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Abstract

Five-brane distributions with no strong-coupling problems and high symmetry are studied. The
simplest configuration corresponds to a spherical shell of braness®igeometry and symmetry.
The equations of motion witB-function sources are carefully solved in such backgrounds. Various
other brane distributions with sixteen unbroken supercharges are described. They are associated to
exact world-sheet superconformal field theories with domain-walls in space—time. We study the
equations of gravitational fluctuations, find normalizable modes of bulk six-dimensional gravitons
and confirm the existence of a mass gap. We also study the moduli of the configurations and derive
their (normalizable) wave functions. We use our results and holography to calculate, in a controllable
fashion, the two-point function of the stress tensor of little string theory in these vacua.
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1. Introduction and summary

The notion of branes and a successful description of their dynamics has proven to
be very fruitful both for understanding the fundamentals of string/M-theory, and in
order to investigate non-trivial vacua of the theory that may describe observable low-
energy physics. At the fundamental level, BPS branes (NS5-branes [1,2], D-branes [3])
are essential for the unification of various perturbative vacua of string theory under the
umbrella of M-theory [4]. In addition, they have provided profound connections between
gauge theory (dynamics of fluctuations) and gravity (dynamics of long-range bulk fields),
leading to brane-engineering of field theories [5] and precise formulations of bulk—
boundary (holographic) correspondence [6]. Moreover, they have provided, especially via
orientifolds, many new examples of vacua that seem very promising for describing real
physics with a string scale that may be accessible to experiment [7].

An especially interesting and also untamed type of brane is the magnetic dual of
the fundamental string, namely the NS5-brane. It is a BPS object breaking half the
supersymmetry of the original theory. All closed string theories contain an NS5-brane. The
world-volume theory depends on the type of the parent string theory. The type-11B NS5-
brane world-volume theory h&4, 1) supersymmetry in six dimensions (16 supercharges)
and is non-chiral. Its massless spectrum is a vector multiplet. It contains in particular four
scalars that are the Goldstone modes of the (broken) translational invariance in the four
transverse dimensions. The full world-volume theory is a string theory, known as little
string theory (LST). By utilizing the S-duality of the theory, the NS5-brane is mapped to
the D5-brane which has the conventional Polchinski description in terms of open strings.
The little strings can be thought of as the intersection points of a D3-brane ending on a 1B
NS5-brane. When we hawe coinciding five-branes we expect symmetry enhancement
and zero-mass charged gauge bosons on the branes. NS5-brane vacua have also been
conjectured to describe the high-temperature behavior of string theory [8].

The NS5-brane of type-llA theory, has a chiral world-volume theory wh0)
supersymmetry. It is the direct descendant of the M-theory five-brane, which is describing
the strong-coupling limit of the type-IIA NS5-brane. It has its own world-volume LST.
The massless spectrum is a tensor hyper-multiplet, containing a self-dual two-index
antisymmetric tensor, and five scalars with a similar interpretation as in type-lIB case. In
this case, the object that can end on the NS5-brane is a D2-brane. Its intersection is a string
that is minimally charged under the world-volume self-dual tensor. There is a decoupling
limit gs — 0, where the interactions of the world-volume fluctuations decouple from the
bulk [9]. In this limit, the world-volume theory is a non-critical string theory with length
scalets = /o’ and no dimensionless coupling. This is a strongly coupled string theory
about which we know very little. It is the mother of the only non-trivial fixed-point field
theories known in six dimensions. At distances much larger thany/o’ N the theory is
effectively a non-triviak2, 0) superconformal field theory.

Symmetry enhancement is also expected here, when weMawanes coinciding in
transverse space. This is, however, more exotic that type IIB since here it is the D2-
branes stretching between the NS5-branes that become tensionless in the coincidence limit,
implying that their boundary strings are tensionless. This is a generalization of the Higgs
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mechanism of gauge theories to a theory of self-dual antisymmetric tensors. We do not
have yet a good understanding of this effect.

These solitons correspond to supergravity solutions with non-trivial metric, dilaton and
antisymmetric tensor [2]. In their near-horizon region the solution has an exact conformal
field theory (CFT) description [1,10,11] in terms 8U(2)x x U(1)¢ plus free fermions
with a linear dilaton. Such a solution describes a collectioVof k + 2 NS5-branes
located at the same point [2]. These solutions have the property that the effective string
coupling, exp, diverges at the location of the five-brane. This renders problematic the
string description of effects associated with the modes localized on the brane.

The near-horizon limit is the decoupling limit described above. Thus, it is expected
that holography might be at work also here [12,13]. The claim is that supergravity in
the SU2);x x U(1)¢ in the limit of large N, is holographically dual to the LST. As in
the usual AdS/CFT correspondence, one expects to learn more from such a duality both
for the gravity side as well as for the LST side. To apply, however, the techniques of
holography one needs a controlled supergravity/string theory description of the bulk theory,
and this is seriously hampered by the fact that the effective coupling, parameterized by the
background dilaton, is strong in some regions of space—time. This strong-coupling problem
is not new in string theory, with a prototype being Liouville theory. The way around has
been to somehow modify the theory so that the strong-coupling region is “screened”. This
can be achieved either by cutting it off by flagr by modifying the theory so that it is
dynamically disfavored for the system to go near the strong-coupling region. In the case
again of Liouville this amounts to adding a potential that screens off the strong-coupling
region. Experience from = 1 string theory suggests that the unregularized linear dilaton
background is singular.

In the case of the supergravity description of five-branes we are faced with a similar
problem. Several attempts have been made to regularize the strong-coupling behavior.
One approach, [13] (anticipated in [12]) is to replace the standard type-1l1A NS5-brane,
in the strong-coupling region (near the brane) by its eleven-dimensional ancestor, the M5-
brane. This can be achieved by starting from a solution of M-theory describing M5-branes
distributed on the M-theory circle. At short distances the M-theory circle is large, but it
asymptotically goes to zero, producing the NS5-brane solution of the type-llA theory. This
is an elegant approach, but its down-turn is that the metric is complicated especially in
the intermediate region, and a successful application of holography requires mastering the
geometrical data well.

A different attempt has been to consider NS5-branes distributed uniformly on a circle
in transverse space [14]. In [15] it was observed that such a distribution, in the continuum
limit, is T-dual to the geometry of &; orbifold of theSL(2, R);+4/U (1) x SU2)x/U (1)
coset CFT. This dual coset space regulates the strong coupling [10]. With this starting point,
several holographic issues of such a distribution have been analyzed [14,16]. The picture
in terms of five-branes on a circle may be an oversimplification. In a curved non-compact
background, T-duality may [17,18] or may not be an exact symmetry. An NS5-brane with

3 This would correspond in the case of the= 1 string theory to passing from a Liouville theory to the
SL(2, R)/U(1) coset CFT.
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one longitudinal direction wrapped on a circle is T-dual to flat space [19], although, we
have serious reasons to believe that the dynamics in this case is non-trivial. The Nappi—
Witten pp-wave background [20], which is also T-dual to flat space [22], is not equivalent
to flat space or a standard orbifold of it, and this can be asserted since its exact solution is
known [21,22].

In this work we will investigate other NS5-brane distributions, that have the property
that the strong-coupling region is absent, and they have high symmetry so that detailed
calculations become possible. Continuous distributions of branes and in particular five-
branes have been studied before [15,23-28]. A characteristic of the distributions we will
use (which are infinitely thin shells) is that they generate a discontinuous geometry and
they need the inclusion of sources. However, as we explicitly show, they are controllable
backgrounds, and the study of small fluctuations around such backgrounds is well defined.

One of our aims is to consider distributions that correspond to exact conformal field
theories albeit of a new kind. They correspond to sowing together (in space—time instead
of the world-sheet [29]) known CFT’s. The simplest example is a spherical SHEINS5-
branes distributed uniformly on a¥ in transverse space. The numbeéshould be large
enough so that the geometry is weakly curved, and therefarerrections to supergravity
negligible. LargeN also ensures that the brane distribution can be approximated by a
continuous one and consequently enjoy high symm&y4)).

In the interior of the shell the geometry and other background fields are flat. In that
sense, this is somewhat reminiscent of the enhancon configuration [30]. There are five-
branes-function sources at the position of the shell, which are determined uniquely from
the supergravity equations, as we show. The radius of the ghetlan be chosen large
R > +o'N so that the string coupling is weak outside the shell. Inside the shell the string
coupling is frozen. Hence, there is no strong-coupling region in such a background.

