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Abstract

Five-brane distributions with no strong-coupling problems and high symmetry are studied. The
simplest configuration corresponds to a spherical shell of branes withS3 geometry and symmetry.
The equations of motion withδ-function sources are carefully solved in such backgrounds. Various
other brane distributions with sixteen unbroken supercharges are described. They are associated to
exact world-sheet superconformal field theories with domain-walls in space–time. We study the
equations of gravitational fluctuations, find normalizable modes of bulk six-dimensional gravitons
and confirm the existence of a mass gap. We also study the moduli of the configurations and derive
their (normalizable) wave functions. We use our results and holography to calculate, in a controllable
fashion, the two-point function of the stress tensor of little string theory in these vacua.
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1. Introduction and summary

The notion of branes and a successful description of their dynamics has proven to
be very fruitful both for understanding the fundamentals of string/M-theory, and in
order to investigate non-trivial vacua of the theory that may describe observable low-
energy physics. At the fundamental level, BPS branes (NS5-branes [1,2], D-branes [3])
are essential for the unification of various perturbative vacua of string theory under the
umbrella of M-theory [4]. In addition, they have provided profound connections between
gauge theory (dynamics of fluctuations) and gravity (dynamics of long-range bulk fields),
leading to brane-engineering of field theories [5] and precise formulations of bulk–
boundary (holographic) correspondence [6]. Moreover, they have provided, especially via
orientifolds, many new examples of vacua that seem very promising for describing real
physics with a string scale that may be accessible to experiment [7].

An especially interesting and also untamed type of brane is the magnetic dual of
the fundamental string, namely the NS5-brane. It is a BPS object breaking half the
supersymmetry of the original theory. All closed string theories contain an NS5-brane. The
world-volume theory depends on the type of the parent string theory. The type-IIB NS5-
brane world-volume theory has(1,1) supersymmetry in six dimensions (16 supercharges)
and is non-chiral. Its massless spectrum is a vector multiplet. It contains in particular four
scalars that are the Goldstone modes of the (broken) translational invariance in the four
transverse dimensions. The full world-volume theory is a string theory, known as little
string theory (LST). By utilizing the S-duality of the theory, the NS5-brane is mapped to
the D5-brane which has the conventional Polchinski description in terms of open strings.
The little strings can be thought of as the intersection points of a D3-brane ending on a IIB
NS5-brane. When we haveN coinciding five-branes we expect symmetry enhancement
and zero-mass charged gauge bosons on the branes. NS5-brane vacua have also been
conjectured to describe the high-temperature behavior of string theory [8].

The NS5-brane of type-IIA theory, has a chiral world-volume theory with(2,0)

supersymmetry. It is the direct descendant of the M-theory five-brane, which is describing
the strong-coupling limit of the type-IIA NS5-brane. It has its own world-volume LST.
The massless spectrum is a tensor hyper-multiplet, containing a self-dual two-index
antisymmetric tensor, and five scalars with a similar interpretation as in type-IIB case. In
this case, the object that can end on the NS5-brane is a D2-brane. Its intersection is a string
that is minimally charged under the world-volume self-dual tensor. There is a decoupling
limit gs → 0, where the interactions of the world-volume fluctuations decouple from the
bulk [9]. In this limit, the world-volume theory is a non-critical string theory with length
scale�s = √

α′ and no dimensionless coupling. This is a strongly coupled string theory
about which we know very little. It is the mother of the only non-trivial fixed-point field
theories known in six dimensions. At distances much larger thanL ≡ √

α′N the theory is
effectively a non-trivial(2,0) superconformal field theory.

Symmetry enhancement is also expected here, when we haveN branes coinciding in
transverse space. This is, however, more exotic that type IIB since here it is the D2-
branes stretching between the NS5-branes that become tensionless in the coincidence limit,
implying that their boundary strings are tensionless. This is a generalization of the Higgs
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mechanism of gauge theories to a theory of self-dual antisymmetric tensors. We do not
have yet a good understanding of this effect.

These solitons correspond to supergravity solutions with non-trivial metric, dilaton and
antisymmetric tensor [2]. In their near-horizon region the solution has an exact conformal
field theory (CFT) description [1,10,11] in terms ofSU(2)k × U(1)Q plus free fermions
with a linear dilaton. Such a solution describes a collection ofN = k + 2 NS5-branes
located at the same point [2]. These solutions have the property that the effective string
coupling, expφ, diverges at the location of the five-brane. This renders problematic the
string description of effects associated with the modes localized on the brane.

The near-horizon limit is the decoupling limit described above. Thus, it is expected
that holography might be at work also here [12,13]. The claim is that supergravity in
the SU(2)k × U(1)Q in the limit of largeN , is holographically dual to the LST. As in
the usual AdS/CFT correspondence, one expects to learn more from such a duality both
for the gravity side as well as for the LST side. To apply, however, the techniques of
holography one needs a controlled supergravity/string theory description of the bulk theory,
and this is seriously hampered by the fact that the effective coupling, parameterized by the
background dilaton, is strong in some regions of space–time. This strong-coupling problem
is not new in string theory, with a prototype being Liouville theory. The way around has
been to somehow modify the theory so that the strong-coupling region is “screened”. This
can be achieved either by cutting it off by fiat,3 or by modifying the theory so that it is
dynamically disfavored for the system to go near the strong-coupling region. In the case
again of Liouville this amounts to adding a potential that screens off the strong-coupling
region. Experience fromc = 1 string theory suggests that the unregularized linear dilaton
background is singular.

In the case of the supergravity description of five-branes we are faced with a similar
problem. Several attempts have been made to regularize the strong-coupling behavior.
One approach, [13] (anticipated in [12]) is to replace the standard type-IIA NS5-brane,
in the strong-coupling region (near the brane) by its eleven-dimensional ancestor, the M5-
brane. This can be achieved by starting from a solution of M-theory describing M5-branes
distributed on the M-theory circle. At short distances the M-theory circle is large, but it
asymptotically goes to zero, producing the NS5-brane solution of the type-IIA theory. This
is an elegant approach, but its down-turn is that the metric is complicated especially in
the intermediate region, and a successful application of holography requires mastering the
geometrical data well.

A different attempt has been to consider NS5-branes distributed uniformly on a circle
in transverse space [14]. In [15] it was observed that such a distribution, in the continuum
limit, is T-dual to the geometry of aZk orbifold of theSL(2,R)k+4/U(1) × SU(2)k/U(1)

coset CFT. This dual coset space regulates the strong coupling [10]. With this starting point,
several holographic issues of such a distribution have been analyzed [14,16]. The picture
in terms of five-branes on a circle may be an oversimplification. In a curved non-compact
background, T-duality may [17,18] or may not be an exact symmetry. An NS5-brane with

3 This would correspond in the case of thec = 1 string theory to passing from a Liouville theory to the
SL(2,R)/U(1) coset CFT.
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one longitudinal direction wrapped on a circle is T-dual to flat space [19], although, we
have serious reasons to believe that the dynamics in this case is non-trivial. The Nappi–
Witten pp-wave background [20], which is also T-dual to flat space [22], is not equivalent
to flat space or a standard orbifold of it, and this can be asserted since its exact solution is
known [21,22].

In this work we will investigate other NS5-brane distributions, that have the property
that the strong-coupling region is absent, and they have high symmetry so that detailed
calculations become possible. Continuous distributions of branes and in particular five-
branes have been studied before [15,23–28]. A characteristic of the distributions we will
use (which are infinitely thin shells) is that they generate a discontinuous geometry and
they need the inclusion of sources. However, as we explicitly show, they are controllable
backgrounds, and the study of small fluctuations around such backgrounds is well defined.

One of our aims is to consider distributions that correspond to exact conformal field
theories albeit of a new kind. They correspond to sowing together (in space–time instead
of the world-sheet [29]) known CFT’s. The simplest example is a spherical shell ofN NS5-
branes distributed uniformly on anS3 in transverse space. The numberN should be large
enough so that the geometry is weakly curved, and thereforeα′ corrections to supergravity
negligible. LargeN also ensures that the brane distribution can be approximated by a
continuous one and consequently enjoy high symmetry (SO(4)).

In the interior of the shell the geometry and other background fields are flat. In that
sense, this is somewhat reminiscent of the enhancon configuration [30]. There are five-
braneδ-function sources at the position of the shell, which are determined uniquely from
the supergravity equations, as we show. The radius of the shell,R, can be chosen large
R � √

α′N so that the string coupling is weak outside the shell. Inside the shell the string
coupling is frozen. Hence, there is no strong-coupling region in such a background.

A richer variety of such backgrounds can be achieved by also using negative-tension
branes. In the case of the D5-branes these are no other than the orientifold five-planes.
For NS5-branes, their negative-tension cousins are “bare”Z2 orbifold five-planes. A usual
orbifold five-plane appearing as a twisted sector in closed-string orbifold vacua is a bound
state of an NS5-brane and a bare orbifold plane that cancels the tension and charge of the
NS5-brane much alike the situation in orientifold vacua. The twisted-sector fields are the
fluctuations of the NS5-brane since negative-tension branes have no fluctuations in string
theory (because of unitarity).

