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We present a theoretical review and a detailed phenomenological description of the “flavoring™ of the bare
Pomeron pole at # = 0 (i.e., the nondiffractive renormalization of its multiperipheral unitarity sum by strange
quarks, charmed quarks, diquarks, . . .) from an “unflavored” intercept & = 0.85 to a “flavored” intercept
o~ 1.08. Experimentally, flavoring effects seem to converge rapidly; hence this number is probably close to
the bare intercept of the Reggeon field theory. We treat NN, w N, and KN total cross sections and real-to-ima-
ginary amplitude ratios. We do not observe oscillations. We pay particular attention to 2ogy - 0, 5 Which
rises monotonically. We present a closely related combination of inelastic diffraction cross sections which de-
creases monotonically, indicating that vacuum amplitudes are not simply the sum of a Pomeron pole and an
ideally mixed f. In fact we argue that a Pomeron +f structure is neither compatible with flavoring nor with
schemes in which flavoring is somehow absorbed away. In contrast, flavoring is required for consistency with
experiment by the Chew-Rosenzweig hypothesis of the Pomeron-f identity. We close with a description of
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Flavor and baryon quantum numbers and their nondiffractive renormalizations of

flavoring-threshold effects on the Reggeon field theory at current energies.

I. INTRODUCTION AND REVIEW

This paper presents a reasonably self-contained
" description of the theory and phenomenology of the
flavoring of the Pomeron.! “Flavoring” is a mne-
monic used to indicate that the quantum-number
content of final states building up the total cross
section is energy-dependent, and this gets re-
flected in diffraction scattering calculated using
unitarity in a rather well defined way. The first
related idea was the observation that the rise in
a;,‘?" seems correlated with the observed increase
of the inclusive cross section ¢(pp~BB+°++*).2
Qualitatively, the essential point is to recognize
that vacuum combinations of total cross sections
can and apparently do have the behavior sketched
in Fig. 1. This behavior is characterized by two
simple power behaviors, one at low s and one at
reasonably high s, with a transition region between
them around s ~ s*, where XX inelastic pair pro-
duction starts. Actually, there are several rele-
vant XX thresholds s*, which are rather well sep-
arated from each other. At lower energies we
have predominantly 7 production due to nonstrange
quarks, and as we increase the energy first KK,
then BB, and finally DD () production enters.?
The “thresholds” for appreciable XX production
are in fact kinematically delayed and reflect the
heavier strange-quark mass, quuark mass,
charmed-quark mass, etc., for any undiscovered
heavy quarks. The leveling off and rising of total
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cross sections as the energy increases are thus
correlated®® to the observed rises in production
of KK and BB pairs (charm production is a tiny
correction) which possess quantum numbers
(s,B,C,...) not produced appreciably at lower
energies. We therefore speak of the “flavoring”
of the Pomeron from the energy dependence of the
SU(N)-flavor and baryon-number content of the ob-
served particle production. Strictly speaking we
should say “SUN) flavoring and baryon-number
effects” instead of “flavoring effects”. Our use of
the abbreviated terminology should cause no con-
fusion. One can imagine any number of flavors,
but as we shall see it does seem that the flavoring
effects converge at present energies.

The idea here is somewhat like the idea that
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FIG. 1. Ilustrative behavior of a total cross section
showing the low-s unflavored energydependence s* !
renormalized to the high-s flavored energy dependence

s% ! by the XX flavoring effect in the transition region.
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R=0(e*e”~ hadrons)/o(e*e”~ pu*p”) scales different-
ly on either side of a threshold for exciting a new
flavor, e.g., charm. There are dynamical differ-
ences (e.g., Regge vs asymptotically free parton
scalings, effective delayed vs exact flavoring
threshold positions, counting the diquark as a
“flavor” here since no g2—« argument is around
to break it up, etc). These differences should not
obscure the similarity that “unflavored” scaling
can be a useful concept and that flavoring thresh-
olds can renormalize approximate scaling laws.

The following questions suggest themselves:

(A) How do we reconcile flavoring with the Regge
formalism in which trajectory intercepts are num-
bers which are not energy dependent?

(B) How does flavoring influence the Reggeon
field theory?

(C) What is the relation to the two main diffrac-
tive models, the traditional Harari-Freund (Pom-
eron plus exchange-degenerate f) approach and
the more recent Chew-Rosenzweig-Chan Pomeron-
f identity approach®7s® based on Veneziano’s flavor
topological expansion?®

(D) Can threshold effects have any a priori rele-
vance since unitarity effects might cancel them
out? Which thresholds are relevant?

(E) How useful is flavoring in correlating data?

Although all these questions have been dealt with
to some extent in the literature, it is worthwhile
to review the results as well as summarizing the
contributions of the present work.

A. Flavoring and Regge poles

Regge-pole intercepts are indeed numbers. The
crucial point is that we must be precise in speci-
fying which function a pole is in.!° The unflavored
bare Pomeron P with intercept & (@~ 0.85) is the
leading pole in a function A ; called the unflavored
vacuum approximate partial-wave amplitude. The
flavored bare Pomeron P with intercept o
(@~ 1.08) is the leading pole of a different function
A,, called the flavored vacuum approximate par-
tial-wave amplitude. A; is the partial-wave pro-
jection of the “best” multiperipheral approximation
to ot°t(s) for s<sX (m=K,B,C) which contains only
nonstrange-quarkloops. A; is the partial-wave
projection of the “best” multiperipheral approxi-
mation to ot°(s) for s>s*, which contains non-
strange-, strange-, di-, andcharmed-quark loops.
That is, KK, BB, DD production terms have been
added to the multiperipheral kernel. It should be
remarked that these terms may be dominated by
resonances—i.e., K*K* or-N*N* rather than KK
or NN. This is a detailed dynamical point. Strong-
coupling multiperipheral models!* generally con-
tain the requisite effective thresholds!?'3? due to
tmia effects, as we shall illustrate in the Appendix.