A richer variety of such backgrounds can be achieved by also using negative-tension
branes. In the case of the D5-branes these are no other than the orientifold five-planes.
For NS5-branes, their negative-tension cousins are “bégadrbifold five-planes. A usual
orbifold five-plane appearing as a twisted sector in closed-string orbifold vacua is a bound
state of an NS5-brane and a bare orbifold plane that cancels the tension and charge of the
NS5-brane much alike the situation in orientifold vacua. The twisted-sector fields are the
fluctuations of the NS5-brane since negative-tension branes have no fluctuations in string
theory (because of unitarity).

In such backgrounds one can study the spectrum of fluctuating fields. These should
correspond via holography to operators of the boundary LST. The effective field theory
of such fluctuations is expected to be a seven-dimensiS@l) gauged supergravity. It
is obtained by compactifying the ten-dimensional type-IIA/B supergravity (in the string
frame) on $2 with the appropriate parallelizing flux of the antisymmetric tensor. The
vacuum corresponding to the near-horizon region of an NS5-brane should correspond to a
flat seven-dimensional space plus a linear dilaton in one direction. This is expected to be the
holographic direction. To our knowledge, this gauged supergravity in seven dimensions has
not yet been constructed. However, otB€X4) gauged supergravities are known in seven
and four dimensions [11].

In the present paper, we will solve explicitly for the fluctuations of some of the fields
of the bulk theory. These include the six-dimensional graviton (corresponding to the
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boundary stress tensor) and its associated Kaluza—Klein (K—K) tower. It turns out that the
six-dimensional graviton satisfies an equation without sources. We find the normalizable
modes and show that its spectrum has a mass~géﬁ%Ms. This was expected from

an earlier CFT computation [31]. The modes under consideration correspond to long
representations of = 2 supersymmetry in six dimensions [26].

The other set of fluctuations we consider are the moduli modes which are massless
(short representations of = 2). These satisfy a Laplace equation with sources [26]. The
sources are crucial for the existence of normalizable moduli modes, as we show.

We further study the non-normalizable modes of the six-dimensional graviton in order
to apply the holographic principle. The symmetries of the background we are studying are
SQ4) x ISQ(6). TheSQ4) corresponds to the R-symmetry of the boundary theory, while
the rest is the usual Euclidean group in six flat dimensions. This is unlike AdS-like spaces
where conformal transformations are also boundary symmetries.

Using the bulk supergravity action, we can compute the boundary two-point function of
two stress tensors. It has the following features:

(i) its long distance behavior is massive with associated M&ags/N;
(i) in the formal N — oo limit it becomes power-like with &x|~7 behavior;
(i) the stress tensor has canonical mass dimension 7 due to a non-trivial IR wave-function
renormalization of its source;
(iv) it is independent of the presence of the shell and, as we argue, this is no longer true
for higher correlators.

The structure of this paper is as follows. In Section 2 we review the standard five-
brane solutions. In Section 3 we find the five-brane distributions that we use as solutions
of the supergravity equations with sources. In Section 4 we describe similar solutions
for orientifold and orbifold five-planes. Section 5 contains an analysis of elaborate
distributions of five-branes and five-planes wil(4) symmetry, all of the same kind,

i.e., either all charged under NS—NS or all under R-R. In Section 6 we describe a solution
that interpolates between D5- and NS5-branes in type-IIB string theory. In Section 7 we
study the fluctuation spectrum of the six-dimensional graviton. In Section 8 we discuss
holography and calculate the two-point function of the stress tensor. In Section 9 we
investigate the moduli of the configuration and calculate their normalizable wave functions.
Finally, Section 10 contains our conclusions and further problems. In Appendix A we
present the bulk-to-bulk propagator in the background under investigation.

2. Thedilatonic five-brane solutions; a reminder

The canonical five-brane solutions have been extensively studied in the literature. They
are determined by minimizing the ten-dimensional effective action which reads, in the
Einstein frame:

s10 — / d¥0x /[~ g(10><R<1°> (a¢y)2 e oy 02 ) (2.1)

2K10
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Here¢, is the dilaton field ang’ = +1 corresponds to the two distinct NS-NS or R-R
three-form field strength& in type-I1B theory (type IIA allows only fory = +1). We do
notintroduce any gauge field, which means in particular that the branes under consideration
carry no other charge than NS-NS or R—R. Notice that the ten-dimensional Newton’s
constant appears i3, = 167 G1o= @r) o,

We seek for solutions of the type

2
ds” = a(z)(—dr® + di?) + b(2)€¥ (dz* + d23), (2.2)

o
wherex are Cartesian coordinates in a five-dimensional Euclidean flat space and
d$25 = do? + sirf 0 (dg? + sirf p do?), (2.3)

is the metric on a unit-radius three-sphere. Together withe latter is transverse to the
five-brane, and- = expz is the radial (dimensionless) transverse coordinate. Poincaré
invariance within the five-brane world-volume is here automatically implemented. For
canonical five-brane solutions, we must also assume that the funetion®(z), as well

as the dilato, (z) are expressed in terms of a singlesitivefunction, /(z):

a(z)=h@@ %, (2.4)

b(z) = h(z)¥*, (2.5)

#() = Z10gh(2). (2.6)
Moreover, the three-index antisymmetric tensor livessén

H . .

— =2f(2)sirt0 sinpdd Ady Adow. (2.7)

o

The function f (z) must be piece-wise constant in order to ensiie= 0 except at the
location of the branes which act like sources.

With the above ansatz (Egs. (2.2)—(2.7)), we can readily solve the equations of motion
of (2.1). We find:

f=-te (2.8)
with h(z) a harmonic function satisfying

Oh=0.
The general solution is, therefore,

h(z) = ho+ Ne™ %, (2.9)

with N and kg two integration constants, which are both positive fgr) be positive.
The first one N > 0, is interpreted as the total number of five-branes, sitting-at —oo
(r = 0). According to Eq. (2.8),

f(@=N,
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in this case. If no five-branes are present, we recover flat-space with constant dilaton and
no antisymmetric tensor. Ho = 0, the transverse geometry is &h of radiusL = vo’N

with a covariantly constant antisymmetric tensor (proportional to the three-sphere volume
form) plus a linear dilaton (we have introducee= z+/N, andyr, (v) = ¢y, (2)):

ds? -
L — e IO (—di 4 d7P+ dy? + Nd2)), (2.10)
(07
Y vy
— Liogn — XL, 2.11
vy () 5109 /N (2.11)

The solution at hand, Eq. (2.9), is the neutral five-brane of [2]. The space is
asymptotically flat: when — +o0, i.e.,r — oo, the dominanttermin (2.9) is the constant
ho. On the other hand, the limi — —oo corresponds to theear-horizon geometry
r — 0, wherehg is negligible and the geometry approaches (2.10) with linear dilaton
(2.11). As far as the string coupling is concerned, from Eqs. (2.6) and (2.9), we learn the
following: (i) wheny = +1 (NS), gs diverges at — 0 and is bounded from below by
atr — oo; (i) when y = —1 (D), gs vanishes at — 0 and is bounded from above by
1/ ho atr — oo, except for the special cagg = 0.

The situation withkg = 0, described in (2.10) and (2.11), is of particular interest.
Considered as a bulk type-Il geometry, the latter is an edaet 4 superconformal
theory [1,2,10,11]. In the casg = +1 (NS), this theory is a two-dimensional-
model, whose target space is the ten-dimensional manifol = W x M®. Here M®
is a flat six-dimensional space-time amj‘ = U(1) x SU2);, the four-dimensional
background with linear dilaton. Th¥ = 4 superconformal symmetry implies, for type-

Il strings, the existence aV = 2 space—time supersymmetry in six dimension& (af

the initial supersymmetry). In this background, as we have already pointed out, the string
coupling constant becomes infinitely large at the location of the NS5-brane asttitite
perturbation brakes dowrNotice that for the D5-brane background £ —1), the same
phenomenon occurs at> 400, i.e., in the asymptotic region, far away from the sources.

Many proposals can be found in the literature, which aim to properly define the above
string theory in that region of space—time where its coupling diverges. In the type-IIB
string, one can advocate S-duality which turns large coupling into sggalt 1/¢s and
the NS5- to D5-brane. At the location of the D5-brane, the bulk coupling constant goes
to zero. In this representation, one can use type-lIB- and open-string-theory techniques to
study the D5-brane dynamics decoupled from the bulk. Similarly, for type 1A, duality lifts
us to eleven-dimensional M-theory, where one deals with M5-branes.