In such backgrounds one can study the spectrum of fluctuating fields. These should
correspond via holography to operators of the boundary LST. The effective field theory
of such fluctuations is expected to be a seven-dimensional,SO(4) gauged supergravity. It
is obtained by compactifying the ten-dimensional type-IIA/B supergravity (in the string
frame) onS3 with the appropriate parallelizing flux of the antisymmetric tensor. The
vacuum corresponding to the near-horizon region of an NS5-brane should correspond to a
flat seven-dimensional space plus a linear dilaton in one direction. This is expected to be the
holographic direction. To our knowledge, this gauged supergravity in seven dimensions has
not yet been constructed. However, otherSO(4) gauged supergravities are known in seven
and four dimensions [11].

In the present paper, we will solve explicitly for the fluctuations of some of the fields
of the bulk theory. These include the six-dimensional graviton (corresponding to the
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boundary stress tensor) and its associated Kaluza–Klein (K–K) tower. It turns out that the
six-dimensional graviton satisfies an equation without sources. We find the normalizable
modes and show that its spectrum has a mass gap∼ �+1√

N
Ms. This was expected from

an earlier CFT computation [31]. The modes under consideration correspond to long
representations ofN = 2 supersymmetry in six dimensions [26].

The other set of fluctuations we consider are the moduli modes which are massless
(short representations ofN = 2). These satisfy a Laplace equation with sources [26]. The
sources are crucial for the existence of normalizable moduli modes, as we show.

We further study the non-normalizable modes of the six-dimensional graviton in order
to apply the holographic principle. The symmetries of the background we are studying are
SO(4) × ISO(6). TheSO(4) corresponds to the R-symmetry of the boundary theory, while
the rest is the usual Euclidean group in six flat dimensions. This is unlike AdS-like spaces
where conformal transformations are also boundary symmetries.

Using the bulk supergravity action, we can compute the boundary two-point function of
two stress tensors. It has the following features:

(i) its long distance behavior is massive with associated massMs/
√

N ;
(ii) in the formalN → ∞ limit it becomes power-like with a|x|−7 behavior;
(iii) the stress tensor has canonical mass dimension 7 due to a non-trivial IR wave-function

renormalization of its source;
(iv) it is independent of the presence of the shell and, as we argue, this is no longer true

for higher correlators.

The structure of this paper is as follows. In Section 2 we review the standard five-
brane solutions. In Section 3 we find the five-brane distributions that we use as solutions
of the supergravity equations with sources. In Section 4 we describe similar solutions
for orientifold and orbifold five-planes. Section 5 contains an analysis of elaborate
distributions of five-branes and five-planes withSO(4) symmetry, all of the same kind,
i.e., either all charged under NS–NS or all under R–R. In Section 6 we describe a solution
that interpolates between D5- and NS5-branes in type-IIB string theory. In Section 7 we
study the fluctuation spectrum of the six-dimensional graviton. In Section 8 we discuss
holography and calculate the two-point function of the stress tensor. In Section 9 we
investigate the moduli of the configuration and calculate their normalizable wave functions.
Finally, Section 10 contains our conclusions and further problems. In Appendix A we
present the bulk-to-bulk propagator in the background under investigation.

2. The dilatonic five-brane solutions: a reminder

The canonical five-brane solutions have been extensively studied in the literature. They
are determined by minimizing the ten-dimensional effective action which reads, in the
Einstein frame:

(2.1)S(10) = 1

2κ2
10

∫
d10x

√
−g(10)

(
R(10) − 1

2
(∂φγ )2 − 1

12
e−γ φγ H 2

γ

)
.
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Hereφγ is the dilaton field andγ = ±1 corresponds to the two distinct NS–NS or R–R
three-form field strengthsH in type-IIB theory (type IIA allows only forγ = +1). We do
not introduce any gauge field, which means in particular that the branes under consideration
carry no other charge than NS–NS or R–R. Notice that the ten-dimensional Newton’s
constant appears in 2κ2

10 ≡ 16πG10 = (2π)7α′4.
We seek for solutions of the type

(2.2)
ds2

α′ = a(z)
(−dt2 + d �x 2)+ b(z)e2z

(
dz2 + dΩ2

3

)
,

where�x are Cartesian coordinates in a five-dimensional Euclidean flat space and

(2.3)dΩ2
3 = dθ2 + sin2 θ

(
dϕ2 + sin2 ϕ dω2),

is the metric on a unit-radius three-sphere. Together withz, the latter is transverse to the
five-brane, andr = expz is the radial (dimensionless) transverse coordinate. Poincaré
invariance within the five-brane world-volume is here automatically implemented. For
canonical five-brane solutions, we must also assume that the functionsa(z), b(z), as well
as the dilatonφγ (z) are expressed in terms of a singlepositivefunction,h(z):

(2.4)a(z) = h(z)−1/4,

(2.5)b(z) = h(z)3/4,

(2.6)φγ (z) = γ

2
logh(z).

Moreover, the three-index antisymmetric tensor lives onS3:

(2.7)
H

α′ = 2f (z) sin2 θ sinϕ dθ ∧ dϕ ∧ dω.

The functionf (z) must be piece-wise constant in order to ensuredH = 0 except at the
location of the branes which act like sources.

With the above ansatz (Eqs. (2.2)–(2.7)), we can readily solve the equations of motion
of (2.1). We find:

(2.8)f = −h′

2
e2z,

with h(z) a harmonic function satisfying

�h = 0.

The general solution is, therefore,

(2.9)h(z) = h0 + Ne−2z,

with N and h0 two integration constants, which are both positive forh(z) be positive.
The first one,N � 0, is interpreted as the total number of five-branes, sitting atz → −∞
(r = 0). According to Eq. (2.8),

f (z) = N,
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in this case. If no five-branes are present, we recover flat-space with constant dilaton and
no antisymmetric tensor. Ifh0 = 0, the transverse geometry is anS3 of radiusL = √

α′N
with a covariantly constant antisymmetric tensor (proportional to the three-sphere volume
form) plus a linear dilaton (we have introducedy = z

√
N , andψγ (y) ≡ φγ (z)):

(2.10)
ds2

α′ = e− γ
2 ψγ (y)

(−dt2 + d �x2 + dy2 + N dΩ2
3

)
,

(2.11)ψγ (y) = γ

2
logN − γy√

N
.

The solution at hand, Eq. (2.9), is the neutral five-brane of [2]. The space is
asymptotically flat: whenz → +∞, i.e.,r → ∞, the dominant term in (2.9) is the constant
h0. On the other hand, the limitz → −∞ corresponds to thenear-horizon geometry,
r → 0, whereh0 is negligible and the geometry approaches (2.10) with linear dilaton
(2.11). As far as the string coupling is concerned, from Eqs. (2.6) and (2.9), we learn the
following: (i) whenγ = +1 (NS),gs diverges atr → 0 and is bounded from below byh0
at r → ∞; (ii) when γ = −1 (D), gs vanishes atr → 0 and is bounded from above by
1/h0 at r → ∞, except for the special caseh0 = 0.

The situation withh0 = 0, described in (2.10) and (2.11), is of particular interest.
Considered as a bulk type-II geometry, the latter is an exactN = 4 superconformal
theory [1,2,10,11]. In the caseγ = +1 (NS), this theory is a two-dimensionalσ -
model, whose target space is the ten-dimensional manifold,K10 ≡ W4

k × M6. HereM6

is a flat six-dimensional space–time andW4
k ≡ U(1) × SU(2)k, the four-dimensional

background with linear dilaton. TheN = 4 superconformal symmetry implies, for type-
II strings, the existence ofN = 2 space–time supersymmetry in six dimensions (1/2 of
the initial supersymmetry). In this background, as we have already pointed out, the string
coupling constant becomes infinitely large at the location of the NS5-brane and thestring
perturbation brakes down.Notice that for the D5-brane background (γ = −1), the same
phenomenon occurs atz → +∞, i.e., in the asymptotic region, far away from the sources.

Many proposals can be found in the literature, which aim to properly define the above
string theory in that region of space–time where its coupling diverges. In the type-IIB
string, one can advocate S-duality which turns large coupling into smallgs → 1/gs and
the NS5- to D5-brane. At the location of the D5-brane, the bulk coupling constant goes
to zero. In this representation, one can use type-IIB- and open-string-theory techniques to
study the D5-brane dynamics decoupled from the bulk. Similarly, for type IIA, duality lifts
us to eleven-dimensional M-theory, where one deals with M5-branes.

Another way to handle the above large-coupling pathology is based on T-duality, by
replacing theW4

k background with a T-dual, four-dimensional space, and identicalN = 4
superconformal symmetries [8,10,11]:

∆4
k =

(
SU(2)

U(1)

)
k

×
(

SL(2,R)

U(1)axial

)
k+4

.