Apart from that, we do not know how to construct
“pest” multiperipheral models. Instead, we use
prototype forms for ﬁj and A ; which will be com-
mon to any strong-coupling multiperipheral model,
and determine the parameters from experiment.

We remark parenthetically that in terms of the
topological expansion to the cylinder level, both
planar and nonplanar quark loops exist. Any quark
loop in the amplitude can be cut by a unitarity cut
to form a production cross section, but planar
quark loops need notAbe cut. For consistency, we
should demand that A; have no flavored quark loops
whatever. The extent of planarity or nonplanarity
of the flavored quark loops has to be determined
from experiment. A possible way of doing this is
discussed below in subsection IE.

The canonical example!»® of all this is to define

A =peoi(j - a)™, (1.1)
A =Bei(j - —ge™i)™, 1.2)
N _ crico dj (S )j"J..
U(S)—fc-m i \50 A, (1.3)
and
c+ico d] s ) =1
G(S)——/;-,-w 5 (; A,, (1.4)

with ¢ to the right of all singularities of A Ay

The example has been set up so that o(s)=5(s)
if In(s/s,)<b +b, representing nonstrange-quark
production, while for In(s/s,)>b+b,, flavored-
quark production occurs. The multiperipheral
summation in the flavored-quark coupling g gives
A,

jNow by (a) expanding Eq. (1.4) in g and integrat-
ing term by term, or (b) picking up the poles of
A, in Eq. (1.4) by moving the contour to the left,
we get the two exact results listed below for s
>5,e%0: ‘

~

a=1

+0(g)6 [m (Es;) —b-bo] o0 (1.52)
- Z:si (:—0) " (1.5b)

The equation {4 [j = @,(£)]j* =0 gives the flavored
trajectories. There are an infinite number of
them; the leading one is the flavored P. This is
in contrast to the presence of only one unflavored
trajectory (P) in the example.

Now if we are in the region where no flavored
quarks are produced, o(s) is independent of g and
is very simply described by the Mellin transform
of the unflavored amplitude ffj, i.e., Eq. (1.5a).
The description in terms of the flavored trajecto-
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ries is both cumbersome and unwarranted in this
region. If In(s/s,)> b +b, on the other hand, the
description in terms of the leading flavored tra-
jectory is both simpler and physically reasonable.
For In(s/s,)~ b +b, neither description is a priori
more convenient than the other, although in prac-
tice it is simpler to add the threshold effects di-
rectly to the unflavored &(s).

This completes the discussion of question A. It
should now be obvious that we are notf dealing with
anything like “energy-dependent poles”, but with
Regge theory in the presence of thresholds. We
now turn to question B.

B. Flavoring and the Reggeon field theory (RFT)

Flavoring thresholds are generally not explicitly
included in the RFT.!* Therefore the flavored P
with intercept ¢ is the RFT bare Pomeron.!® The
RFT Lagrangian need not contain a reference to
flavoring if the following two conditions are met:

(a) If analog critical behavior o(s)~ (Ins)™ is
reached as s = «; the thresholds are irrelevant
variables as far as the value of y goes.

(o) If we restrict our attention to energies well
above all flavoring thresholds. This probably!®
entails very high s even if, as we believe, the
flavoring effects converge. Scaling laws'® which
approximate RFT perturbation theory at low s con-
tain nonasymptotic self-P interaction corrections
but not flavoring corrections, and are thus incom-
plete. Flavoring explicitly affects the finite s be-
havior of suitably modified RFT perturbation theo-
ry.!® It also has an a priori influence on whether
critical behavior is actually reached as s~ «, cor-
responding to the nonuniversal nature of the criti-
cal temperature. The lattice analogy is a solid
with impurities.'®

C. Flavoring and the issue of a separate f

Flavoring is never included in the traditional
Harari-Freund (HF) parameterization. We believe
that this is an error. Energy-dependent baryon
and SU(N) flavor mass splitting effects in final
states exist and lead to renormalization effects on
the order™* of @ ~a& ~0.2. This is consistent with
the Pomeron-f identity hypothesis of Chew and
Rosenzweig,® an hypothesis also implicit in the
fundamental work of Chan et al.” in their dual un-
itarization phenomenology. Now flavoring does .
introduce a secondary spectrum in A,, but because
this spectrum is flavored it cannot approximate
an unflavored ideally mixed f trajectory at £=0.!
The secondary A ; Spectrum also invariably con-
tains complex poles, and if it does contain a real

- pole it is well below 3 in strong-coupling models

(-0.2 in Ref. 17). It is a challenge to the tradition-
al Harari-Freund approach to describe the energy

dependence of particle production ratios and total

cross sections.