Another way to handle the above large-coupling pathology is based on T-duality, by
replacing theW,:1 background with a T-dual, four-dimensional space, and idenNcal 4
superconformal symmetries [8,10,11]:

4 (SU(Z)) (SL(Z, R))
Ay = X .
U@ k U (D axial k+4
In this expression, both factors are exact CFT's based on gauged WZW models. The
first is described by compact parafermions, while the second is the two-dimensional

Euclidean black hole constructed as the axial gaugirg§j (2, R). The important fact here
is that the value of the string coupling (in the axial-gauging representation), is bounded
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over the whole two-dimensional subspace defined®y2, R)/U (1)axia)k-+4, and has

its maximal (finite) value at the horizon, i.e., the position of the T-dual NS5-branes.

It would be interesting to further investigate these issues, because one could analyze
various properties of the T-dual NS5-branes, as well as their gravitational back-reaction by
using the powerful conformal-theory techniques developed in closed-string perturbation
theory. All the solutions proposed so far to the infinite-coupling problem of the five-brane
background are based on dualities. As a consequence, there is always a region of space—
time where the coupling diverges. We will now show that it is possible, instead, to modify
this background in a way that (i) the coupling remains finite everywhere and (ii) that the
string is still described in terms of an exact superconformal theory.

3. Interpolating between flat space and three-spherepluslinear dilaton

The strong-coupling singularity that spoils the string perturbative expansion in the above
five-brane background occursat> 0 (z — —o0), for the Neveu—Schwarz branes. We will
now propose a solution to this problem, which is inspired from an electrostatic analogue.
The case of D5-branes, where the divergence of the coupting Q) occurs atr — oo
(z = +00), cannot be treated in the same way. Alternative solutions will be proposed later.

The divergence of the ordinary Coulomb field can be avoided by assuming a spherically
symmetric distribution of charge over a two-sphere centered at the original point-like
charge. We can similarly introduce a distribution of five-branes over the transverse three-
sphere, at some finite radius, say R. This amounts in adding to the bulk action (2.1) a
source term of the form:

Stive-brane= —% f %% sir? 9 sing 8(r — R)(e”y‘f’v —50© ¢ Ee), (3.1)
whereCg is the dual of the two-index antisymmetric tensor. Several remarks are in order
here. In writing (3.1), we have chosen a gauge in whigh) are the world-volume
coordinates of the five-branes. Thus, the induced mgfff?cis just the reduction of the

background metri(g,(}uo) (n,v,...€0,1,...,9andi, j,...€0,1,...,5). All five-branes
are sitting at = R (z = Z), and are homogeneously distributed over$feTheir density
is normalized so that the net number of five-branes/b&he dimensionx determines the
coupling of the branes under consideration, and consequently their nature: D, NS or even
more exotic extended objects. Itis a free parameter, which will be determined later.

The energy—momentum tensor of the source term (3.1) is

2 8 Sfive-b
]}f\l/;-brane(x) = a0 '2’190) =
v —8 Sguv (x)

NTs . . @i | &©
— e Yy gitgv 5(0)ij
= > Sl 0 sinp8(r — R)&” VSi Sjg ao - (3.2)

This enables us to write the full equations of motion resulting from action (2.1) plus
(3.1). One can solve them by introducing the same ansatz as before (Egs. (2.2)—(2.7)).
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=
Q ,r<1
Q
V@) = V@) =
®=—= (@) Q o1
r
r=1 r=1

Fig. 1. Electrostatic analogue of the patched flat-space—-NS5-brane solution. The Coulomb potential of a point-like
chargeQ has a singularity at the origin, which is resolved if the same charge is distributed over the surface of a
sphere (chosen here of unit radius). The Coulomb potential plays the role of the dilaton field and the dkarge is

Compatibility now demands that

1
o =——.
2
Hence, expressed in the sigma-model frame, Eq. (3.1) exhibits the following dilaton

coupling: expj—3+77’¢,,). Fory = +1 this is indeed the coupling of an NS5-brane, while

for y = —1 we recover the D5-brane. In either situation, the dilaip(x) and the function
f(z) are given by (2.6) and (2.8), respectively, whil@) now solves

o'h(2)¥4 0h = —2Ns(z — 2). (3.3)

In writing the latter, we have expresded o andTs in terms ofo’. The resultis independent
of the nature of the brane.

Replacing a point-like charge with a spherical distribution leads to the same configu-
ration outside the two-sphere, while the electric field vanishes inside (Gauss’ law), avoid-
ing thereby the Coulomb divergence. This is depicted in Fig. 1. The simplest solution to
Eqg. (3.3), where we set for simplicity = 0 (R = 1), is precisely an analogue of that
electrostatic example, as we have advertised previously:

h(z) = ho+ Ne~“HRD (3.4)
and, by using (2.8),

f@)=NO().

Forr > 1 (z > 0) we recover (2.9), while for & r < 1 (z < 0) the space is flat since
h = hg+ N. Moving the brane sources from= 0 to a uniforms? distribution atr = 1

4 The five-brane tensions afg'S = 2724/ /k2, and T = 1/(47%?k100") [32]. They turn out to be equal,
oncex1g is expressed in terms of .
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Fig. 2. The string coupling of solution (3.4) is finite everywhere for the NS5-brgnes{1) and its electrostatic
analogue is given in Fig. 1. However, it diverges when the sources are D5-brankg ard

amounts, therefore, in excising a ball which contains the would-be near-horizon geometry,
and replacing it with a piece of flat space. The price to pay for this matching is the
introduction of sources uniformly distributed ov&t and localized at = 0.

Concerning the dilaton field, Neveu—Schwarz and Dirichlet sources lead to different
pictures, according to Eqgs. (2.6) and (3.4). For NS5-branes, the excised ball removes
altogether the divergent-coupling region of the canonical neutral five-brane, and replaces
it with a constant on@& =ho+ N. In the case of D5-branes, the coupling inside the ball
(r < 1) becomes also constagf, = (ho+ N)~L. These results are summarized in Fig. 2.

As we have already stressed, a remarkable situation is providelh by 0. For
negativez, the transverse space is flat, as for genéticFor positivez, the geometry
is that of a three-sphere of radids= +~/a’N plus linear dilaton (see Egs. (2.11) and
(2.10)). Both patches are type-Il string backgrounds described in terms of Exact
superconformal theories. In the case of Neveu—Schwarz sources, these are free of strong-
coupling singularities.

4. Orbifold and orientifold planes

In fact, solution (3.4) is the only one that corresponds to a NS5-brane distribution, with
a string coupling that remains finite everywhere. However, this sol@gidsto regularize
the D5-brane configuratiomhen the latter is singular, namely fap = 0. Indeed, the
string coupling is then divergent for large which is outside the excised ball. To ensure
the finiteness of the coupling in the case at hand, we should instead consider a would-be
dual solution:

h(z) = ho+ Ne <t (4.1)
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and, by using (2.8),
f@=NO(—2). (4.2)

Flat space would be the geometry outside the three-sphere-dt, whereas inside we
would recover (2.9), that corresponds, far= 0, to the three-sphere plus linear dilaton.
Here, the coupling constant would Erite everywhere foy = —1 (D5), while it would
diverge at the origind — —oo) for y = +1 (NS5).

The problem with (4.1) is that it does not solve Eq. (3.3), but solves a similar equation,
with no negative sign (an@ = 0). Such an equation can only be obtained by assuming
T5 < 0. We must, therefore, interpret solution (4.1) as resulting ffémemote branes
(z = —o0,i.e.,r =0), together withV negative-tension objects localized:at O (r = 1).

The net effect of the latter is to screen the charge sitting=a0 so as to ensure flat space

for r > 1. Again, this is the analogue of an electrostatic configuration, where a point-like
charge is surrounded by a homogeneous spherical shell of opposite charge: outside the
shell, the potential is constant whereas it is Coulomb inside.

The negative-tension objects under consideration are of two kinds: orientifold planes
if they are associated with D-brangs £ —1) or orbifold planes when they correspond
to NS5-branesy = +1). They cannot have fluctuations in a unitary theory because the
corresponding modes would be negative-norm.