In this expression, both factors are exact CFT’s based on gauged WZW models. The
first is described by compact parafermions, while the second is the two-dimensional
Euclidean black hole constructed as the axial gauging ofSL(2,R). The important fact here
is that the value of the string coupling (in the axial-gauging representation), is bounded
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over the whole two-dimensional subspace defined by(SL(2,R)/U(1)axial)k+4, and has
its maximal (finite) value at the horizon, i.e., the position of the T-dual NS5-branes.
It would be interesting to further investigate these issues, because one could analyze
various properties of the T-dual NS5-branes, as well as their gravitational back-reaction by
using the powerful conformal-theory techniques developed in closed-string perturbation
theory. All the solutions proposed so far to the infinite-coupling problem of the five-brane
background are based on dualities. As a consequence, there is always a region of space–
time where the coupling diverges. We will now show that it is possible, instead, to modify
this background in a way that (i) the coupling remains finite everywhere and (ii) that the
string is still described in terms of an exact superconformal theory.

3. Interpolating between flat space and three-sphere plus linear dilaton

The strong-couplingsingularity that spoils the string perturbative expansion in the above
five-brane background occurs atr → 0 (z → −∞), for the Neveu–Schwarz branes. We will
now propose a solution to this problem, which is inspired from an electrostatic analogue.
The case of D5-branes, where the divergence of the coupling (h0 = 0) occurs atr → ∞
(z → +∞), cannot be treated in the same way. Alternative solutions will be proposed later.

The divergence of the ordinary Coulomb field can be avoided by assuming a spherically
symmetric distribution of charge over a two-sphere centered at the original point-like
charge. We can similarly introduce a distribution of five-branes over the transverse three-
sphere, at some finite radius, sayr = R. This amounts in adding to the bulk action (2.1) a
source term of the form:

(3.1)Sfive-brane= −NT5

2π2

∫
d10x sin2 θ sinϕ δ(r − R)

(
eαγ φγ

√
−ĝ(6) + C̃6

)
,

whereC̃6 is the dual of the two-index antisymmetric tensor. Several remarks are in order
here. In writing (3.1), we have chosen a gauge in which(t, �x) are the world-volume
coordinates of the five-branes. Thus, the induced metricĝ

(6)
ij is just the reduction of the

background metricg(10)
µν (µ,ν, . . . ∈ 0,1, . . . ,9 andi, j, . . . ∈ 0,1, . . . ,5). All five-branes

are sitting atr = R (z = Z), and are homogeneously distributed over theS3. Their density
is normalized so that the net number of five-branes beN . The dimensionα determines the
coupling of the branes under consideration, and consequently their nature: D, NS or even
more exotic extended objects. It is a free parameter, which will be determined later.

The energy–momentum tensor of the source term (3.1) is

T
µν
five-brane(x) = 2√−g(10)

δSfive-brane

δg
(10)
µν (x)

(3.2)= −NT5

2π2 sin2 θ sinϕ δ(r − R)eαγ φγ δ
µ
i δν

j ĝ(6)ij

√
ĝ(6)

g(10)
.

This enables us to write the full equations of motion resulting from action (2.1) plus
(3.1). One can solve them by introducing the same ansatz as before (Eqs. (2.2)–(2.7)).
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Fig. 1. Electrostatic analogue of the patched flat-space–NS5-brane solution. The Coulomb potential of a point-like
chargeQ has a singularity at the origin, which is resolved if the same charge is distributed over the surface of a
sphere (chosen here of unit radius). The Coulomb potential plays the role of the dilaton field and the charge isN .

Compatibility now demands that

α = −1

2
.

Hence, expressed in the sigma-model frame, Eq. (3.1) exhibits the following dilaton
coupling: exp(−3+γ

2 φγ ). For γ = +1 this is indeed the coupling of an NS5-brane, while
for γ = −1 we recover the D5-brane. In either situation, the dilatonφγ (z) and the function
f (z) are given by (2.6) and (2.8), respectively, whileh(z) now solves

(3.3)α′h(z)3/4e4z�h = −2Nδ(z − Z).

In writing the latter, we have expressed4 κ10 andT5 in terms ofα′. The result is independent
of the nature of the brane.

Replacing a point-like charge with a spherical distribution leads to the same configu-
ration outside the two-sphere, while the electric field vanishes inside (Gauss’ law), avoid-
ing thereby the Coulomb divergence. This is depicted in Fig. 1. The simplest solution to
Eq. (3.3), where we set for simplicityZ = 0 (R = 1), is precisely an analogue of that
electrostatic example, as we have advertised previously:

(3.4)h(z) = h0 + Ne−(z+|z|),
and, by using (2.8),

f (z) = NΘ(z).

For r > 1 (z > 0) we recover (2.9), while for 0< r < 1 (z < 0) the space is flat since
h = h0 + N . Moving the brane sources fromr = 0 to a uniformS3 distribution atr = 1

4 The five-brane tensions areT NS
5 = 2π2α′/κ2

10 andT D
5 = 1/(4π3/2κ10α′) [32]. They turn out to be equal,

onceκ10 is expressed in terms ofα′.
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Fig. 2. The string coupling of solution (3.4) is finite everywhere for the NS5-branes (γ = +1) and its electrostatic
analogue is given in Fig. 1. However, it diverges when the sources are D5-branes andh0 = 0.

amounts, therefore, in excising a ball which contains the would-be near-horizon geometry,
and replacing it with a piece of flat space. The price to pay for this matching is the
introduction of sources uniformly distributed overS3 and localized atz = 0.

Concerning the dilaton field, Neveu–Schwarz and Dirichlet sources lead to different
pictures, according to Eqs. (2.6) and (3.4). For NS5-branes, the excised ball removes
altogether the divergent-coupling region of the canonical neutral five-brane, and replaces
it with a constant one,g2

s = h0 + N . In the case of D5-branes, the coupling inside the ball
(r < 1) becomes also constant,g2

s = (h0 + N)−1. These results are summarized in Fig. 2.
As we have already stressed, a remarkable situation is provided byh0 = 0. For

negativez, the transverse space is flat, as for generich0. For positivez, the geometry
is that of a three-sphere of radiusL = √

α′N plus linear dilaton (see Eqs. (2.11) and
(2.10)). Both patches are type-II string backgrounds described in terms of exactN = 4
superconformal theories. In the case of Neveu–Schwarz sources, these are free of strong-
coupling singularities.

4. Orbifold and orientifold planes

In fact, solution (3.4) is the only one that corresponds to a NS5-brane distribution, with
a string coupling that remains finite everywhere. However, this solutionfails to regularize
the D5-brane configurationwhen the latter is singular, namely forh0 = 0. Indeed, the
string coupling is then divergent for largez, which is outside the excised ball. To ensure
the finiteness of the coupling in the case at hand, we should instead consider a would-be
dual solution:

(4.1)h(z) = h0 + Ne−z+|z|,
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and, by using (2.8),

(4.2)f (z) = NΘ(−z).

Flat space would be the geometry outside the three-sphere atr = 1, whereas inside we
would recover (2.9), that corresponds, forh0 = 0, to the three-sphere plus linear dilaton.
Here, the coupling constant would befinite everywhere forγ = −1 (D5), while it would
diverge at the origin (z → −∞) for γ = +1 (NS5).

The problem with (4.1) is that it does not solve Eq. (3.3), but solves a similar equation,
with no negative sign (andZ = 0). Such an equation can only be obtained by assuming
T5 < 0. We must, therefore, interpret solution (4.1) as resulting fromN remote branes
(z → −∞, i.e.,r = 0), together withN negative-tension objects localized atz = 0 (r = 1).
The net effect of the latter is to screen the charge sitting atr = 0 so as to ensure flat space
for r > 1. Again, this is the analogue of an electrostatic configuration, where a point-like
charge is surrounded by a homogeneous spherical shell of opposite charge: outside the
shell, the potential is constant whereas it is Coulomb inside.

The negative-tension objects under consideration are of two kinds: orientifold planes
if they are associated with D-branes (γ = −1) or orbifold planes when they correspond
to NS5-branes (γ = +1). They cannot have fluctuations in a unitary theory because the
corresponding modes would be negative-norm.

5. Brane chains

At this stage of the paper, it has become clear that consistent string backgrounds can
be constructed by using either five-branes or negative-tension objects. The dilaton depends
on γ , but the geometry, which is governed by the functionh(z), does not (see Eqs. (2.2)
and (2.4)–(2.6)). The functionh(z) depends, in turn, on whether the source is a brane or an
orbifold/orientifold plane (for simplicity, we will call them generically “orbifold planes”,
as long as we do not discriminate Neveu–Schwarz and Dirichlet, i.e., as long as we do not
discuss the issue of the coupling but deal with the geometry only). The canonical solution
(2.9) corresponds to a source made ofN branes pushed atz → −∞. In (3.4) those branes
are atz = 0, while solution (4.1) is generated byN branes atz → −∞ together withN

orbifold planes located atz = 0. One might wonder what would the solution look like in the
case where both five-branes and five-orbifold planes are homogeneously distributed over
theS3 and localized at certain discrete values of the transverse coordinatez. In particular,
one might also investigate the conditions under which the corresponding geometry is the
target space of an exactly conformal sigma model. The aim of the present section is to
clarify these issues.