D. Flavoring and absorption

It was soon suggested by Einhorn and Nussinov'®
that one could not a priori ascribe the rise in u},g‘
to a threshold effect due to possible reductions in
other channels. The correct response to their ob-
jection was given by Tan.* We sharpen his argu-
ments in Sec. VI by showing that if absorption does
cancel flavoring it also probably introduces a com-
plicated j-plane structure not of the HF type. We
see no reason why absorption should be particular-
ly correlated with flavoring—or why in a world
dominated at present energies by short-range or-
der it should be particularly strong in the first
place. There is a caveat—flavoring at CERN
ISR probably does not occur at small impact pa-
rameters since o(b, s) at b~ 0 is rather constant
in s. Our work suggests that BB production would
lead to contributions only at small ¢ in an overlap-
function calculation, producing its main perturbing
effect at large b.*

Which XX thresholds are relevant? We have as-
sumed that the relevant thresholds are quantum-
number dependent. Another possible effect, em-
phasized by Balazs,'® is a possible renormalization
due to nonstrange clusters of higher mass. We
effectively assume that these effects are either
unimportant or else that a heavy cluster of many
pions is an iteration of whateyer nonstrange light
clusters go into building the A; spectrum and so
are already included. We do not, in fact, agree
with Ref. 19 that tensor-meson (e.g., f) production
is an important renormalization effect since both
vector- and tensor-meson production appear in
low-energy multiparticle states and thus are al-
ready included in the P (cf. Fig. 6 in each of Ref.
20). To the extent that we are wrong, the renor-
malization of & into @ will increase, and to obtain
the same phenomenology we ourselves will need
to invoke absorption of some sort. In fact we will
do our phenomenology with very small (or zero)
eikonal cuts, so there is indeed a margin for cor-
rections, although they cannot be major ones if
our picture is to survive.

E. Flavoring and the data

The utility of flavoring follows from the observa-
tion that we can indeed closely correlate the
shapes of total cross sections with the energy de-
pendence of particle production quantum numbers.
The one additional ingredient is the requirement
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that data below flavoring thresholds should be
spccessful}y described in terms of the unflavored
P pole in A,. The systematics of two-body data .
for s <60 GeV? can indeed be described with the P
intercept & =0.85, a standard set of nonvacuum
secondary Reggeons, and a simple cut structure.?
Specifically, a global fit in the spirit of Hartley
and Kane? has been performed to 1000 pieces of
0°3*~ 0"3* data. The real part of the P amplitude
solves the famous phase problem.?? An exchange-
degenerate f was not included (although there was
a vacuum pole at 0 playing a minor role). Hence
the Pomeron-f identity is implicit in that work.
Diffraction dissociation data have also been ex-
amined within this framework.?® The addition of
flavoring now enables us to describe data over the
full energy range. Since we use inclusive data®

to specify the & -~ a flavoring renormalization, we
are by definition constrained here to {=0. The ex-
tension to £# 0 is indeed possible but would be
model dependent in that the ¢{ dependence of param-
eters, like g(t) in Eq. (1.2), is unspecified by in-
clusive data directly.

Specifically, we consider the vacuum part of oﬁj’v‘
for NN, nN, and KN scattering. We show that the
same flavoring (with changes made only in external
couplings) gives excellent descriptions of all three
processes, with smaller cuts than those used in
Ref. 21. We believe that this extension of previous
phenomenology gives strong evidence in support of
the flavoring hypothesis.

Quigg and Rabinovici** (QR) noticed the presence
of a monotonically rising behavior of the combina-
tion

T=20 — 0,y (1.6)

of total cross sections having the ideally mixed
piece removed. They suggested that this behavior
was evidence in favor of the HF scheme with a
Pomeron pole at around 1.08, an ideally mixed f,
and negligible cuts. We have two remarks:

(1) We obtain a fit to & which is at least as good
as QR, and which is, moreover, consistent with
oyy at ISR energies.

(2) We will exhibit a combination of inelastic dif-
fraction cross sections recently measured at
Fermilab® which is directly comparable to &, but
instead of increasing, it decreases. We therefore
disagree with the assertion that & measures any-
thing fundamental. )

None of our results for o}3 exhibit strong oscil-
lations. This is in spite of our explicit inclusion
of threshold effects, and in spite of the fact that
the spectrum of the flavored A, contains complex
poles. This differs from previous statements con-
necting threshold production and oscillations in
ot°t (Refs. 12 and 26) which were made on the basis

of a truncated set of complex poles in equations
like Eq. (1.5b). Our belief is that this truncation
can be unreliable, and it is more accurate to add
threshold effects explicitly to the unflavored pole
contribution as in Eq. (1.5a), thus avoiding possi-
bly extraneous oscillations. A related statement
is that the existence of flavoring thresholds does
not mean that ¢*°* has to change suddenly, even
with 6-function-type thresholds. Our parametiza-
tions include zeros softening the thresholds. The
resulting curves for o'° are very smooth.

Analyticity demands that threshold effects show
up in the real parts of amplitudes even below
thresholds. We examine this effect in detail using
an exact dispersion relation and show that the re-
sults are consistent with experiment. The effect
of flavoring is to provide an increasing real to
imaginary ratio. This resolves the criticism of
Romao and Freund® who noticed that the Pomeron-
f identity without flavoring cannot describe these
data.

We deal in this paper only with the flavoring of
the Pomeron. An attempt has been made to deter-
mine the flavoring of the p,?” but used a weak-cou-
pling model to determine the relevant flavoring
couplings. A model-independent determination of
these couplings would involve examination of KK,
BB, ... production in both 7*p and 77p and sub-
tracting them. This would determine the planar
part of the flavoring couplings.

A final very interesting and important application
of BB flavoring has been made to the high-energy
rising behavior of the rapidity plateau at y =0.%
These authors show that these data can be accom-
modated by including the extra pions associated
with the threshold rise in NN production (i.e.,
pions that appear on either side of the NN pair in
the multiperipheral amplitude). Significantly this
can be done without any NN annihilation effects,
consistent with our conclusions here.