5. Branechains

At this stage of the paper, it has become clear that consistent string backgrounds can
be constructed by using either five-branes or negative-tension objects. The dilaton depends
on y, but the geometry, which is governed by the functidn), does not (see Egs. (2.2)
and (2.4)—(2.6)). The functioi(z) depends, in turn, on whether the source is a brane or an
orbifold/orientifold plane (for simplicity, we will call them generically “orbifold planes”,
as long as we do not discriminate Neveu—Schwarz and Dirichlet, i.e., as long as we do not
discuss the issue of the coupling but deal with the geometry only). The canonical solution
(2.9) corresponds to a source made\obranes pushed at— —oo. In (3.4) those branes
are atz = 0, while solution (4.1) is generated 3y branes at — —oo together withvV
orbifold planes located at= 0. One might wonder what would the solution look like in the
case where both five-branes and five-orbifold planes are homogeneously distributed over
the S3 and localized at certain discrete values of the transverse coordiratparticular,
one might also investigate the conditions under which the corresponding geometry is the
target space of an exactly conformal sigma model. The aim of the present section is to
clarify these issues.

The generalization of Eq. (3.3) for a network of sources reads (we have used the explicit
expression for the d’Alembert operator):

M
W' +2h' = =2 " Nehe 248(z — zx). (5.1)
k=1
It describes the geometry generated¥yy> 0 objects (five-branes or five-orbifold planes,
depending on whether, = 1 or —1) located at = z; for k =1, ..., M. One of the two
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integration constants of the above equation is the number of branes sitting at oo,
No > 0; those cannot be orbifold planes, that would generate nedgatiyeat least in the
asymptotic region of negative

Between two consecutive stacks of branes, the solution of (5.1) is of the general type:

h(z) =hi + Nee %, forzp <z<zis1, k=0,.... M (5.2)

(zo andzp+1 are meant to be-co and+oo, respectively).
The “slopes” N, can be determined by computing the discontinuitiesiofat the
locations of the sources. Eq. (5.1) enables us to write

ﬁk — ﬁk,]_ = A Ng. (5.3)
Put differently,]T/;< is the integrated charge fromoo to zx included:

k
ﬁk =No+ ZMNI'.
i=1
Continuity ofz(z), on the other hand, allows for the determination ofils:

M
hk_lth+Z/\iNie‘ZZf, k=1...,M, (5.4)
i=k
whereh, is the other integration constant.

The choice of the chargeé, and of their positions; is not completely arbitrary if one
demands positivity ofi(z). In order to analyze this issue, we will focus on specific charge
distributions whereV, > 0 Vk. Although, this requirement is natural for= 0 in order to
avoidh(z) < 0 for negative enough we could in principle allow some negative integrated
chargesV, provided their positions as well as the integration constaptare chosen in
such a way thak(z) remains positive everywhere. Our aim, however, is not to analyze
the most general case, but situations which resemble (2.9), (3.4) and (4.1), where the total
integrated charge is non-negative for anyMoreover, as we will see later, backgrounds
that can be described in terms of exact conformal theories turn out to belong to the class at
hand.

Our claim is that if all localized chargeg, are chosen in such a way that the integrated
ones, N, are never negative, thenz) is non-negative, providefly; be non-negative,
without any restriction on the positiong. Indeed, together withVy = 0, hy > 0
guarantees thai(z) > 0 whenz > zj. On the other hand, according to Eq. (5.2) and
sinceNy > 0 Vk, h(z) is monotonically decreasing. $z) is never negative.

The background described in Eq. (5.2) is not expected to be an exactly conformal model
for generic values of the dafg, andz;. For everyk =0, ..., M, a necessary condition is
that eitherh; or N; vanishes. In the latter case, the space is flat, whereas in the former it
contains a three-sphere plus a linear dilaton.

The starting point of our analysis is the recursion (continuity) relation

hi—1 = hy + A Nie™ %k

(this has led to (5.4)). By constructioN; > 0,fork =1, ..., M, while Ng > 0. Therefore,
hi =0 implies thath;_1 = Ax Ny exp(—2zx) # 0. This result shows that it is impossible to
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A
h(z)
NN, N N Nz Ne Ny
— \—
o '-.:Z:-;..:‘.‘_;M
>
z, 7z, L %y L G Iy z

Fig. 3. A partial sequence of five-branes {at zx+2, ...) and five-orbifold planes (af;+1, zk+3, - -.) appears
in the center of this figure. The charges < Ny_» < Ny < Ni42 < --- are independent data, together with
k> ZhapDs « - - - The whole drawing is the solution (5.8).

have two consecutive domainsznboth with linear dilaton and three-sphere, separated by
a distribution of five-branes. The only allowed pattern, compatible with exactG§Fan
alternation of flat-space and three-sphere-plus-linear-dilaton patches.

Hence, assuming that; vanishes, we must impos®;+1 = 0, hx+2 = 0, etc. In
particular, Eq. (5.3) now reads:

Ni = M Ng = =M1 Nt 1. (5.5)

Under these circumstances a necessary and sufficient conditiob(fprto be non-
negative is thatNk > 0. This guarantees thdt(z) > 0 (i) for zz_ 1< 2 < 2%, where
h(z) = hi—1 = Ny exp(—2zx); (i) for zx < z < zx41, Whereh(z) = Ne exp(—2z). From
Eqg. (5.5), we, therefore, learn that = 1 = —A;41 and Ny = Nyy1. Suppose thaivy
five-branes are sitting af with a total integrated chargﬁk = N. The functionk(z) is
exponentially decreasing up t@+1, whereN; 1 = N; five-orbifold planes are localized.
The total integrated chargﬁkﬂ vanishes again, an(z) remains constant and equal to
hia1 = Niao2 eXp(—2zx42) until zx2. Another stack ofV;, 2 > N; five-branes appear at
that point and the process wraps back. Fig. 3 depicts the situation.

At this stage, it is important to notice that not al,'s and z;'s are independent
parameters. We have already observed that only the charges of, say, the five-branes (i.e.,
those withi; = 1) can be chosen arbitrarily; the charges of five-orbifold planes are then
automatically determined. Moreover, given the positions of the five-brapeg.o, . . .,
we determine those of the five-orbifold planes:

Nk

1
=z — = log—— 5.6
U-1=2k 5 gNk » (5.6)

5 Strictly speaking the3-plus-linear-dilaton background is an exact CFT only when the antisymmetric tensor
is of NS type.
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This relation shows, in particular, that two sets of parameters, the ch@Vges;1o, ...}
and the brane positiongy, zi+2, ...}, though independent, must obey the following
conditions:

1 | N
U-2<% 5 0g Nea'
For practical purposes (see Section 7) it is useful to present the solution

corresponding to a set of data (charges and positions) in explicit and closed form. Let
us suppose for concreteness that there is no chargesat-co: No = 0. Assuming an
odd number of sourced/ = 2L — 1, the independent data are chosen to be the charges
of the five-braneqNi, Ns, ..., Nop_1}, with Ao 1 = 1, together with their positions
{z1,23,...,z20-1}. The chargeVy; and positiongz; of the five-orbifold planesiz; =
—1) are given, respectively, by Eqgs. (5.5) and (5.6) with= 25 + 1. Assuming that
inequality (5.7) is fulfilled i (z) reads:

h(z) = /N1N2p -1 exp(—(z + z1) — |z — z1)
L-1

x H exp(
s=1

We are in the case whergz) does not diverge at — —oo, and vanishes at — +oc:
h(z < z1) = ho = N1exp(—2z1) and lim,_, 1o h(z) = 0. The transverse space is flat for
z < z1 and has the geometry of a three-sphere plus linear dilaton foro; 1. This is

a consequence of the absence of remote five-branes»at-oco, and of the presence of
Npy 1 five-branes as last source. Fig. 3 summarizes those features.

Any other situation can be obtained directly from Eq. (5.8), by considering appropriate
limits. In the limitz1 — —o0, N1 five-branes are pushed far away. The funcfiggn now
diverges atz — —oo: for z < z» it describes a three-sphere plus linear dilaton. On the
other hand, whemp; —1 is sent to+oo, the last sources are five-orbifold planes localized at
7z = z21.—2. From this pointi(z) will be constant and the transverse space flat. Finally, both
limits can be simultaneously taken, so that fo€ z2 andz > zp1 2, the space becomes,
respectively, a three-sphere plus a linear dilaton, and flat. This exhausts all the possibilities
for constructing string backgrounds generated by five-branes and five-orbifold planes, that
can be described in terms of exact CFT’s. All these constructions have natural electrostatic
analogues, which consist af homocentric thin shells with charges alternating in sign,
with or without a charge at the origim £ 0, i.e.,z — —o0).