The generalization of Eq. (3.3) for a network of sources reads (we have used the explicit
expression for the d’Alembert operator):

(5.1)h′′ + 2h′ = −2
M∑

k=1

Nkλke−2zk δ(z − zk).

It describes the geometry generated byNk > 0 objects (five-branes or five-orbifold planes,
depending on whetherλk = 1 or −1) located atz = zk for k = 1, . . . ,M. One of the two
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integration constants of the above equation is the number of branes sitting atz → −∞,
N0 � 0; those cannot be orbifold planes, that would generate negativeh(z), at least in the
asymptotic region of negativez.

Between two consecutive stacks of branes, the solution of (5.1) is of the general type:

(5.2)h(z) = hk + Ñke−2z, for zk � z � zk+1, k = 0, . . . ,M

(z0 andzM+1 are meant to be−∞ and+∞, respectively).
The “slopes” Ñk can be determined by computing the discontinuities ofh′ at the

locations of the sources. Eq. (5.1) enables us to write

(5.3)Ñk − Ñk−1 = λkNk.

Put differently,Ñk is the integrated charge from−∞ to zk included:

Ñk = N0 +
k∑

i=1

λiNi.

Continuity ofh(z), on the other hand, allows for the determination of thehk ’s:

(5.4)hk−1 = hM +
M∑

i=k

λiNie−2zi , k = 1, . . . ,M,

wherehM is the other integration constant.
The choice of the chargesNk and of their positionszk is not completely arbitrary if one

demands positivity ofh(z). In order to analyze this issue, we will focus on specific charge
distributions wherẽNk � 0 ∀k. Although, this requirement is natural fork = 0 in order to
avoidh(z) < 0 for negative enoughz, we could in principle allow some negative integrated
charges̃Nk provided their positions as well as the integration constanthM are chosen in
such a way thath(z) remains positive everywhere. Our aim, however, is not to analyze
the most general case, but situations which resemble (2.9), (3.4) and (4.1), where the total
integrated charge is non-negative for anyz. Moreover, as we will see later, backgrounds
that can be described in terms of exact conformal theories turn out to belong to the class at
hand.

Our claim is that if all localized chargesNk are chosen in such a way that the integrated
ones,Ñk , are never negative, thenh(z) is non-negative, providedhM be non-negative,
without any restriction on the positionszk . Indeed, together with̃NM � 0, hM � 0
guarantees thath(z) � 0 whenz � zM . On the other hand, according to Eq. (5.2) and
sinceÑk � 0 ∀k, h(z) is monotonically decreasing. Soh(z) is never negative.

The background described in Eq. (5.2) is not expected to be an exactly conformal model
for generic values of the dataNk andzk . For everyk = 0, . . . ,M, a necessary condition is
that eitherhk or Ñk vanishes. In the latter case, the space is flat, whereas in the former it
contains a three-sphere plus a linear dilaton.

The starting point of our analysis is the recursion (continuity) relation

hk−1 = hk + λkNke−2zk

(this has led to (5.4)). By construction,Nk > 0, fork = 1, . . . ,M, whileN0 � 0. Therefore,
hk = 0 implies thathk−1 = λkNk exp(−2zk) �= 0. This result shows that it is impossible to
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Fig. 3. A partial sequence of five-branes (atzk, zk±2, . . .) and five-orbifold planes (atzk±1, zk±3, . . .) appears
in the center of this figure. The charges· · · < Nk−2 < Nk < Nk+2 < · · · are independent data, together with
zk, zk±2, . . . . The whole drawing is the solution (5.8).

have two consecutive domains inz, both with linear dilaton and three-sphere, separated by
a distribution of five-branes. The only allowed pattern, compatible with exact CFT,5 is an
alternation of flat-space and three-sphere-plus-linear-dilaton patches.

Hence, assuming thathk vanishes, we must imposẽNk±1 = 0, hk±2 = 0, etc. In
particular, Eq. (5.3) now reads:

(5.5)Ñk = λkNk = −λk+1Nk+1.

Under these circumstances, a necessary and sufficient condition forh(z) to be non-
negative is thatÑk > 0. This guarantees thath(z) > 0 (i) for zk−1 � z � zk , where
h(z) = hk−1 = Ñk exp(−2zk); (ii) for zk � z � zk+1, whereh(z) = Ñk exp(−2z). From
Eq. (5.5), we, therefore, learn thatλk = 1 = −λk+1 and Nk = Nk+1. Suppose thatNk

five-branes are sitting atzk with a total integrated chargẽNk = Nk . The functionh(z) is
exponentially decreasing up tozk+1, whereNk+1 = Nk five-orbifold planes are localized.
The total integrated chargẽNk+1 vanishes again, andh(z) remains constant and equal to
hk+1 = Nk+2 exp(−2zk+2) until zk+2. Another stack ofNk+2 > Nk five-branes appear at
that point and the process wraps back. Fig. 3 depicts the situation.

At this stage, it is important to notice that not allNk ’s and zk ’s are independent
parameters. We have already observed that only the charges of, say, the five-branes (i.e.,
those withλk = 1) can be chosen arbitrarily; the charges of five-orbifold planes are then
automatically determined. Moreover, given the positions of the five-branes,zk, zk±2, . . . ,
we determine those of the five-orbifold planes:

(5.6)zk−1 = zk − 1

2
log

Nk

Nk−2
.

5 Strictly speaking theS3-plus-linear-dilaton background is an exact CFT only when the antisymmetric tensor
is of NS type.
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This relation shows, in particular, that two sets of parameters, the charges{Nk,Nk±2, . . .}
and the brane positions{zk, zk±2, . . .}, though independent, must obey the following
conditions:

(5.7)zk−2 < zk − 1

2
log

Nk

Nk−2
.

For practical purposes (see Section 7) it is useful to present the solutionh(z)

corresponding to a set of data (charges and positions) in explicit and closed form. Let
us suppose for concreteness that there is no charge atz → −∞: N0 = 0. Assuming an
odd number of sources,M = 2L − 1, the independent data are chosen to be the charges
of the five-branes{N1,N3, . . . ,N2L−1}, with λ2s+1 = 1, together with their positions
{z1, z3, . . . , z2L−1}. The chargesN2s and positionsz2s of the five-orbifold planes (λ2s =
−1) are given, respectively, by Eqs. (5.5) and (5.6) withk = 2s + 1. Assuming that
inequality (5.7) is fulfilled,h(z) reads:

h(z) =√
N1N2L−1 exp

(−(z + z1) − |z − z1|
)

(5.8)×
L−1∏
s=1

exp

(∣∣∣∣z − z2s+1 + 1

2
log

N2s+1

N2s−1

∣∣∣∣− |z − z2s+1|
)

.

We are in the case whereh(z) does not diverge atz → −∞, and vanishes atz → +∞:
h(z � z1) = h0 = N1 exp(−2z1) and limz→+∞ h(z) = 0. The transverse space is flat for
z � z1 and has the geometry of a three-sphere plus linear dilaton forz � z2L−1. This is
a consequence of the absence of remote five-branes atz → −∞, and of the presence of
N2L−1 five-branes as last source. Fig. 3 summarizes those features.

Any other situation can be obtained directly from Eq. (5.8), by considering appropriate
limits. In the limit z1 → −∞, N1 five-branes are pushed far away. The functionh(z) now
diverges atz → −∞: for z � z2 it describes a three-sphere plus linear dilaton. On the
other hand, whenz2L−1 is sent to+∞, the last sources are five-orbifold planes localized at
z = z2L−2. From this pointh(z) will be constant and the transverse space flat. Finally, both
limits can be simultaneously taken, so that forz � z2 andz � z2L−2, the space becomes,
respectively, a three-sphere plus a linear dilaton, and flat. This exhausts all the possibilities
for constructing string backgrounds generated by five-branes and five-orbifold planes, that
can be described in terms of exact CFT’s. All these constructions have natural electrostatic
analogues, which consist ofM homocentric thin shells with charges alternating in sign,
with or without a charge at the origin (r = 0, i.e.,z → −∞).

As far as the string coupling is concerned (see Eq. (2.6)), all possible situations appear:
it might vanish, remain finite, or become infinite in one or both regionsr = 0 andr → ∞,
for either Dirichlet or Neveu–Schwarz five-brane backgrounds.