The organization of the rest of this paper is as
follows: In Sec. II we discuss the explicit flavoring
model in more detail. Then we present, in Sec.
III, a discussion of NN scattering. Section IV
discusses TN and KN scattering. In Sec. V we
discuss the QR hypothesis, and in Sec. VI the issue
of absorption. In Sec. VII we discuss the effects of
flavoring on the RFT and in Sec. VIII we draw our
overall conclusions from this study. The Appendix
contains the formalism concerning multiperipheral
models and effective thresholds.

II. FURTHER DESCRIPTION OF THE MODEL

Our normalization for the non-spin-flip elastic
amplitude for the process ab~ab is the usual one:

olet(s) =ImT (s, 0)/AY 2(s, m 2, m;?) . (2.1)
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We define the Mellin transform A 4 of T(s) as fol-
lows:

ImT (s) = f e = (sio) ‘a,, (2.2)

c i
where ¢ is to the right of all singularities of A,
and s, is arbitrarily specified as 1 GeV2. The full
amplitude T'(s) is obtained by including appropriate
signature factors in the integrand, as can easily
be seen using the real analyticity of A, in j below
t-channel thresholds (=0 here, of course). The
even-signatured partA of A, gives the crossing-
even amplitude T%,(s) =3 (T, + T5,) as

'+ c+io dj s i e -irj/2 .
T*(s)=- fmw Sk (E;) s 4 @)
By inserting the inverse of Eq. (2.2) for A} into
Eq. (2.3) and using Cauchy’s theorem to pick up
the poles of sin(rj/2) it can be seen that Eq. (2.3)
is equivalent to the crossing-even dispersion re-
lation with one subtraction if 1<c<2, namely,

*dy’ ImT*(y’
ReT*(y) = RGT*(O)+ P V n}2 (Vz) ’

(2.4)

. where we have substituted the variable v=(s —u)/2
for s. We continue to use Eq. (2.2) for simplicity;
this makes no difference at the energies we will
be considering. Equation (2.4) will be used to cal-
culate the real parts of our I =0 elastic amplitudes.
We cannot use “derivative analyticity relations’?®
obtained by replacing j~ 8/8In(s/s,) in Eq. (2.3),
because this replacement does not commute with
the integral over the Sommerfeld-Watson contour
for the amplitudes that we will be dealing with.

We parametrize A, as a generalized form of the
example given in the introduction, namely,*

N;
475t | (2.5)
with
N gpe 8!
D,=j-0Q = e = T 2.6
=7 (4 —]K)"K (4 _]B)"B ’ (2.6)
and
. g e i gpeni
N ,=Be %’ [ P . 2.7
i B (] .'IA)"A (4 -JD)"D @.7)

As explained earlier, the exponentials in j yield
the thresholds in rapidity. We can see this by ex-
panding (D)™ term by term in g, and g5 and per-
forming the Sommerfeld-Watson integral. I
n,=0 (m=K,B,\,D), atypical term looks like

erie @i s\ e"ni 144
G (5 e _a(1,)eb
-[c-,w 2mi (so) (G -ay (¥,)e al
(2.8)

where Y,=1n(s/s,) - b, and b, is determined by
which term is being considered. The 6 functions
produce the thresholds. This is a particularly
simple type of threshold and is clearly not exact
since small amounts of KK, BB, DD(!) production
are observed at low energies, but it is a good ap-
proximation nonetheless. We do not expect that
improvements on this level will change anything
qualitatively. There is one improvement which is
important phenomenologically though, and that is
the necessity of softening a threshold rise above a
0-function cutoff. This is accomplished by choos-
ing n,# 0, making the j-plane behavior of N; and
D, more singular in j and thus less singular in Y.
Specifically, Y= Y""*!) in Eq. (2.8) near ¥,=0,
when the term (j -j,)™™n is included.

We find that we can obtain satisfactory results
withng=ny=1 and n,=n,=2. There are both dy-
namic and kinematic sources for such singularities
in D, and N, within multiperipheral models. One
example is Regge cuts near j=0, coupling onto a
produced XX pair as would occur in a multi-Regge
model without planar couplings. Another is a pole
at j=0(n,?) from pion exchange when ¢,,, effects
are correctly included.!®3° A third is nonsense
poles at j=-n, resulting from the use of @, func-
tions in the group-theoretic version of the inverse
(Froissart-Gribov) transform of Eq. (2.2).}* We
certainly expect softened thresholds in a multi-
peripheral model with full three-dimensional kine-
matics (cf. the Appendix for further discussion).
We regard our parametrizations for the present
as phenomenological constructs to make our sim-
plified model more realistic. We set jy=jz=0
correspondlng to the above discussion. We also

-take ]D-Za 1 and j, =2a,, —1 as the positions of

the P X P and K* XK* cuts, respectively. Better
but more complicated parametrizations like
[ =jp)]™ could be envisioned with (j —j,)™ being
a pole approximation to the P X P cut and j™ being
associated with the triple-ﬁ vertex resulting from
effects like those discussed above [cf. Eq. (2.14)
of Ref. 13]. Use of the P XP cut is consistent with
triple-Regge phenomenology within this context.?®
We now elaborate further on the various terms
in N; and D,. The factor e in N, determines
the overall normalization as well as the threshold
energy s, = sqe’ above which the unflavored bare
Pomeron P amplitude can be considered a reason-
able approximation to T*(s). The g, term repre-
sents associated production like pp — (A, Z, -)KN
resulting from K*-like exchange in the production
amplitude (hence our use of j, =20, — 1 above).
This term gives a contribution of only about 1 mb
in oyy, and it is determined by the difference be-
tween the K* and K~ multiplicities. It is a vertex
effect, and does not renormalize the P intercept.
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The g, term is the absorptive contribution to gtot
due to inelastic ¥~1 diffraction, viz, pp—~pX. Its
magnitude is adjusted to agree with conventional
estimates.?! As already mentioned we-do this with-
in the context of the triple unflavored PPP graph,
which was used in Ref. 23 to fit the data. Actually,
some flavoring is built into this term by the g,