As far as the string coupling is concerned (see Eq. (2.6)), all possible situations appear:
it might vanish, remain finite, or become infinite in one or both regioa<d andr — oo,
for either Dirichlet or Neveu—Schwarz five-brane backgrounds.

(5.7)

NZerl
Nos_1

1
Z—Z25+1+ > log —lz— zz;+1|)- (5.8)

6. D5-NS5transition in type-11B theory

We have by now become familiar with the construction of elaborate configurations
of stacks of branes uniformly distributed over homocentric three-spheres. As already
stressed previously, the geometry (i.e., the metric) generated by such configurations does
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not depend on the nature of the five-branes/five-planes which are present. The dilaton,
however, does: the string coupling, exfy2s equal toh(r) or h(r)~1 for NS-NS or R-R
backgrounds, respectively (see Egs. (2.2) and (2.4)—(2.6)). If we try, therefore, to repeat
the analysis of Section 5 for type-11B backgrounds whit both NS5-branes and D5-branes
(together with their negative-tension counterparts), we will generically face discontinuities
in the dilaton field at the location of the source-shells. Alternatively, continuity requirement
for the dilaton leads to discontinuities in which amount t&-function terms in the three-

form field strength.

There is, however, one instance, where a continuous interpolation between NS5-brane
and D5-brane backgrounds is possible. In the type-lIB theory, D5- and NS5-branes are
S-dual. If two distinct regions of space—time, hosting NS-NS and R-R backgrounds,
respectively, are due to be smoothly patched together, this must happen at the S-self-dual
point.

Let us be more concrete and considérD5-branes sitting at = 0. For O< r < rs
those create a three-sphere (transverse) geometry plus (finite) linear dilaton and R-R
antisymmetric tensor (Egs. (2.6) and (2.9) with= —1 andhg = 0). At radiusr = rs,
we introduce a set oN orientifold five-planes, uniformly distributed, together with
NS5-branes—put differently, a O—NS bound-state. The R—R charge is, therefore, screened,
so that the R—R antisymmetric tensor vanishes forrs, while a NS—NS one is switched
on.

From the geometry point of view, the presence of the O—NS bound-state distribution is
transparent:

N
h(r) = r_29
everywhere, which ensures ti§é factor. As already stressed, this distribution alters the
dilaton field:
26 _ {rZ/N, O<r<rs,
N/r2, rs<r.
Continuity of the lattét demands the parameteybe the S-self-dual point, namely,
1
h(rs) = ——.
( h(rs)

This impliesrs = v/N.

The antisymmetric tensors are discontinuous- at +/N. Inside we have the R-R
background of the D5-brane which is zero outside, and vice versa for the NS—-NS
background. Notice that the source action to be added to the bulk action is in this case

NT: . . R ~
SO—NS = ?S/dlox Sin? 6 sing §(r — W)(e%‘f’ —-5©® 4 BG)

NT: . . R ~
- Z—S/dlox Sinf0 sing §(r — «/N)(e‘%‘f’ —5© 4+ Ce).
JT

6 |ts first derivative is discontinuous, though.
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In the above configuration, the coupling is small everywhere exceptrealN, where it

is of order one. This is the price to pay for continuously interpolating between NS—-NS
and R—R backgrounds. We could excise the order-one-coupling region, by separating
the O5-plane and NS5-brane shells. This amounts, however, to abandon the continuity
requirement. We will not pursue any further this issue.

7. Gravitational fluctuations

In this section, we consider gravitational fluctuations of the five-brane solutions derived
in Sections 4 and 5. Our motivation is to analyze the low-lying spectrum of states, which
can be eventually compared with exact CFT results, available in the present setting [31].
Furthermore, this analysis is important for clarifying the issue of localization of the states
in the vicinity of the branes. Our conclusion is that in the framework of the five-brane and
five-orbifold backgrounds presented so far, gravitons and their K-K descendants have a
mass gap in accordance with the CFT analysis, [1,10,11,31]. Other fluctuations (Neveu—
Schwarz, Ramond—-Ramond, ) can be studied in the same manner, but thisyeobé the
scope of the present work.

We will restrict ourselves to gravitational fluctuations that are longitudinal to the brane.
To this end we consider small perturbations of the background metric (2.2), (2.4) and (2.5),
of the form

ds? =o' h(r) Y4 (mij + pij) dx' dx’ + o' h(r)¥H(dr? + r?d23), (7.1)

wherée {x?,i =0, e 5} = {t, X} = x. The linearized Einstein equations in the transverse,
traceless gaugep; = 9'p;; = 0, taking also into account the sources, reduce to the
covariant scalar equation [23,33]:

|:|,0,‘j =0, (7-2)

where the d’Alembert operator is that of the unperturbed metric. The solutions of the
above equation belong to the gravitational K—K sector. Considering a K—K mode with
massM (M? is measured in units of/&’), and assuming the factorizatipy (x, r, £2) =

Bij (xX) (r, $2), With Oepm = 1" 8;; prm = M?prm, Ed. (7.2) reduces to its transverse
part

1 1
(r—38rr38r + r—ZAss—l—MZh(r))qb(r,.Q):O, (7.3)

whereA ¢s is the Laplacian operator on the three-sphere. We can further decompose the
transverse-space dependence of the fluctuations:2) = r_3/2yz(r)D£n,(.Q), where

Dfm,(fz) form a complete set of orthonormal functions $h

AgsDy, (2)=—L(E+2)D;, (2).

nn

7 Indicesi, j, ... are raised with the flat metrig; ;.
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Then the radial equation reads:

2 1 1 3
[_d7 3 (r+3) (5 + é)]”(” = M) 74

which is a the Sturm—Liouville equation.
The natural inner product for the radial wave functigpé-) is obtained by analyzing
the normalization of the kinetic terms fgf; as they appear when the fluctuations =
nij + pi; are introduced in the action (Egs. (2.1) and (3.1)), and the latter is expanded. We
obtain:

[e¢]

lyell® = f dr h(r)ye(r)?. (7.5)
0

With this precise inner product, the Sturm—Liouville operator (in the square brackets of the
Ihs of (7.4)) is self-adjoint, provided some appropriate boundary conditions are imposed,
which include those we will consider heng(0) = 0 and lim-_. » y,(r) = 0. This property
ensures the existence of a complete set of orthonormal eigenfunctions, Whesgectrum
is real, non-degenerate, bounded from bellow, and contains at least a continuous part.

In order to determine the spectrum we need a specific background. We will consider for
simplicity the single five-brane shell solution (3.4) with= 0:

2 <r<
h(r):{%/Rz’ 0<r <R,
/rc, R <r.
The eigenfunctions of (7.4) are obtained by following the standard strategy. We first solve

Eq. (7.4) for 0< r < R and keep only solutions that satisfy(0) = 0. For M2 + 0, those
are Bessel functions

(7.6)

M\/Nr

W(r)ZAM/;JHl( ), 0<r <R, (7.7)

behaving liker*3/2 in the vicinity of »r = 0; A, is an arbitrary, real constant. This
solution holds even foM?2 < 0 (in that cased, is a real number times “*D). Notice

that /r Ne41(M+/N r/R) is also a solution, which must be discarded because of its bad
behavior {~¢~1/2) at the origin. FotM2 = 0, the only acceptable solution is

+1
yz(r)=Ae«/?<%> . 0<r<R, M?=0.

We must now solve Eq. (7.4) fer> R. Depending ot and M, the behavior is either
oscillatory or power-law:

2
ye(r) = BM/FCOS( M2N — (£ + 1)2Iog<%) + q)g), M?> % (7.8)

whereB,; and®, are arbitrary, real constants, and

R ((f+l)2—M2N)1/2 , ((f+l)2—M2N)l/2
o =i(ci(7) ~<i(%) )
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2
w2 EHD (7.9)
N

The latter holds even fod? < 0, andCZIE are again real and arbitrary. In fact, we must
setC, to zero, because with the inner product (7.5) and (7.8fv ¢+D*~M2N g not

evens-function normalizable. However/2—v (¢t+D*=M2N g normalizable, while (7.8)
is §-function normalizable (both satisfy the previously advertised boundary condition at
infinity). The spectrum is, therefore, expected to be continuousfeN > (¢ + 1)2 and
discrete otherwise.