6. D5–NS5 transition in type-IIB theory

We have by now become familiar with the construction of elaborate configurations
of stacks of branes uniformly distributed over homocentric three-spheres. As already
stressed previously, the geometry (i.e., the metric) generated by such configurations does
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not depend on the nature of the five-branes/five-planes which are present. The dilaton,
however, does: the string coupling, exp2φ, is equal toh(r) or h(r)−1 for NS–NS or R–R
backgrounds, respectively (see Eqs. (2.2) and (2.4)–(2.6)). If we try, therefore, to repeat
the analysis of Section 5 for type-IIB backgrounds whit both NS5-branes and D5-branes
(together with their negative-tension counterparts), we will generically face discontinuities
in the dilaton field at the location of the source-shells. Alternatively, continuity requirement
for the dilaton leads to discontinuities inh, which amount toδ-function terms in the three-
form field strength.

There is, however, one instance, where a continuous interpolation between NS5-brane
and D5-brane backgrounds is possible. In the type-IIB theory, D5- and NS5-branes are
S-dual. If two distinct regions of space–time, hosting NS–NS and R–R backgrounds,
respectively, are due to be smoothly patched together, this must happen at the S-self-dual
point.

Let us be more concrete and considerN D5-branes sitting atr = 0. For 0< r � rS
those create a three-sphere (transverse) geometry plus (finite) linear dilaton and R–R
antisymmetric tensor (Eqs. (2.6) and (2.9) withγ = −1 andh0 = 0). At radiusr = rS,
we introduce a set ofN orientifold five-planes, uniformly distributed, together withN

NS5-branes—put differently, a O–NS bound-state. The R–R charge is, therefore, screened,
so that the R–R antisymmetric tensor vanishes forr � rS, while a NS–NS one is switched
on.

From the geometry point of view, the presence of the O–NS bound-state distribution is
transparent:

h(r) = N

r2
,

everywhere, which ensures theS3 factor. As already stressed, this distribution alters the
dilaton field:

e2φ =
{

r2/N, 0 < r � rS,

N/r2, rS � r.

Continuity of the latter6 demands the parameterrS be the S-self-dual point, namely,

h(rS) = 1

h(rS)
.

This impliesrS = √
N .

The antisymmetric tensors are discontinuous atr = √
N . Inside we have the R–R

background of the D5-brane which is zero outside, and vice versa for the NS–NS
background. Notice that the source action to be added to the bulk action is in this case

SO–NS = NT5

2π2

∫
d10x sin2 θ sinϕ δ

(
r − √

N
)(

e
1
2φ

√
−ĝ(6) + B̃6

)
− NT5

2π2

∫
d10x sin2 θ sinϕ δ

(
r − √

N
)(

e− 1
2φ
√

−ĝ(6) + C̃6

)
.

6 Its first derivative is discontinuous, though.
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In the above configuration, the coupling is small everywhere except nearr = √
N , where it

is of order one. This is the price to pay for continuously interpolating between NS–NS
and R–R backgrounds. We could excise the order-one-coupling region, by separating
the O5-plane and NS5-brane shells. This amounts, however, to abandon the continuity
requirement. We will not pursue any further this issue.

7. Gravitational fluctuations

In this section, we consider gravitational fluctuations of the five-brane solutions derived
in Sections 4 and 5. Our motivation is to analyze the low-lying spectrum of states, which
can be eventually compared with exact CFT results, available in the present setting [31].
Furthermore, this analysis is important for clarifying the issue of localization of the states
in the vicinity of the branes. Our conclusion is that in the framework of the five-brane and
five-orbifold backgrounds presented so far, gravitons and their K–K descendants have a
mass gap in accordance with the CFT analysis, [1,10,11,31]. Other fluctuations (Neveu–
Schwarz, Ramond–Ramond,. . . ) can be studied in the same manner, but this is beyond the
scope of the present work.

We will restrict ourselves to gravitational fluctuations that are longitudinal to the brane.
To this end we consider small perturbations of the background metric (2.2), (2.4) and (2.5),
of the form

(7.1)ds2 = α′h(r)−1/4(ηij + ρij ) dxi dxj + α′h(r)3/4(dr2 + r2 dΩ2
3

)
,

where7 {xi, i = 0, . . . ,5} = {t, �x} = x. The linearized Einstein equations in the transverse,
traceless gauge,ρi

i = ∂iρij = 0, taking also into account the sources, reduce to the
covariant scalar equation [23,33]:

(7.2)�ρij = 0,

where the d’Alembert operator is that of the unperturbed metric. The solutions of the
above equation belong to the gravitational K–K sector. Considering a K–K mode with
massM (M2 is measured in units of 1/α′), and assuming the factorizationρij (x, r,Ω) =
ρ̃ij (x)φ(r,Ω), with �6ρ̃km ≡ ηij ∂i∂j ρ̃km = M2ρ̃km, Eq. (7.2) reduces to its transverse
part

(7.3)

(
1

r3 ∂rr3∂r + 1

r2 =S3 + M2h(r)

)
φ(r,Ω) = 0,

where=S3 is the Laplacian operator on the three-sphere. We can further decompose the
transverse-space dependence of the fluctuations:φ(r,Ω) = r−3/2y�(r)D�

nn′ (Ω), where
D�

nn′ (Ω) form a complete set of orthonormal functions onS3:

=S3D�
nn′ (Ω) = −�(� + 2)D�

nn′(Ω).

7 Indicesi, j, . . . are raised with the flat metricηij .
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Then the radial equation reads:

(7.4)

[
− d2

dr2
+ 1

r2

(
� + 1

2

)(
� + 3

2

)]
y�(r) = M2h(r)y�(r),

which is a the Sturm–Liouville equation.
The natural inner product for the radial wave functionsy�(r) is obtained by analyzing

the normalization of the kinetic terms forρij as they appear when the fluctuationsgij =
ηij + ρij are introduced in the action (Eqs. (2.1) and (3.1)), and the latter is expanded. We
obtain:

(7.5)‖y�‖2 =
∞∫

0

dr h(r)y�(r)2.

With this precise inner product, the Sturm–Liouville operator (in the square brackets of the
lhs of (7.4)) is self-adjoint, provided some appropriate boundary conditions are imposed,
which include those we will consider here:y�(0) = 0 and limr→∞ y ′

�(r) = 0. This property
ensures the existence of a complete set of orthonormal eigenfunctions, whoseM2-spectrum
is real, non-degenerate, bounded from bellow, and contains at least a continuous part.

In order to determine the spectrum we need a specific background. We will consider for
simplicity the single five-brane shell solution (3.4) withh0 = 0:

(7.6)h(r) =
{

N/R2, 0 � r � R,

N/r2, R � r.

The eigenfunctions of (7.4) are obtained by following the standard strategy. We first solve
Eq. (7.4) for 0� r � R and keep only solutions that satisfyy�(0) = 0. ForM2 �= 0, those
are Bessel functions

(7.7)y�(r) = A�

√
r J�+1

(
M

√
N r

R

)
, 0 � r � R,

behaving liker�+3/2 in the vicinity of r = 0; A� is an arbitrary, real constant. This
solution holds even forM2 < 0 (in that caseA� is a real number timesi−(�+1)). Notice
that

√
r N�+1(M

√
N r/R) is also a solution, which must be discarded because of its bad

behavior (r−�−1/2) at the origin. ForM2 = 0, the only acceptable solution is

y�(r) = A�

√
r

(
r

R

)�+1

, 0 � r � R, M2 = 0.

We must now solve Eq. (7.4) forr � R. Depending on� andM, the behavior is either
oscillatory or power-law:

(7.8)y�(r) = B�

√
r cos

(√
M2N − (� + 1)2 log

(
r

R

)
+ Φ�

)
, M2 � (� + 1)2

N
,

whereB� andΦ� are arbitrary, real constants, and

y�(r) = √
r

(
C−

�

(
R

r

)((�+1)2−M2N)1/2

+ C+
�

(
r

R

)((�+1)2−M2N)1/2)
,
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(7.9)M2 � (� + 1)2

N
.

The latter holds even forM2 � 0, andC±
� are again real and arbitrary. In fact, we must

setC+
� to zero, because with the inner product (7.5) and (7.6),r1/2+

√
(�+1)2−M2N is not

evenδ-function normalizable. However,r1/2−
√

(�+1)2−M2N is normalizable, while (7.8)
is δ-function normalizable (both satisfy the previously advertised boundary condition at
infinity). The spectrum is, therefore, expected to be continuous forM2N � (� + 1)2 and
discrete otherwise.