and g pieces of the D, function, but these effects
are limited by phase space. The sign -g,<0 is
that of the RFT.** That is, its contribution is nega-
tive in o*°t and so it implicitly contains the final
states implied by the Abramovskii-Gribov-Kancheli
cutting rules. Itis the‘only nontrivial connected
RFT graph we include; all others are negligible

at present energies. (See Sec. VII for a more
complete discussion of flavoring and the RFT).

The most important part of the physics is in the
denominator function D;. The terms proportional
to g, and g5 represent KK and BB production, re-
spectively. In the expansion of A, in powers of g
and g5, the term proportional to g% represents
production of # (KK) pairs, either K*K~ or K°K°.
The g, term represents both pp,nn production and
possible NN—nw annihilation effects.'®*?'32 Charm
production is very small at present energies; we
ignore it.

The final piece of D, is D,;=j —d. This is of
course the unflavored piece of D;, and as we have
repeatedly emphasized is due to nonstrange short-
range-order cluster production. In models, ﬁj is
considerably more complicated, with an explicit
dependence on nonstrange cluster parameters and
couplings. We are not investigating the details of
how the P is generated, ‘'so we use the simplified
form of 13, and take & from low-to-moderate-ener-
gy fits, as described in the introduction. Thus the
nonstrange multiperipheral model has already been
summed, and we merely investigate how the P is
renormalized via flavoring into the Reggeon-field-
theory bare Pomeron. Below flavoring thresholds,
the P amplitude

, s\ ¢ ,
ImT(s) =8 <s——) 6(Ins - Ins,y) (2.9)
th .
gives the only contribution to ¢t°t in the model.

To summarize, inelastic KK, BB, ... production
renormalize the whole amplitude and in particular
renormalize the intercept. However, diffractive
dissociation and associated production renormalize
only the residue.

III. NN SCATTERING

We have presented results for the vacuum oy
=3(0,,+03,) total cross section elsewhere.! We
give here an improved version of this fit. Our new
parameters are given in Table I. Our procedure

TABLE 1. The theoretical curves in the figures for NN scatter-
ing come from the amplitude of Egs. (2.6) and (2.7), with
parameters as given in this table.

gx = 0.498 by = 1.02
gy = 1.845 by = 2.78
g, = 0.396 b, = 0.19
gp = 0.220 by = 1.24

B = 745 bo = 1.8

The following parameters were kept fixed:

a = 0.85 so = 1GeV?
ix =ig=0 ng = ng =
iy =-06 n, =2

ip =07 ny =2

was to perform a least-squares fit to oyy, (ng+),
(ny-), and (np) for ten representative energies
from s =20 to 4000 GeV2. Cross-section data were
taken from Ref. 33 and o3, was extrapolated to ISR.
The multiplicity data are from Antinucci et al.?
for pp scattering; we assume pp multiplicities are
the same.

The vacuum oy, is shown in Fig. 2. We see that
the energy dependence is well fit, including the
flat region at Fermilab energies. Fermilab hap-
pens to be in the transition region in the sense of
Fig. 1. The energy dependence at ISR is absorbed
down from the asymptotic P behavior by the g,
term to a less rapidly rising behavior. As men-
tioned above, we see no pronounced oscillations
whatever, such as have been associated earlier
with threshold models.'?2® We find that using the
flavored P and one pair of A; complex poles does
produce oscillations and does not represent oy
nearly as well. This is shown in Fig. 3, where
the parameters are the same as in Tables I and II.
The N, singularities are also included. Adding the
second pair of A, complex poles yields curves in-
distinguishable from the present fit above s = 10
GeVz, ,

The relative contributions to o,y of the various
terms are plotted in Fig. 4. We note that KK pro-
duction is very important in flattening out the en-
ergy dependence of oyy from its 5% pehavior at
low energies. BB production is mainly responsible
for the rise in oy at ISR energies. We find the
flavored P at a=1.085 for this fit. Omitting the
BE contribution but keeping the other parameters
fixed yields the strangeness-only flavored inter-
cept “@”=1.,02. Thus strangeness flavoring pro-
duces a renormalization (Aa),~0.17 while baryon
“flavoring” only produces (Aa),~0.06. Since
charm production would produce an even smaller



18 FLAVOR AND BARYON QUANTUM NUMBERS AND THEIR... 309

P 1 | P vaal | P
10 20 40 100 200 400 1000 2000 4000

s (GeVv?)
FIG. 2. The total NN vacuum cross section ¢ yy
=4 (05p +0%,) (Ref. 33) compared with the model. The
upper ISR points were used in the fit.

(aa),, it appears that the flavoring renormaliza-
tion is converging rather rapidly.