The complete determination of the eigenfunctions is achieved by requiring continuity
atr = R. On one hand, continuity of, fixes B, or C, in terms of A, leaving only
an overall free normalization. Continuity of the logarithmic derivative, on the other hand,
allows for the computation of the phagg if M? > (£ + 1)2/N (continuous spectrum),
and the positions of the discrete mass levelg#< (¢ + 1)2/N. We find

1 T (MVN)
&, = —arcta ,
V1= (t+1)2/M2N Ji11(MV/N)

for the continuous spectrum, whilee discrete spectrum turns out to be empiy mass-
squared levels (positive, zero or negative) exist #6f < (£ + 1)2/N. We, therefore,
conclude that there ismass gap\gap= 1/+/N (in units of Ms) in agreement with CFT
[1,10,11,31]. Choosin@, = (N — (£ + 1)2/M?)~1/4, the corresponding (complete) set of
eigenfunctions is normalized as

(i 5%) =50 (M D — 1),

according to the inner product (7.5). For differéist, orthogonality is guaranteed by the
spherical function®’ .

Our result deserves several comments. First, had we considered instead of (7.6) a more
general conformal background of the type (5.8), our conclusions would not have been
modified. For 0< » < r1 = expz1 we have indeed the solution (7.7) with replaced with
Nl/rlz, while (7.8) and (7.9)—witrC£+ = O0—are valid forr > rp;_1 with N2z _1 instead
of N. Continuity constraints fop,(r) andy,(r) propagate through all intermediate-brane
positions, determine completely the intermediate solutions, and eventually the spectrum
of longitudinal gravitational fluctuations: this is a continuous spectrum above a mass gap

Mgap: 1/V Nop—1.

8. Holography

The framework is here the NS5-brane of type-IIA string theory. The non-normalizable
modes in this background are expected to correspond, via the holographic principle [6,12,
13], to off-shell operators of the decoupled world-volume theory of the five-brane. The
boundary is at = Reo — c0.
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In the case under study, however, the identification of the radial direction as a
renormalization-group flow is less clear. The space—time metric (in the string frame),

dsg =o' dx’+ o' h(r) (dr2 + rzd.Q%),

is invariant under a rescaling of The only effect is to shift appropriately the position of
the shell. If the shell is at the origin the metric is strictly invariant. The string coupling on
the other han@?2 = €® = h(r) scales to zero as we approach the boundary.

The decoupling limit is [12]

gs=€¢" >0, ts=va, U=——fixed
8gsts

whereU is the tensiof of a D2-brane stretched between NS5-branes. It is the tension
of a world-volume string and corresponds to a Higgs vev of the LST (boundary theory).
Thus, the boundary theory has no dimensionless coupling constant and its scale is set
by ¢s. The dilaton is given by% = N/(U?¢2), and vanishes at infinity. Using the relation
between- and energy(), this implies that the region of smallcorresponds to the infra-
red conformal theory.

The presence of the shell at= R, modifies somewhat the picture above. First we
choose the position of the shell (we will from now on resoale gsr) so thatR > +/N.
Large N implies that all curvatures are small everywhere (so that stringy corrections can
be neglected). In particular, the supergravity description is good at length scales larger than
the string scalés. The condition onk also implies that the string coupling in the bulk is
small everywhere. Thus, the supergravity description is reliable on the whole space.

In the background under consideration, the world-volume theory undergoes a Higgs
phenomenon at an energy scaj&/LR). SinceR >> +/N this has modified the effective
field theory at lower scales. Below this scale, the coupling no longer runs.

There is another approximation that is relevant here, and this has to do with the
continuous distribution of five-branes on the shell. String theory implies that the NS5-
charge is quantized. Thus, if the sourc®as composed oV NS5-branes, the distribution
is quasi-continuous. In fact, the average distance (in transverse space) betw¥eivéie
branes distributed over the spherelisx N=1/3¢sR > N1/6¢s. Thus, at largeV, L is
much larger than the string scale but much smaller that the characteristic,Avalg of
the world-volume theory.

We can summarize the previous discussion as follows: the supergravity description with
SQ4) symmetry is valid at length scales larger thef%¢s. At length scales larger than
V/N €s the LST can be replaced by an effective field theory. At length scales smaller
than N/6¢5 but larger tharts the supergravity description is valid b80(4) symmetry
is broken.

We will now proceed to apply the holographic principle as implemented in [34]
and calculate boundary correlators. In particular, we will focus on the (descendants)
of the six-dimensional graviton, itself dual to the world-volume stress tensor. We have
shown that the six-dimensional gravitoh £ 0)-fluctuation and its K—K descendants

9 Remember that the dimensionless radial coordinatesasures distances in unitséef
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(¢ > 0) satisfy Eq. (7.,2) that can be recast in the form (7.3) or (7.4). For a given set
of boundary dataﬁfj"" (x,2) = ,5fj (x)Dﬁn,(Q), the corresponding partial-wave bulk
solution,pf;.""’(x,r, Q)= pfj(x,r)Dﬁn,(Q), can be expressed in terms of the bulk-to-
boundary propagatag ,,, (x, r, 2) = G¢(x, r)Dt ,(£2):

pfj (x,7) :/d6x/Gg(x —x’,r)ﬁfj(x’). (8.1)
The radial part of the above propagator satisfies

(%a,ﬂa, — wtz) —I—h(r)DG)Gg(x,r)zo, (8.2)
r r

with the boundary condition

lim Ge(x,r)=38®x).

r—Roo
We will work from now on in Euclidean space, and Fourier transform the six-dimensional
part
1 d®p
c{’3 (271-)6
so that Eq. (8.2) becomes:

(%8,}’38, — wtz) —h(r)p2>Gg(p,r) =0, (8.3)
r r

Ge(x,r)= €P*Gy(p,r),

with boundary condition
|ir2 Ge(p,r)=1 (8.4)

The regular solution to the bulk equation (Eq. (8.3)) is

Az(p)l (\/PZNV)
+1 s
r R
Gipn=| OSTSK (8.5)
? p,r = .
Ci(p) (R\V (E+D2p2N . o (r Ve D2 p2N
r r r R ’
R<r.

The boundary condition (8.4) is satisfied provided
Cz— (p) R \V (6+1)2+p2N
R (ﬂ) '
The rest of the coefficients are determined from the usual matching conditions (continuity
of the propagator and its logarithmic derivative). We obtain:

Ad(p) ( R >m

Rv  \Roo
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2,/ (€ +1)2+ p2N

X b
VE€+ 12+ p2N Ip11(vVp?N) +V/p?N 1, 4 (v P?N)

and

c; (p) R \V (£+1)24p?N
R (@)
VD4 PPN 1a(VPPN) = VPPN 1,4 (VPPN
V€412 4 p2N Ip31(V PN ) + vV p?N 1,1 (VPN
In order to make contact with holography, we would like to analyze the dynamics of
the six-dimensional gravitational perturbatigns(x*) considered in (7.1), from a slightly
different point of view. Let us write down the linearized action for those fields, as it appears

when expression (7.1) is plugged into Eq. (2.1). We obtain (in the transverse, traceless
gauge considered so far):

30/4 ) . .
S2= %2 / d®x d*y (hd' pjxd;i p’* + 3% pjidap’®),
10

where{y?,a =6, ..., 9} are transverse coordinates such that
dr?+r2d23 =" "(ay)%, with® 3 (y*)? =2
a a

The Gibbons—Hawking boundary term, the antisymmetric tensor and dilaton terms, as well
as the source term vanish. By using the partial-wave expansips @), integration by
parts, orthonormality relations for thg¢ ,(£2), equations of motion, as well as Eq. (8.1)

nn

and the above expressions for the bulk-to-boundary propagator (see Eq. (8.5)), we can
expandSz in partial waves,

o
Sa=)"55,
¢=0
and determin6§ in terms of the Fourier-transformed boundary déﬁ&p):
S3 = —ﬁ / d®p 5 (p)p" (—=p)RE .
We have introduced the function

R\ AWC+DZp2N)Y2
Ye(p) = (1 —y€+D2+ pZN) + ZXe(R—>

o0

R A((L+1)%+p?N)1/2
+x@2(1+,/(£+1)2+p2N)(R—) :

o0

9 Indicesa, b, ... are raised with the flat metrig,, while i, j, ... are with 8ij (we have trade;; for its
Euclidean counterpart). The Laplacian operator associated with the Euclideanized unperturbed metric (Egs. (2.2)—
(2.5)) now readse’ 0] = h'/40g + h=%/40y, wherelly = 59,8, andg = 67/ 9;9; .
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wherey, also depends op2N

) (£ + D2+ p2N Ip11(Vp?N ) =V p?N [ 1 (VP?N)
(L+D2+ p?N lera(Vp?N )+ V2N 1) 1 (Vp?N),

with the following asymptotic behavior:

202490+ 11
8(¢ + 1)2(¢ + 2)(¢ + 3)

xe(p) = p°N +0(p*N?), Np*<1,

while

1 1 2 2
xe N +O(p2N>, Np®> (£ + D)%
Thus, x, vanishes ap — 0 andp — oo, and has a maximum gtp2N ~ ¢ + 1.