The complete determination of the eigenfunctions is achieved by requiring continuity
at r = R. On one hand, continuity ofy� fixes B� or C−

� in terms ofA�, leaving only
an overall free normalization. Continuity of the logarithmic derivative, on the other hand,
allows for the computation of the phaseΦ� if M2 � (� + 1)2/N (continuous spectrum),
and the positions of the discrete mass levels ifM2 � (� + 1)2/N . We find

Φ� = −arctan

(
1√

1− (� + 1)2/M2N

J ′
�+1

(
M

√
N
)

J�+1
(
M

√
N
)),

for the continuous spectrum, whilethe discrete spectrum turns out to be empty: no mass-
squared levels (positive, zero or negative) exist forM2 < (� + 1)2/N . We, therefore,
conclude that there is amass gapMgap= 1/

√
N (in units ofMs) in agreement with CFT

[1,10,11,31]. ChoosingB� = (N − (� + 1)2/M2)−1/4, the corresponding (complete) set of
eigenfunctions is normalized as(

y
(1)
� , y

(2)
�

)= π

2
δ
(
M(1) − M(2)

)
,

according to the inner product (7.5). For different�’s, orthogonality is guaranteed by the
spherical functionsD�

nn′ .
Our result deserves several comments. First, had we considered instead of (7.6) a more

general conformal background of the type (5.8), our conclusions would not have been
modified. For 0� r � r1 ≡ expz1 we have indeed the solution (7.7) withN replaced with
N1/r2

1, while (7.8) and (7.9)—withC+
� = 0—are valid forr � r2L−1 with N2L−1 instead

of N . Continuity constraints fory�(r) andy ′
�(r) propagate through all intermediate-brane

positions, determine completely the intermediate solutions, and eventually the spectrum
of longitudinal gravitational fluctuations: this is a continuous spectrum above a mass gap
Mgap= 1/

√
N2L−1.

8. Holography

The framework is here the NS5-brane of type-IIA string theory. The non-normalizable
modes in this background are expected to correspond, via the holographic principle [6,12,
13], to off-shell operators of the decoupled world-volume theory of the five-brane. The
boundary is atr = R∞ → ∞.
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In the case under study, however, the identification of the radial direction as a
renormalization-group flow is less clear. The space–time metric (in the string frame),

ds2
σ = α′ dx2 + α′h(r)

(
dr2 + r2 dΩ2

3

)
,

is invariant under a rescaling ofr. The only effect is to shift appropriately the position of
the shell. If the shell is at the origin the metric is strictly invariant. The string coupling on
the other handg2

s = e2φ = h(r) scales to zero as we approach the boundary.
The decoupling limit is [12]

gs = eφ → 0, �s = √
α′, U = r

gs�s
fixed,

whereU is the tension9 of a D2-brane stretched between NS5-branes. It is the tension
of a world-volume string and corresponds to a Higgs vev of the LST (boundary theory).
Thus, the boundary theory has no dimensionless coupling constant and its scale is set
by �s. The dilaton is given by e2φ = N/(U2�2

s), and vanishes at infinity. Using the relation
betweenr and energy (U ), this implies that the region of smallr corresponds to the infra-
red conformal theory.

The presence of the shell atr = R, modifies somewhat the picture above. First we
choose the position of the shell (we will from now on rescaler → gsr) so thatR � √

N .
LargeN implies that all curvatures are small everywhere (so that stringy corrections can
be neglected). In particular, the supergravity description is good at length scales larger than
the string scale�s. The condition onR also implies that the string coupling in the bulk is
small everywhere. Thus, the supergravity description is reliable on the whole space.

In the background under consideration, the world-volume theory undergoes a Higgs
phenomenon at an energy scale 1/(�sR). SinceR � √

N this has modified the effective
field theory at lower scales. Below this scale, the coupling no longer runs.

There is another approximation that is relevant here, and this has to do with the
continuous distribution of five-branes on the shell. String theory implies that the NS5-
charge is quantized. Thus, if the source atR is composed ofN NS5-branes, the distribution
is quasi-continuous. In fact, the average distance (in transverse space) between theN five-
branes distributed over the sphere isL � N−1/3�sR � N1/6�s. Thus, at largeN , L is
much larger than the string scale but much smaller that the characteristic scale

√
N �s of

the world-volume theory.
We can summarize the previous discussion as follows: the supergravity description with

SO(4) symmetry is valid at length scales larger thanN1/6�s. At length scales larger than√
N �s the LST can be replaced by an effective field theory. At length scales smaller

thanN1/6�s but larger than�s the supergravity description is valid butSO(4) symmetry
is broken.

We will now proceed to apply the holographic principle as implemented in [34]
and calculate boundary correlators. In particular, we will focus on the (descendants)
of the six-dimensional graviton, itself dual to the world-volume stress tensor. We have
shown that the six-dimensional graviton (� = 0)-fluctuation and its K–K descendants

9 Remember that the dimensionless radial coordinater measures distances in units of�s.
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(� > 0) satisfy Eq. (7.2) that can be recast in the form (7.3) or (7.4). For a given set
of boundary data,ρ̄�nn′

ij (x,Ω) = ρ̄�
ij (x)D�

nn′(Ω), the corresponding partial-wave bulk

solution, ρ�nn′
ij (x, r,Ω) = ρ�

ij (x, r)D�
nn′ (Ω), can be expressed in terms of the bulk-to-

boundary propagatorG�nn′(x, r,Ω) = G�(x, r)D�
nn′(Ω):

(8.1)ρ�
ij (x, r) =

∫
d6x ′ G�(x − x ′, r)ρ̄�

ij (x ′).

The radial part of the above propagator satisfies

(8.2)

(
1

r3 ∂rr3∂r − �(� + 2)

r2 + h(r)�6

)
G�(x, r) = 0,

with the boundary condition

lim
r→R∞

G�(x, r) = δ(6)(x).

We will work from now on in Euclidean space, and Fourier transform the six-dimensional
part

G�(x, r) = 1

α′3

∫
d6p

(2π)6
eip·xG�(p, r),

so that Eq. (8.2) becomes:

(8.3)

(
1

r3 ∂rr3∂r − �(� + 2)

r2 − h(r)p2
)

G�(p, r) = 0,

with boundary condition

(8.4)lim
r→R∞

G�(p, r) = 1.

The regular solution to the bulk equation (Eq. (8.3)) is

(8.5)G�(p, r) =



A�(p)

r
I�+1

(√
p2N r

R

)
,

0 � r � R,

C−
� (p)

r

(
R

r

)√
(�+1)2+p2N

+ C+
� (p)

r

(
r

R

)√
(�+1)2+p2N

,

R � r.

The boundary condition (8.4) is satisfied provided

C+
� (p)

R∞
=
(

R

R∞

)√
(�+1)2+p2N

.

The rest of the coefficients are determined from the usual matching conditions (continuity
of the propagator and its logarithmic derivative). We obtain:

A�(p)

R∞
=
(

R

R∞

)√
(�+1)2+p2N
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× 2
√

(� + 1)2 + p2N√
(� + 1)2 + p2N I�+1

(√
p2N

)+√
p2N I ′

�+1

(√
p2N

) ,
and

C−
� (p)

R∞
=
(

R

R∞

)√
(�+1)2+p2N

×
√

(� + 1)2 + p2N I�+1
(√

p2N
)−√

p2N I ′
�+1

(√
p2N

)√
(� + 1)2 + p2N I�+1

(√
p2N

)+√
p2N I ′

�+1

(√
p2N

) .

In order to make contact with holography, we would like to analyze the dynamics of
the six-dimensional gravitational perturbationsρij (xµ) considered in (7.1), from a slightly
different point of view. Let us write down the linearized action for those fields, as it appears
when expression (7.1) is plugged into Eq. (2.1). We obtain (in the transverse, traceless
gauge considered so far):

S2 = 3α′4

2κ2
10

∫
d6x d4y

(
h∂iρjk∂iρ

jk + ∂aρjk∂aρjk
)
,

where{ya, a = 6, . . . ,9} are transverse coordinates such that

dr2 + r2 dΩ2
3 =

∑
a

(
dya

)2
, with9

∑
a

(
ya
)2 = r2.

The Gibbons–Hawking boundary term, the antisymmetric tensor and dilaton terms, as well
as the source term vanish. By using the partial-wave expansion ofρij (xµ), integration by
parts, orthonormality relations for theD�

nn′ (Ω), equations of motion, as well as Eq. (8.1)
and the above expressions for the bulk-to-boundary propagator (see Eq. (8.5)), we can
expandS2 in partial waves,

S2 =
∞∑

�=0

S�
2,

and determineS�
2 in terms of the Fourier-transformed boundary dataρ̄�

ij (p):

S�
2 = − 3

2κ2
10α

′2

∫
d6p ρ̄�

ij (p)ρ̄�ij (−p)R2∞Υ�.

We have introduced the function

Υ�(p) =
(
1−

√
(� + 1)2 + p2N

)
+ 2χ�

(
R

R∞

)2((�+1)2+p2N)1/2

+ χ2
�

(
1+

√
(� + 1)2 + p2N

)( R

R∞

)4((�+1)2+p2N)1/2

,

9 Indicesa,b, . . . are raised with the flat metricδab, while i, j, . . . are with δij (we have tradeηij for its
Euclidean counterpart). The Laplacian operator associated with the Euclideanized unperturbed metric (Eqs. (2.2)–
(2.5)) now reads:α′� = h1/4�6 + h−3/4�4, where�4 = δab∂a∂b and�6 = δij ∂i∂j .
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whereχ� also depends onp2N

χ�(p) =
√

(� + 1)2 + p2N I�+1
(√

p2N
)−√

p2N I ′
�+1

(√
p2N

)√
(� + 1)2 + p2N I�+1

(√
p2N

)+√
p2N I ′

�+1

(√
p2N

)
,

with the following asymptotic behavior:

χ�(p) = 2�2 + 9� + 11

8(� + 1)2(� + 2)(� + 3)
p2N +O

(
p4N2), Np2 � 1,

while

χ� = 1

4
√

p2N
+O

(
1

p2N

)
, Np2 � (� + 1)2.

