quasidynamic minimization method integrated in

e

-
he

TABLE IV. Tight-binding second-moment approximation va
cancy formation energies along with the experimental values~Ref.
28! for the materials under study.

Element Vacancy formation energy~eV!

Present work Experiment
Cu 1.50 1.28–1.42
Ag 1.33 1.11–1.31
Au 0.49 0.8960.04

TABLE V. Surface energies of noble metals, obtained from o
molecular-dynamics simulations, along with the experimental v
ues~Refs. 29 and 30!.

Element Surface

Surface energy~J/m2!

Calculated Experimental

Cu ~100! 1.76
~110! 1.89 1.77
~111! 1.68

Ag ~100! 1.39
~110! 1.47 1.25–1.32
~111! 1.38

Au ~100! 0.44
~110! 0.45 1.50–1.54
~111! 0.37
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MD code and the procedure described in Sec. II. Results
this quantity, after relaxation of the whole system, are su
marized in Table IV together with the available experimen
values.28 We see that the TB-SMA method predicts vacan
formation energies for Cu and Ag, which are close to exp
ment, but for Au this energy is much lower than the expe
mental value. Furthermore, our values compare well w
those of another TB-SMA simulation,15 where the necessar
parameters have been obtained by fitting to experime
quantities. It is interesting to note that the elaborate
method of Ref. 12 gives a better value of the formation
ergy of Au.

We have also calculated the relaxed surface energie
low index faces~100!, ~110!, and~111! for the noble metals.
Table V compares these results to experiment.29,30We note
that the experimental energies refer to polycrystalline s

FIG. 2. Temperature dependence of lattice constants of~a! Cu,
~b! Ag, and~c! Au. The open and filled circles correspond, resp
tively, to the results of the simulation and the experiment. T
experimental data for Cu are taken from Ref. 31, and for Ag and
from Ref. 32.
or
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faces. Our MD simulations follow the trends usually o
served on fcc metal surfaces: the smallest surface energ
that of the~111! face, while the largest one is that of th
~110! face. These results are compatible with the fact t
close-packed surfaces are the most stable for the fcc me
The surface energies for Cu and Ag are very close to exp
ment, while for Au the predicted values are smaller than
experimental value by a factor of 3.

In the following we present some finite-temperature pro
erties. In Figs. 2~a!–2~c! we show the lattice constants o
noble metals as a function of temperature, as deduced f
our MD simulations, along with the corresponding expe
mental values.31,32 It is clear, from this figure, that the bes
agreement with the measured values is achieved for Ag@Fig.
2~b!#, while for Cu there is a deviation of 1.9% between t
computed and the experimental values at low temperat

-
e
u

FIG. 3. Mean-square displacements of~a! Cu, ~b! Ag, and ~c!
Au as a function of temperature. The open circles and the li
correspond to the results of our simulation, while the filled circ
are the experimental data from Refs. 34, 35, and 36 for Cu, Ag,
Au, respectively.
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2154 55G. C. KALLINTERIS et al.
which becomes smaller with increasing temperature@Fig.
2~a!#. It is worth noting that the resulting thermal-expansi
coefficients are in good agreement with the experiment
both metals. In the case of Au, despite the accuracy obta
at low temperatures, the discrepancy increases progress
at high temperatures, where the simulation predicts lar
lattice dilation from the measurement@Fig. 2~c!#. A similar
behavior has been also found in a Monte Carlo study33 using
a TB-SMA potential model, where the parameters were
justed to the experimental data.

In Figs. 3~a!–3~c! we compare the temperature depe
dence of our computed atomic MSD’s~solid curves! with
experimental data for Cu,34 Ag,35 and Au.36 Our values are
slightly underestimated for Cu@Fig. 3~a!#, a fact which is
consistent with the lower values of the lattice constant
various temperatures by our TB-SMA potential. The agr
ment for Ag is again very good@Fig. 3~b!#, denoting the
success of the proposed scheme for this element. Conce

FIG. 4. Phonon DOS of~a! Cu, ~b! Ag, and ~c! Au at 300 K
derived from our MD simulation.
r
ed
ely
er

-

-

t
-

ing

Au, the disagreement is evident@Fig. 3~c!#; for example, the
MSD’s at 700 K are more than twice as large as the exp
mental value, a fact which has been also found in the T
SMA Monte Carlo study.33 According to Lindemann’s
criterion,37 the melting point can be empirically estimated b
the MSD values; therefore, it is clear that the present mo
results in an anticipated melting of the gold. A similar u
derestimation of the melting point has been also found
Cleri and Rosato,38 although they have fitted the free param
eters of their TB-SMA scheme to the experimental values
cohesive energy, lattice constant, and elastic constants
Au. We can thus conclude that this discrepancy for Au is
due to the quality of our TB-SMA parameters, but it is pro
ably related to the second moment approximation.