We should note that the three different terms have different asymptotic behavior as
the renormalization screen moves to infinitg.{ — oo), with the first term giving the
leading contribution. In the region of validity of the supergravity approximatiéay can
be either very small or very large (the first region corresponds to the effective-field-theory
region, while the second to the LST region),.#0¢ + 1)2 + p2N cannot be expanded in
a sequence of local terms. Thus, if we insist on keeping the stringy physics of LST, we
must renormalizg!, — o’ /2R 1L, in which case the terms proportionale and 2
vanish in theR, — oo limit with the result:

0 __ 3 / 6 =L ~lij 2 2
st=—5 s | oA p)(-1+ @+ 12+ p2N). (8.6)

At this point we can take advantage of the transverse-tracelessness conditions, which in
momentum space reagl = p' p;; = 0, to “covariantize” the two-point correlator appearing
in Eq. (8.6):

3
S§=—27/d P B (D) o (= PV EY " (),
4/<10a
with
ijskm ik__jm im__jk 2 ij _km 2 2
FPM ) = (it ik — Sl ) (<14 e+ D2+ p2N),
where

T — i _ p'p’
= 5
p

are the projectors that impose conservation of the boundary stress tensor and its K—K
descendants. Thus, we expect that

ij m 3 1 m
(1)) (T (—p)) = - w2 2 (p)der, (8.7)
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which is compatible with conservation and tracelessness of the stress tensor and its cousins.
Notice that the two-point function is insensitive to the presence of the shell. This will no
longer be true for higher correlators.

Fourier transforming in configuration space we obtain:

(zm’)ﬁfdﬁx(rgf O T (x — 2)) = (ﬁ’kﬁ/"’ +rimyik gﬁ”frk”’>Fg(x),

with
3 )
Fl(x)z—ﬁ/depelp')C(—l—}— (€+1)2~|—p2N),
Aicioe’
and
.. . 9lgd
Rl = sl — )
T e

It is instructive here to pause and calculate the canonical dimensidiéii()gfa). For
this we need to remember thé;‘g. (x) has canonical mass dimension zero, and its Fourier

transform,éfj (p) mass dimensior-6. For renormalization purposes we have absorbed a

factor ofv/o' Ry in it SO its canonical dimension changed+@. Thus, the canonical mass

dimension ofT,;j(p) is +7. This is reflected in (8.7), taking into account that has
dimension—4.
We can evaluate the Fourier transform by using the following formula:

o
1
—1+4,/(+1)24 p2N = 7= dz/due—w2
(t+1)2 0

o0
_ j_ / d_’;(e—uz(w+1)2+p21v>_e—uz).
T u
0

\u—\

p2N

+

Assuming|x| # 0, and expressingio ande’ in terms of Ms, we obtain the result?

Ml4
Fe) = =553 _|x5|7 e (CHDIxI/VN
(€ + D))x] <<E+1>|x|>2 <<E+1)|x|>3
15+ 15 6 _— .
X( Ty ATy ) U

Note that for the modes with# O, there is a contact term proportional té-function at
x =0.
The above resultimplies that at large distances the effective ma&sgis (¢ + 1)/+/N.
This is the same as the mass gap we found for the normalizable modes (previous section).

10 Remember that in our conventions masses, momenta and coordinates are all dimensionless (i.e., measured
in units of Ms=1/va').
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We also observe that the “stringy” two-point function is independent of the presence of the
shell. This is not true for higher correlators because those involve the bulk-to-bulk propa-
gator (which is computed in Appendix A) and depend on the presence of the shell. A direct
calculation (up to projectors) gives:

[e0]

F3(p1, p2, p3) ~ R |iT<>Q /dr G (p1, Roo)Ge(p2,7)Ge(p3, 1)
770
X By, (p2+ p3, Roo; 1)8(p1+ p2 + p3),

and the result depends on the position of the shell via the bulk-to-bulk propagator
Be(p, Roos 7).

If, however, we restrict ourselves to the effective-field-theory regigif N « 1, we
can expand the square root in a power seriepaN, keeping the first few terms. Such
terms can be removed by local counterterms, and the renormalized boundary data become

R *5*—21}21\]1)
Prenij(P) = (%O) A1 (p).

We find
Fé/,km(p) — (n”krﬂm + gim ik _ gﬂl]”km>2R2XE(P)~

This correlator is analytic in the infra-red. Thus, the presence of the shell seems to
completely break the conformal symmetry.

9. The spectrum of massless localized states

In this section we will investigate the spectrum of massless states localized on the
brane distribution at = R. The correct but tedious procedure is to study in detail the
fluctuations of the background solution including shfunction sources. We will, however,
take here a short-cut due to the fact that the background configuration is BPS, and
the massless fluctuations are constrained by lack-of-force condition and supersymmetry.
They correspond, therefore, to deformations of the brane distribution plus supersymmetric
patterns.

Itis, therefore, enough to consider the background “BPS condition”, Eqg. (3.3):

N
Oah = ~2-55(r = R),

where we have assumed thiamay depend in general on all four transverse coordinates
{y¢,a=6,...,9} = {r, 2} ({4 is the corresponding “flat” Laplacian introduced previ-
ously). Our aim is to go beyond the spherical solutiorNofive-branes, Eq. (7.6). Pertur-
bations of this solution involve deformations of the shell as well as of the charge density,
keeping the total charge fixed. Thus, the equation for the small fluctuations is

Oa(h + 8h) = —47%(00 + 80(2))3(r — R+ 8£(2)), (9.1)
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where oo = N/(272R3) is the unperturbed constant density of five-branes over the
three-sphere, andp(£2) andsf (£2) small perturbations of the density and shape of the
distribution. Expanding Eq. (9.1) to first order we obtaln:

adh = —47250(82)8(r — R) — 4720081 (2)8' (r — R). (9.2)

In the rest of this section, we will try to get a flavor of the massless spectrum as it comes
out of Eq. (9.2). Let us expand the various functionS(2) spherical harmonics:

Sh(r.2)=Y_ W™ ()DL, (2),

L,n,n’

1 /
b0(R)=—7— > AP DL L(92),

t,n,n’
1 n,n' e
3f(9)=—?2gO Z B, D, (£2),
t,n,n’
and introduce them into Eq. (9.2); we obtain the decoupled equdtfons:

3 Ll+2)
h// _h/ _
¢t pLd 2

he=A¢S(r — R) + BeS'(r — R). (9.3)

The condition that the total chargesétranslates into

RAo—3Bp=0. (9.4)
The regular solutions to Eq. (9.3)@att R are given by
¢
aer®, 0<r <R,
he(r) = { 9.5
¢ bgr’gfz, R<r. ©:9)

We can go further by matching th&functions. This leads to the following set of
relations:

_RA{+(—-1)By Rt-2) _ RA; — (£ +3)By
R T2+
In the case = 0, e.g., taking into account the charge neutrality condition (9.4) we find:

Reae

By, O<r <R,

hO(r):{O R <r

which is normalizable. The other solutions (9.5) can be analyzed similarly. Furthermore,

a fluctuation analysis of the effective action again indicates that such localized modes will
have finite six-dimensional couplings if the norm of their wave functions, defined as

(Sh|sh) = f d*y h(r) (50 ().

11 This expansion is formal. Strictly speaking it is valid away frees R.
12 As usual,—¢ < n,n’ < €. We will suppress the, n’ quantum numbers from now on.
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is finite (d%y is the “flat” transverse measure). It is obvious from the behavior of the wave
functions above that all are normalizable. This completes the determination of the spectrum
of the bulk and massless moduli.