Thus,χ� vanishes atp → 0 andp → ∞, and has a maximum at
√

p2N ∼ � + 1.
We should note that the three different terms have different asymptotic behavior as

the renormalization screen moves to infinity (R∞ → ∞), with the first term giving the
leading contribution. In the region of validity of the supergravity approximation,p2N can
be either very small or very large (the first region corresponds to the effective-field-theory
region, while the second to the LST region), so

√
(� + 1)2 + p2N cannot be expanded in

a sequence of local terms. Thus, if we insist on keeping the stringy physics of LST, we
must renormalizēρ�

ij → α′−1/2
R−1∞ ρ̄�

ij , in which case the terms proportional toχ� andχ2
�

vanish in theR∞ → ∞ limit with the result:

(8.6)S�
2 = − 3

2κ2
10α

′3

∫
d6p ρ̄�

ij (p)ρ̄�ij (−p)
(
−1+

√
(� + 1)2 + p2N

)
.

At this point we can take advantage of the transverse-tracelessness conditions, which in
momentum space readρi

i = piρij = 0, to “covariantize” the two-point correlator appearing
in Eq. (8.6):

S�
2 = − 3

4κ2
10α

′3

∫
d6p ρ̄�

ij (p)ρ̄�
km(−p)F

ij ;km
� (p),

with

F
ij ;km
� (p) =

(
πikπjm + πimπjk − 2

5
πij πkm

)(
−1+

√
(� + 1)2 + p2N

)
,

where

πij = δij − pipj

p2
,

are the projectors that impose conservation of the boundary stress tensor and its K–K
descendants. Thus, we expect that

(8.7)
〈
T

ij
� (p)T km

�′ (−p)
〉= − 3

4κ2
10α

′3F
ij ;km
� (p)δ��′,
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which is compatible with conservation and tracelessness of the stress tensor and its cousins.
Notice that the two-point function is insensitive to the presence of the shell. This will no
longer be true for higher correlators.

Fourier transforming in configuration space we obtain:

(2πα′)6
∫

d6x
〈
T

ij
� (x)T km

� (x − z)
〉= (

π̂ ikπ̂ jm + π̂ imπ̂jk − 2

5
π̂ ij π̂ km

)
F�(x),

with

F�(x) = − 3

4κ2
10α

′3

∫
d6p eip·x(−1+

√
(� + 1)2 + p2N

)
,

and

π̂ ij = δij − ∂i∂j

�6
.

It is instructive here to pause and calculate the canonical dimension ofT
ij
� (p). For

this we need to remember thatρ̄�
ij (x) has canonical mass dimension zero, and its Fourier

transformρ̄�
ij (p) mass dimension−6. For renormalization purposes we have absorbed a

factor of
√

α′R∞ in it so its canonical dimension changed to−7. Thus, the canonical mass
dimension ofT ij

� (p) is +7. This is reflected in (8.7), taking into account thatκ10 has
dimension−4.

We can evaluate the Fourier transform by using the following formula:

−1+
√

(� + 1)2 + p2N = 1√
π

1∫
(�+1)2+p2N

dz

∞∫
0

du e−zu2

= 1√
π

∞∫
0

du

u2

(
e−u2((�+1)2+p2N) − e−u2)

.

Assuming|x| �= 0, and expressingκ10 andα′ in terms ofMs, we obtain the result:10

F�(x) = − 3

2(2π)4

M14
s

|x|7 e−(�+1)|x|/√N

×
(

15+ 15
(� + 1)|x|√

N
+ 6

(
(� + 1)|x|√

N

)2

+
(

(� + 1)|x|√
N

)3
)

.

Note that for the modes with� �= 0, there is a contact term proportional to aδ-function at
x = 0.

The above result implies that at large distances the effective mass isMeff = (� + 1)/
√

N .
This is the same as the mass gap we found for the normalizable modes (previous section).

10 Remember that in our conventions masses, momenta and coordinates are all dimensionless (i.e., measured
in units ofMs = 1/

√
α′ ).
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We also observe that the “stringy” two-point function is independent of the presence of the
shell. This is not true for higher correlators because those involve the bulk-to-bulk propa-
gator (which is computed in Appendix A) and depend on the presence of the shell. A direct
calculation (up to projectors) gives:

F3(p1,p2,p3) ∼ lim
R∞→∞

∞∫
0

dr G�1(p1,R∞)G�(p2, r)G�(p3, r)

× B�1(p2 + p3,R∞; r)δ(p1 + p2 + p3),

and the result depends on the position of the shell via the bulk-to-bulk propagator
B�(p,R∞; r).

If, however, we restrict ourselves to the effective-field-theory region
√

p2N � 1, we
can expand the square root in a power series inp2N , keeping the first few terms. Such
terms can be removed by local counterterms, and the renormalized boundary data become

ρ̄�
ren,ij (p) =

(
R∞
R

)−�− p2N
2(�+1)

ρ̄�
ij (p).

We find

F
ij ;km

� (p) =
(

πikπjm + πimπjk − 2

5
πij πkm

)
2R2χ�(p).

This correlator is analytic in the infra-red. Thus, the presence of the shell seems to
completely break the conformal symmetry.

9. The spectrum of massless localized states

In this section we will investigate the spectrum of massless states localized on the
brane distribution atr = R. The correct but tedious procedure is to study in detail the
fluctuations of the background solution including theδ-function sources. We will, however,
take here a short-cut due to the fact that the background configuration is BPS, and
the massless fluctuations are constrained by lack-of-force condition and supersymmetry.
They correspond, therefore, to deformations of the brane distribution plus supersymmetric
patterns.

It is, therefore, enough to consider the background “BPS condition”, Eq. (3.3):

�4h = −2
N

R3
δ(r − R),

where we have assumed thath may depend in general on all four transverse coordinates
{ya, a = 6, . . . ,9} ≡ {r,Ω} (�4 is the corresponding “flat” Laplacian introduced previ-
ously). Our aim is to go beyond the spherical solution ofN five-branes, Eq. (7.6). Pertur-
bations of this solution involve deformations of the shell as well as of the charge density,
keeping the total charge fixed. Thus, the equation for the small fluctuations is

(9.1)�4(h + δh) = −4π2(I0 + δI(Ω)
)
δ
(
r − R + δf (Ω)

)
,
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where I0 = N/(2π2R3) is the unperturbed constant density of five-branes over the
three-sphere, andδI(Ω) andδf (Ω) small perturbations of the density and shape of the
distribution. Expanding Eq. (9.1) to first order we obtain:11

(9.2)�4δh = −4π2δI(Ω)δ(r − R) − 4π2I0δf (Ω)δ′(r − R).

In the rest of this section, we will try to get a flavor of the massless spectrum as it comes
out of Eq. (9.2). Let us expand the various functions inSU(2) spherical harmonics:

δh(r,Ω) =
∑

�,n,n′
h

n,n′
� (r)D�

n,n′(Ω),

δI(Ω) = − 1

4π2

∑
�,n,n′

A
n,n′
� D�

n,n′ (Ω),

δf (Ω) = − 1

4π2I0

∑
�,n,n′

B
n,n′
� D�

n,n′ (Ω),

and introduce them into Eq. (9.2); we obtain the decoupled equations:12

(9.3)h′′
� + 3

r
h′

� − �(� + 2)

r2
h� = A�δ(r − R) + B�δ′(r − R).

The condition that the total charge isN translates into

(9.4)RA0 − 3B0 = 0.

The regular solutions to Eq. (9.3) atr �= R are given by

(9.5)h�(r) =
{

a�r
�, 0 � r < R,

b�r
−�−2, R < r.

We can go further by matching theδ-functions. This leads to the following set of
relations:

R�a� = RA� + (� − 1)B�

2(� + 1)
, R−�−2b� = RA� − (� + 3)B�

2(� + 1)
.

In the case� = 0, e.g., taking into account the charge neutrality condition (9.4) we find:

h0(r) =
{

B0, 0 < r < R,

0, R < r,

which is normalizable. The other solutions (9.5) can be analyzed similarly. Furthermore,
a fluctuation analysis of the effective action again indicates that such localized modes will
have finite six-dimensional couplings if the norm of their wave functions, defined as

〈δh|δh〉 =
∫

d4y h(r)
(
δh(y)

)2
,

11 This expansion is formal. Strictly speaking it is valid away fromr = R.
12 As usual,−� � n,n′ � �. We will suppress then,n′ quantum numbers from now on.
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is finite (d4y is the “flat” transverse measure). It is obvious from the behavior of the wave
functions above that all are normalizable. This completes the determination of the spectrum
of the bulk and massless moduli.