The multiplicities are plotted in Fig. 5. The K
multiplicities are somewhat high, although close
to the errors which are about 10%. The p multi-
plicity is satisfactory where we assume (n;)
=3(ny5) (note that p’s can come from K, N*, etc.,
which are not explicitly measured). Now g5 theo-
retically includes the possible production of BB
pairs which annihilate into nm,®+32 assuming that
these pions cannot be regarded as an iterate of
low-mass clusters already included in the multi-
peripheral sum. We draw support for our neglect
of this effect from the important work of Tan,
Tow, and Chiu®® who successfully correlate the
rising inclusive plateau at y =0 at ISR energies
with the extra pions from the BB flavoring term,
but without annihilation. I annihilation effects ex-
ist anyway, they will lower our no del prediction
for (ng. In that case, increasing g, to refit (nz)

1 1 1 | 1 1

38 TR I
10 20 40 100

200 400 1000 2000 4000
s (GeV?)
FIG. 3. Comparison of the fit shown in Fig. 2 with the
sum of the flavored P and a single pair of complex poles,

plus the N; terms.

TABLE II. Location of the flavored bare Pomeron intercept
and the intercepts of the first two pairs of complex poles in
the flavored vacuum approximate partial-wave amplitude A ”

i Re o ) Im oy
1(P) 1.085 0
2 0.093 *1.05
3 -0.621 +3.14

would increase oy, and thus require compensating

~ absorptive effects in oyy. Our present NN phenom-

enology does not include absorptive P XP cuts, so
that some leeway could be envisioned. At any rate,
it is clear that there is a strong correlation be-
tween the KK and BB production cross sections
and the energy dependence of the vacuum total NN
cross section, and our simple model gives a good
description of the overall effects.

We now discuss the real part ReT*(s) of the NN
vacuum amplitude. We determine ReT* from the
crossing even dispersion relation, which was found
to be numerically more quickly convergent than
performing the Sommerfeld-Watson integral.
Specifically, we extrapolate the bare ImT ampli-
tude in the dispersion relation down to 4m,* and
use the flavored pole amplitude ImT* defined by
Egs. (2.2)-(2.7) out to s == even though we know
that Reggeon-field-theory effects have increasing
importance. We expect that our ignorance will
have an effect on ReT™* at the highest ISR energies,
which is sensitive to ot past ISR. We also ignore
low-lying vacuum poles, although they are at least
needed to reproduce NN polarizations for s <10
GeV2.3 For simplicity we assume that these ef-

T LI N B BN | T T T T
501 4
a0t 4

E
30 -
=y

£

° 20k -
101 > 10p1 vl

R
[¢) M 1l 1 L
10 20 40 100 200 400 1000 2000 4000

s (GeV?)

FIG. 4. Individual contributions to ¢ yy as predicted
by the model. & is the P contribution alone. o xand
o p are the KK and BB terms. ¢ p is the inelastic diffrac-
tion cross section for pp —pX near x~ 1 included in
o yy absorptively. ¢, is due to associated production.
o, im=K,B,D, ) are defined as being proportional to
&, in the expansion of Egs. (2.5)—(2.7).
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FIG. 5. K*, K™, and § multiplicities in pp interac-
tions. The K~ and  curves determine ¢ x and o g in
Fig. 4.

fects just cancel the subtraction constant ReT*(0).

The predicted NN vacuum ReT*(s) with-the above

assumptions is shown in Fig. 6. At low s, the sign
of ReT" is determined by the negative P contribu-
tion, and as the flavoring thresholds are passed,
ReT* crosses 0 and becomes positive (for s>300
GeV?), thus approximating the flavored P value of
ReT*. At intermediate transition energies, ReT*
does not resemble anything simple, as expected.

We now compare our results with experiment.
Data for pp scattering are not available at high
energies. Instead we parametrize %(o;p— 0,, using
a simple w-pole amplitude T ,, where

T,(s)=8, (f;) " 14 3.1)

We take B,=28 mb — GeV” and s,=1 GeV®. This
parametrization is reasonable down to about
s=6 GeV®. As before, we neglect lower-lying
terms which are important at lower s.

The results for p,,=Re(T*-T,)/Im(T* -T,), the

= scale

(102 mb Gev2)
@®
T

(10® mb GeVv2)

Re T
o
Re T

=
b -~
~

scale -~

T . 1 i
-4 ,\/ N - —
P A 1

N

-8 Il 1 hY
10 20 40 100 200 400 1000 2000

s (Gev?)

FIG. 6. The real paft of the forward NN vacuum
amplitude from the fit with comparison to those of the
* P and P amplitudes. Note the change in scale.

-0.5 Il PR B SR | 1 P B S SRR | 1 PRl
10 20 40 100 200 400 1000 2000 4000
s(GeV*)

FIG. 7. The forward pp real-to-imaginary amplitude
ratio. Data from Ref. 35.

pp real to imaginary forward amplitude ratios, are
plotted in Fig. 7. It is seen that p,, rises smoothly
as a function of energy, and inclusion of just the

P and w terms does a good job of describing the
data® from s =10 to 1000 GeV?. Past s =1000 GeV®
the model is a bit low compared to the latest ISR
data, but basically it is correct.

IV. 7N AND KN SCATTERING

In an earlier work,? a global fit to meson-nucle-
on data was performed at low-to-moderate ener-
gies s =10-60 GeV?®, using the unflavored bare
Pomeron P as described in the Introduction. This
work utilized more elaborate amplitudes and
looked at far more data than we are capable of
here. On the other hand, we are now able to de-
scribe the vacuum 7N and KN total cross sections,
0,y and ogy, over the entire energy range from
P14, =5 to 500 GeV/c, in addition to real to imagi-
nary parts. This confirms the speculation of Ref.
1 where a preliminary step in this direction was
made.