Following Lindemann’s criterion, we deduce the appro
mative melting temperatures of Cu, Ag, and Au to be 14
650, 1100650, and 850650 K, respectively, to be com
pared to the experimental values of 1358, 1235, and 1
K.27

The phonon DOS’s for the elements under study are p
sented in Figs. 4~a!–4~c! at room temperature. We see th
the main features of the phonon frequency spectra are
reproduced; we note that, since in our calculations we use
Fourier transform of the velocity autocorrelation functio
the DOS shape is smoothed. Comparing our phonon DO
Cu @Fig. 4~a!# with previous works based on TB-SMA
potentials,15,16 resulting from fitting to experimental quant
ties, we observe a reasonable agreement, except of a s
shift toward higher frequencies, present in our spectrum

FIG. 5. Phonon-dispersion curves for~a! Cu at 80 K and~b! Ag
at 300 K along the high-symmetry directions. Solid lines cor
spond to MD results after a cubic spline interpolation; filled circ
refer to the experimental data from Ref. 41 for Cu and Ref. 39
Ag.
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55 2155TIGHT-BINDING INTERATOMIC POTENTIALS BASED . . .
the case of Ag@Fig. 4~b!# the cutoff frequency is well pre
dicted by our simulations, in agreement with a previo
computation15 and measurements.39 For Au @Fig. 4~c!# the
same quantity is considerably underestimated~we find about
3.25 THz compared to 4.7 THz, which is the experimen
value!, a result also found in Ref. 15. The phonon DOS
Au is thus too narrow, compared to the experiment.40 This is
consistent with the previous remarks about large lattice d
tion at high temperature, excessive MSD’s, and anticipa
melting of the system. The failure of the model for Au can
attributed to the contribution of noncentral many-bo
forces, not included in the second-moment approximatio15

One could overcome this discrepancy by taking into acco
higher-order moments. Furthermore, in a recent work us
the tight-binding total-energy method,10 without the limita-
tions of the SMA, the phonon frequency spectrum of Au
better reproduced than in the present study.

The phonon-dispersion curves of Cu~80 K! and Ag~300
K! are displayed in Figs. 5~a! and 5~b!, respectively, togethe
with the experimental results.41,39 The agreement betwee
simulation and measurements is excellent for Ag, while
Cu the main features are reproduced, but there is an ove
timation of the cutoff frequency in the vicinity of th
Brillouin-zone boundaries.

IV. CONCLUSIONS

We presented a modified method of determining the
rameters of tight-binding second-moment approximation
teratomic potentials by adjusting the corresponding exp
sions to first-principles total-energy calculations. T
resulting scheme was applied to the noble metals and
2,

hy
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f
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nt
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r
es-

-
-
s-

e

obtained the bulk modulus, elastic constants, vacancy for
tion, and surface energies for each metal. We found a g
agreement with the experiment, except for the vacancy
mation energy and surface energy of gold, which were c
siderably underestimated. Furthermore, we performed fin
temperature molecular-dynamics simulations to determ
the temperature dependence of the lattice constants
atomic mean-square displacements, as well as the pho
density of states and phonon-dispersion curves. The
dicted values compare very well with the experimental d
for silver, while they are in acceptable agreement for copp
It should be mentioned that, despite the fact that we did
use the experimental data to determine the necessary
SMA parameters, we obtained a comparable accuracy to
found by the standard SMA, in which the parameters
adjusted to the experimental quantities. Concerning gold,
model fails to reproduce its high-temperature properties
should be noted that this is not due to the quality of o
TB-SMA parameters, but to the failure of second-mome
approximation. Including higher-order moments, the agr
ment with experiment could be improved. The procedure
scribed here can be extended to binary stoichiometric or e
disordered systems, especially in cases where there are
enough available experimental data to obtain the TB-SM
parameters.
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