A last comment is in order here. The continuous and smooth distributions of branes
we are considering are good approximations whenN → ∞. In particular, the spherical
distribution at hand, can be generated by puttingN single branes uniformly onS3. The
mean distance between nearest neighbors then scales likeR�s/N1/3. This implies that the
corresponding cut-off in the angular momenta is� < �0 ∼ N1/3. If we attempt a counting
of the massless modes we obtain:

# of moduli= 4

(
1+ 2

�0∑
�=1

(2� + 1)2

)
= 8

3
�0(2�0 + 1)(4�0 + 1) − 4 ∼O(N),

in qualitative agreement with the exact answer 4N .

10. Conclusions and further problems

We have investigated five-brane distributions, that have the property that the strong-
coupling region is absent, and they have high symmetry so that detailed calculations
become possible. A characteristic feature of the distributions we have studied is the
appearance of a “discontinuous” geometry, and, therefore, the need for including sources.
However, as we have explicitly shown, those are controllable backgrounds, and the study
of small fluctuations around them is well defined.

We have considered distributions that correspond to exact CFT’s albeit of a new kind.
They correspond to sowing together (in space–time) known CFT’s. The simplest example
is a spherical shell ofN NS5-branes distributed uniformly on anS3 in transverse space.
The numberN is assumed to be large enough so that the geometry is weakly curved, and
α′ corrections to supergravity negligible. The brane distribution can be approximated by a
continuous one, and, therefore, enjoy high symmetry (SO(4)).

In the interior of the shell the geometry and other background fields are flat. There
are five-braneδ-function sources at the position of the shell. We have shown that the
background fields are determined uniquely from the supergravity equations. The radius
of the shellR can be chosen large,R � √

N , so that the string coupling is weak outside
the shell. Inside the shell the string coupling is frozen. Thus, there is no strong-coupling
region in such a background.

We have also described a richer spectrum of such backgrounds using also negative-
tension branes. In the case of the D5-branes these are no-other than the orientifold five-
planes. For NS5-branes, their negative-tension cousins are “bare”Z2 orbifold five-planes.
A usual orbifold five-plane appearing as a twisted sector in closed string orbifold vacua is
a bound state of an NS5-brane and a bare orbifold plane that cancels the tension and charge
of the NS5-brane much alike the situation in orientifold vacua.

A special configuration (in type-IIB context) in this sense is one where in the interior
section is a D5-brane while asymptotically it is an NS5-brane. The two configurations
match on a shell of NS5-branes and O5-planes. No strong-coupling region exists also here.
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We have also studied the spectrum of fluctuating fields. These correspond via
holography to operators of the boundary LST. The effective field theory of such fluctuations
is expected to be a seven-dimensionalSO(4) gauged supergravity. It is obtained by
compactifying the ten-dimensional type-IIA/B supergravity (in the string frame) onS3

with the appropriate parallelizing flux of the antisymmetric tensor. The near-horizon region
of an NS5-brane corresponds to a flat seven-dimensional space and a linear dilaton in one
direction. This is the holographic direction.

We have explicitly solved for the fluctuations of some of the fields of the bulk theory.
These include the six-dimensional graviton (corresponding to the boundary stress tensor)
and its associated K–K tower. It turns out that the six-dimensional graviton satisfies an
equation without sources. We have found the normalizable modes and shown that its
spectrum has a mass gap∼ �+1√

N
Ms. This in accordance with an earlier CFT computation

[11,31].
The other set of fluctuations we have considered are the moduli modes which are

massless. These satisfy a Laplace equation with sources. The sources are crucial for the
existence of normalizable moduli modes as we have shown.

We have further studied the non-normalizable modes of the six-dimensional graviton
in order to apply the holographic principle. The symmetries of the background are
SO(4) × ISO(6). TheSO(4) corresponds to the R-symmetry of the boundary theory, while
the rest is the usual Euclidean group in six flat dimensions. This is unlike AdS-like spaces,
where also conformal transformations are boundary symmetries. The reason is that here
the boundary theory is massive.

Using the bulk supergravity action we have computed the boundary two-point function
of two stress tensors in the stringy (LST) regime. We can remind its features:

(i) its long distance behavior is massive with associated massMs/
√

N ;
(ii) in the formalN → ∞ limit it becomes power-like with a|x|−7 behavior;
(iii) the stress tensor has canonical mass dimension 7 due to a non-trivial IR wave-function

renormalization of its source;
(iv) it is independent of the presence of the shell and, as we argue, this is no longer true

for higher correlators.

One the other hand, in the effective-field-theory regime, a renormalized stress tensor
exists with correlators that depend on the presence of the shell, but it analytic at low
momenta implying that conformal invariance is completely broken.

There are several problems that require further study in relation with the approach
described in this paper.

The full structure and spectrum of fluctuations around these supergravity backgrounds
should be worked out. As for the spectrum, it can be obtained directly by anS3

compactification of the ten-dimensional supergravity. Finding, however, the interactions
of the massless fields might require a direct approach of gauging theSO(4) group in a
seven-dimensional reduction around flat space. This would be essential for performing
further concrete calculations of boundary correlation functions.

A further effort is needed in order to eventually interpret the supergravity results and
elucidate the physics of the boundary LST. Especially in the type IIA case, this is hampered
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by the lack of a useful low-energy effective description that can be used to interpret the
supergravity results. The hope is that the holographic amplitudes might suggest a useful
and transparent such description.

String corrections to the supergravity results will be useful to calculate. As mentioned
earlier this will entail solving a new kind of CFT, namely, one that has fixed walls in space–
time (and which translates into fluctuation boundaries on the world-sheet). Preliminary
investigation indicates that such a CFT involves D-branes with fluctuating boundaries. It
will be very interesting, and potentially useful to understand such CFT’s.
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Appendix A. Bulk-to-bulk propagator

We will compute in this appendix the bulk-to-bulk propagator in the background
corresponding to the spherical shell of NS5-branes given in (7.6), albeit in Euclidean
setting. There are four distinct cases,B±±

� (x, r;x ′, r ′), depending on whether the variables
r andr ′ lie in [0,R] (minus sign) or[R,∞[ (plus sign).

The Fourier transform,

B±±
� (x, r;x ′, r ′) = 1

α′3

∫
d6p

(2π)6eip·(x−x ′)B±±
� (p; r, r ′),

satisfies (for each partial wave�) the following equation:[
1

r3 ∂rr3∂r − �(� + 2)

r2 − Np2

r2

]
B++

� (p; r, r ′) = 1

r3δ(r − r ′), r, r ′ ∈ [R,∞[,[
1

r3
∂rr3∂r − �(� + 2)

r2
− Np2

r2

]
B+−

� (p; r, r ′) = 0, r ∈ [R,∞[, r ′ ∈ [0,R],[
1

r3
∂rr3∂r − �(� + 2)

r2
− Np2

R2

]
B−+

� (p; r, r ′) = 0, r ′ ∈ [R,∞[, r ∈ [0,R],[
1

r3 ∂rr3∂r − �(� + 2)

r2 − Np2

R2

]
B−−

� (p; r, r ′) = 1

r3δ(r − r ′), r, r ′ ∈ [0,R].

We impose the following conditions: regularity in variablesr andr ′ both at zero and
infinity, as well as continuity of the propagator and its first derivatives across the shell.
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The answer is unique:

B++
� (p; r, r ′) =



R2a

2a

bRI ′
�+1(bR) − aI�+1(bR)

bRI ′
�+1(bR) + aI�+1(bR)

(rr ′)−1−a, r > r ′,

R2a

2a

bRI ′
�+1(bR) − aI�+1(bR)

bRI ′
�+1(bR) + aI�+1(bR)

(rr ′)−1−a

+ r−ar ′a − rar ′−a

2arr ′ , r < r ′,

B+−
� (p; r, r ′) = − RaI�+1(br ′)

bRI ′
�+1(bR) + aI�+1(bR)

r−1−a,

B−+
� (p; r, r ′) = − RaI�+1(br)

bRI ′
�+1(bR) + aI�+1(bR)

r ′−1−a
,

B−−
� (p; r, r ′) =



(
bRK ′

�+1(bR) + aK�+1(bR)

bRI ′
�+1(bR) + aI�+1(bR)

I�+1(br) − K�+1(br)

)
× I�+1(br ′), r > r ′,(

bRK ′
�+1(bR) + aK�+1(bR)

bRI ′
�+1(bR) + aI�+1(bR)

I�+1(br ′) − K�+1(br ′)
)

× I�+1(br), r < r ′,
where

a =
√

(� + 1)2 + Np2, b =
√

p2N

R
.

Note that the bulk-to-bulk propagator is free of poles inside momentum space.
Moreover, its momentum-dependent coefficients go fast to zero at large momenta. In
Minkowski space, this propagator is still valid below the mass gap. Above the mass gap
the eigenfunctions of Section 7 should be used.
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