Our procedure in applying the model to these
processes is quite simple. Lacking information
on KK and BB production multiplicities analogous
to Antinucci ef al. for meson-nucleon scattering,
we make the simplest assumption, valid in a
multiperipheral formalism, that the internal cou-
plings and subenergy thresholds should be the
same for all vacuum processes. Thus D, should
be unchanged. In principle all terms of N ; could
change, but for simplicity we have only allowed
the overall normalization 8 and lowest-threshold
scale b, to vary. We also allow vacuum eikonal
cuts, since these did play a role in the global fit.
Since flavoring renormalization and absorptive
cuts both have the qualitative effect of increasing
the logarithmic derivative of o*°, we expect these
cuts to be reduced here. We have simply taken



TABLE III. Parameters for #N and KN amplitudes; all
parameters are the same as NN (Table I), except the following:

N KN
B = 258 B =169
by = 1.28 by = 1.0
S.v = O Skw = 025

the eikonal P X P cuts of Ref. 21 for 7N and KN
scattering and multiplied them by overall strength
parameters ¢,y and £, respectively. Flavoring
effects in the cuts were ignored. We then find that
our best fits have £,y =0 and £,,=0.25. The other
parameters are in Table III.

The results for the vacuum total cross sections
o,y and oy are plotted in Figs. 8 and 9; the data
are from Ref. 36. We find a remarkably good fit
in each case, over all accessible energies above
5 GeV/c. The fit is especially satisfying since we
have not needed to adjust the parameters in D ; de-
termining the flavored Pomeron. We consider this
to be significant support for the existence of flavor-
ing effects. .

The real parts for T}y and T}, are again calcu-
lated using the dispersion relation. The 7N results
are plotted against the sum of the 7*p and 77 data®’
in Fig. 10 and are seen to be in reasonable agree-
ment with experiment. The divergence from the
apparently flat shape of the data below 20 GeV/c
is also found in careful dispersion-relation analy-
ses.® It differs from the results of Ref. 21, where
it was made a requirement of the global fitting
program that the Re/Im data be fit as quoted below
30 GeV/c. The present treatment extrapolates
the Fermilab p,,~0 data nicely.

The results for the vacuum p,, are plotted in
Fig. 11. The KN experimental data® are not very

24

23 L " N

'y A e . I 1
10 20 40 100 200 400 1000 2000 4000

s (GeV")
FIG. 8. The vacuum 7N cross section ¢, y=5(o,+ »
+04-,). Data from Ref. 36.
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FIG. 9. The vacuum cross section ¢ gy=% (0 g+ pFOK-p
+0 gt ,+0og-,). Data from Ref. 36.

good; we have only K*p and K™p data and have had
to interpolate when they are not available at the
same energy. Since we do not have K*: data we
cannot exclude the A,, the net effect of which would
be to make the predicted curve for p,y somewhat
more negative at low s, leaving it unchanged at
high s. We have not bothered about it. We can say
that our calculated amplitude follows the general
trend of the data.

V. FLAVORING AND THE QR HYPOTHESIS

Quigg and Rabinovici®* were led to examine the
I=0 combination

T=20yy =0y, (5.1)

which has no ideally mixed component by construc-
tion. © is plotted in Fig. 12. It is seen to be uni-
formly increasing with energy, and was taken in
Ref. 24 to be evidence that the Pomeron is a sim-
ple pole of intercept 1.08, separate from an ideally
mixed f. The rising behavior of ¢ is not fundamen-
tal in our scheme, which incorporates the Pomer-

0.2 T T T T | LELALELRE | T T

0.l B

o3l La il R BT L
4 10 20 40 100 200 400

Rag GeV/c)
FIG. 10. The forward vacuum 7N real-to-imaginary
amplitude ratio. Data from Ref. 37.
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FIG. 11. The forward (K p+K~p) real-to-imaginary
amplitude ratio. Data from Ref. 37.

on-f identity. Since we have already seen that-o,y
and o, have been accurately described, & must
also be accurately fit. As can be seen from Fig.
12, this is indeed the case. Note that the data
themselves suggest a departure from a simple

power law, exhibiting a slight break, which we fit.

If the QR hypothesis is valid, factorization im-
plies that it must be valid in any vacuum process

for which the ideally mixed component is removed.

QR tested their idea on NN scattering, where it
worked qualitatively but not quantitatively, espe-
cially at ISR energies. They ascribe this to un-
specified absorption effects. While this is con-
ceivable, we now exhibit a more direct test in-
volving recently measured 7% —~7*X and K* — K*X
diffraction-dissociation data at Fermilab.?® The
results are that while these data do not exclude
the QR hypothesis, they certainly a priori argue
against it.

Consider the inelastic vacuum-exchange ampli-

tude T3,. ;x(s,#; M,?) for small, fixed M,* which,
20 T 1rrrr ] l T T TV T 1717 T
8 -

20xn - Oy (mb)
o
I
1

] A | | [ e | 1
4 10 20 40 100 200

Ras (GeV/c)

FIG. 12. The combination ¢ =20 xy— o,y of total
cross sections.

following QR, we assume is dominated by the sim-
ple P and f poles, the latter being ideally mixed.
We will not.dualize these amplitudes in M,2.
Calling S, and O, the singlet and octet parts of the
inelastic Pomeron amplitude and denoting T, as
the singlet plus octet f amplitude, we have

Thyxx=Sp=0p+3T,, (5.2)
T}y ex=Sp+20p+2T,. (5.3)
We denote
2
3=y Lo (5.4)
dtdM

where we mean to sum over i=7* or i=K*, Now
the Reggeon R =p, w trajectories yield O(R?) terms
in Z;, due to charge conjugation which forbids
O(RP) interference terms. For R=A, the same
result follows if we imagine dualizing in M,?* and
using the fact that the £=0 A, NN nonflip coupling is
small. Hence we obtain