A last comment is in order here. The continuous and smooth distributions of branes
we are considering are good approximations whenr> oco. In particular, the spherical
distribution at hand, can be generated by puttvgingle branes uniformly o83. The
mean distance between nearest neighbors then scalggdike/1/3. This implies that the
corresponding cut-off in the angular momentd is £o ~ N/3. If we attempt a counting
of the massless modes we obtain:

Lo
# of moduli= 4(1 + 22(2@ + 1)2> = geo(zeo +1)(4eg+ 1) — 4~ ON),
=1

in qualitative agreement with the exact answar. 4

10. Conclusionsand further problems

We have investigated five-brane distributions, that have the property that the strong-
coupling region is absent, and they have high symmetry so that detailed calculations
become possible. A characteristic feature of the distributions we have studied is the
appearance of a “discontinuous” geometry, and, therefore, the need for including sources.
However, as we have explicitly shown, those are controllable backgrounds, and the study
of small fluctuations around them is well defined.

We have considered distributions that correspond to exact CFT’s albeit of a new kind.
They correspond to sowing together (in space-time) known CFT’s. The simplest example
is a spherical shell oV NS5-branes distributed uniformly on &7 in transverse space.

The numberV is assumed to be large enough so that the geometry is weakly curved, and
o’ corrections to supergravity negligible. The brane distribution can be approximated by a
continuous one, and, therefore, enjoy high symmes@4)).

In the interior of the shell the geometry and other background fields are flat. There
are five-branes-function sources at the position of the shell. We have shown that the
background fields are determined uniquely from the supergravity equations. The radius
of the shellR can be chosen large, > +/N, so that the string coupling is weak outside
the shell. Inside the shell the string coupling is frozen. Thus, there is no strong-coupling
region in such a background.

We have also described a richer spectrum of such backgrounds using also negative-
tension branes. In the case of the D5-branes these are no-other than the orientifold five-
planes. For NS5-branes, their negative-tension cousins are “Bare@bifold five-planes.

A usual orbifold five-plane appearing as a twisted sector in closed string orbifold vacua is
a bound state of an NS5-brane and a bare orbifold plane that cancels the tension and charge
of the NS5-brane much alike the situation in orientifold vacua.

A special configuration (in type-1IB context) in this sense is one where in the interior
section is a D5-brane while asymptotically it is an NS5-brane. The two configurations
match on a shell of NS5-branes and O5-planes. No strong-coupling region exists also here.
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We have also studied the spectrum of fluctuating fields. These correspond via
holography to operators of the boundary LST. The effective field theory of such fluctuations
is expected to be a seven-dimensio®dl4) gauged supergravity. It is obtained by
compactifying the ten-dimensional type-11A/B supergravity (in the string framefdn
with the appropriate parallelizing flux of the antisymmetric tensor. The near-horizon region
of an NS5-brane corresponds to a flat seven-dimensional space and a linear dilaton in one
direction. This is the holographic direction.

We have explicitly solved for the fluctuations of some of the fields of the bulk theory.
These include the six-dimensional graviton (corresponding to the boundary stress tensor)
and its associated K—K tower. It turns out that the six-dimensional graviton satisfies an
equation without sources. We have found the normalizable modes and shown that its

spectrum has a mass gap“=: Ms. This in accordance with an earlier CFT computation

VN
[11,31].

The other set of fluctuations we have considered are the moduli modes which are
massless. These satisfy a Laplace equation with sources. The sources are crucial for the
existence of normalizable moduli modes as we have shown.

We have further studied the non-normalizable modes of the six-dimensional graviton
in order to apply the holographic principle. The symmetries of the background are
SQ4) x ISO(6). TheSO4) corresponds to the R-symmetry of the boundary theory, while
the rest is the usual Euclidean group in six flat dimensions. This is unlike AdS-like spaces,
where also conformal transformations are boundary symmetries. The reason is that here
the boundary theory is massive.

Using the bulk supergravity action we have computed the boundary two-point function
of two stress tensors in the stringy (LST) regime. We can remind its features:

(i) its long distance behavior is massive with associated mags/N;

(i) in the formal N — oo limit it becomes power-like with &x|~7 behavior;

(i) the stress tensor has canonical mass dimension 7 due to a non-trivial IR wave-function
renormalization of its source;

(iv) it is independent of the presence of the shell and, as we argue, this is no longer true
for higher correlators.

One the other hand, in the effective-field-theory regime, a renormalized stress tensor
exists with correlators that depend on the presence of the shell, but it analytic at low
momenta implying that conformal invariance is completely broken.

There are several problems that require further study in relation with the approach
described in this paper.

The full structure and spectrum of fluctuations around these supergravity backgrounds
should be worked out. As for the spectrum, it can be obtained directly by%an
compactification of the ten-dimensional supergravity. Finding, however, the interactions
of the massless fields might require a direct approach of gaugin§@w group in a
seven-dimensional reduction around flat space. This would be essential for performing
further concrete calculations of boundary correlation functions.

A further effort is needed in order to eventually interpret the supergravity results and
elucidate the physics of the boundary LST. Especially in the type IIA case, this is hampered
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by the lack of a useful low-energy effective description that can be used to interpret the
supergravity results. The hope is that the holographic amplitudes might suggest a useful
and transparent such description.

String corrections to the supergravity results will be useful to calculate. As mentioned
earlier this will entail solving a new kind of CFT, namely, one that has fixed walls in space—
time (and which translates into fluctuation boundaries on the world-sheet). Preliminary
investigation indicates that such a CFT involves D-branes with fluctuating boundaries. It
will be very interesting, and potentially useful to understand such CFT's.

Acknowledgements

The ideas of the present work were triggered during the IHP session on string theory
(Paris 2000-2001). We would like to thank O. Aharony, C. Angelantonj, C. Bachas,
M. Berkooz, M. Bianchi and A. Petkou for discussions. We all thank each-other’s institute
for hospitality during various stages of the project. We would also like to thank the referee
for constructive criticism. This work was partially supported by European Union under
the RTN contracts HPRN-CT-2000-00148, HPRN-CT-2000-00122 and HPRN-CT-2000-
00131. The work of E.K. was also partially supported by Marie Curie contract MCFI-2001-
0214.

Appendix A. Bulk-to-bulk propagator

We will compute in this appendix the bulk-to-bulk propagator in the background
corresponding to the spherical shell of NS5-branes given in (7.6), albeit in Euclidean
setting. There are four distinct cas%i (x,r; x',r"), depending on whether the variables
r andr’ lie in [0, R] (minus sign) o R, oo[ (plus sign).

The Fourier transform,

1 dbp ,
++ AN P ip—x)ptt, .
B, (x,r,x,r)_a/3 (2n)6€l B, = (pir, 1),
satisfies (for each partial wavg the following equation:
[1 (L+2 Np?] 1
—0,r%0, — ( . . B iy = 586 =), o €[R ool
r r r r
1 (L+2) Np?
,—33rr33r— (; ) _ r’; B/~ (p;r,r)=0, rel[R, o0l ' €[0,R],
M1 €e+2) Np?T
500, - (; )—R—’; Bt (pir.r)=0, r e[R,ool, r €0, R],
[ 1 €t+2 Np?l. 1
r—sa,r3a,— o~z |Be i) =380 =1, 1 €l0R]

We impose the following conditions: regularity in variableandr’ both at zero and
infinity, as well as continuity of the propagator and its first derivatives across the shell.
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The answer is unique:

R% BRI} (bR) —aly41(bR)
2a bRI; (bR)+ali1(bR)
R% BRI} (bR) —aly41(bR)
2a bRI; (bR)+ali1(bR)

) e rs

B;+(P§ ror')= (rr)~1a

— a —da
r4y’ — ey’

/
+ 2arr’ A

R Iy 1(br") y—1l-a

bRI; (bR)+ale1(bR) ’

R 1y 1(br) —l-a

bRI; (bR) +ale41(bR) ’

bRK, ,(bR)+aK1(bR)

( bRI} ,(bR)+aly 1(bR)
x Ippa(bry, r>r',

bRK, ,(bR)+aK 1(bR)

( bRI, (bR)+aly 1(bR)
x Ipy1(br), r<r/,

B (pir,r)=—

B, Y (pir,r)y =~

g1 (br) — Kz+1(br)>

B, ~(pir,r) =

Ieya(br') — Ke+1(br’)>

where

2N
a=+12+Np2, b= ’;.

Note that the bulk-to-bulk propagator is free of poles inside momentum space.
Moreover, its momentum-dependent coefficients go fast to zero at large momenta. In
Minkowski space, this propagator is still valid below the mass gap. Above the mass gap
the eigenfunctions of Section 7 should be used.
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