Zip= ITL» 1x|2+O(R2) . (5.5)
We write

3=2%,,~%,,
= [SP_ 40?!2‘ 18|OP|2
- % Re(OPT}‘)+O(Tf2,R2) . (5.6)

The term S, - 40, contains the same combination
of amplitudes determined in 204y -0,y at£=0. To
get rid of the octet Pomeron terms, which are ex-
pected to be small but are unknown in the QR ap-
proach, one can define

=3, 445, ~ 42, T, (5.7)

= |Sp,-40,|2+0(T 2, R?). (5.8)

Now we certainly expect terms quadratic in Ref-
geons to be negligible compared to the square of
the Pomeron at fixed small M,%. Hence according
to QR, % should exhibit the energy behavior
s2*P®)2, This is s%!° at ¢=0, and if a}~7 it is
%% at t=~-0.1 GeV®. The latter rises by about
10% between E ,, =50 and 175 GeV.

The experimental results are shown in Fig. 13
along with a constant reference line. We have used
the smooth parametrization given by the experi-
mentalists in the first paper of Ref. 25 between
E, =50 and 175 GeV, and included the point at
E, ;=155 GeV from the second paper of Ref. 25
as averaging the measurements at E,, =140 to 175
GeV. Here % is plotted at ¢=-0.1 GeV? and at
My?=6 GeV®. Similar results are obtained at other
t,M 2 for both £ and £’. Although the data are not
accurate enough to draw any really firm conclu-
sions, our overall impression is certainly that =
does not rise at all, and in fact has its central
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FIG. 13. The combination 2 of inelastic diffraction
cross sections defined in Eq. (5.7) at £=0.1 GeV? and
M,,2= 6 GeV?. Data from Ref. 25, as explained in the
text. A constant reference line is shown. Under the
Quigg-Rabinovici assumption, £ should rise.

value decreasing by a factor of 2 over the available
energy range.

We conclude that, given their apparently differ-
ent behaviors, neither & nor ¥ extracts any funda-
mental quantity. The different behaviors could
come from nonfactorizing vacuum cuts, but we do
not propose to treat this here.

- VI. FLAVORING AND ABSORPTION

In this section we consider the possibility raised
by Einhorn and Nussinov!® (EN) that the effects of
flavoring could be canceled out in total cross sec-
tions due to simultaneous and correlated reduc-
tions in other inelastic channels. Such effects are
seen at low energies in, e.g., 77 scattering at the
KK threshold. At high energies, we have an addi-
tional ingredient, namely, dominant short-range
order. Although EN worked in a multiperipheral
framework they did not check the consistency of
their conclusions with a simple j-plane structure
of the model, nor with the absence of long-range
correlations at medium energies. It is this aspect
that we wish to consider here.

We begin by recalling the main features of the
EN argument. They focus on the multiperipheral
kernel K (s,,{)t"}) as a function of various couplings
{7} at a fixed subenergy s,. The couplings are pa-
rameters for the production of a KK- or K*K*-type
irreducible cluster of mass (s‘)”z, a BB or B*B*
cluster, a nonstrange cluster, etc. In separable
kernel approximations, K is a sum of individual
K,(s;,{r,}) for the various possible intermediate
states. Now EN argue, correctly, that in a model
where the {\,} could vary, the magnitudes of the
individual K, could vary also, but their sum K
could remain unchanged. As pointed out by Tan,*
this in itself does not bear on the existence of can-
celed or uncanceled flavoring renormalization,
because in reality all A, are fixed at their physical

K(s;)

} 1 ] S
(p.A) (KR, KR (BB) ‘

FIG. 14. The general shape of a multiperipheral ker-
nel in subenergy s; which contains flavoring.

values A2, The positivity of the K,, a fact due to
the construction of the multiperipheral sum for
ImT(s) in the first place, means that K(s,,{}%}) is
positive, bigger than any of the K,(s;,{}2}), and can
still be peaked around some s;~ s} above the mass
of a typical low-mass cluster. This will automat-
ically lead to renormalization of the flavoring type
for n=KK,BB,...and of Balaz’s type for heavy
irreducible nonstrange clusters.

The s, dependence of K(s,{A2}) is thus the cru-
cial point, and was not sufficiently examined by
EN. Let us now consider this in more detail. Sup-
pose we want to forbid flavoring renormalization,
then we must forbid the general structure of Eqgs.
(2.5)-(2.7) where distinct b, exist. Although the
transition from three-dimensional to one-dimen-
sional kinematics is not trivial (cf. the Appendix),
and one must therefore not be cavalier in assign-
ing kernel threshold parameters, flavoring roughly
implies the existence of the multibump structure
of K(s,) =K(s;,{A%}) exhibited in Fig. 14. In order
to forbid flavoring one must assume that K is
structureless at all s;. That is, if one knows from
experiment that a particular K, does have a thresh-
old rise at some s;~s¥, then the other K,.(n’+n)
must decrease around s¥,. This means thatK(s,)
must be large enoughbelow s}, sothat it can remain
structureless above s},. Now weknow from experi-
ment® that the s}, for flavoring is such that KK and
BB production do not enter appreciably until
the total s is above around 60 GeV?, and after-
wards is a large effect. But if K(S;) is struc-
tureless any multiperipheral iteration of it will
clearly be strongly suppressed below 60 GeV?,

The resulting lack of multiperipheral structure at
these energies means that the j-plane transform
must be complicated, and in the absence of an

a priori argument like planarity can even include
strong cuts. In any event it would seem that ab-
sorbing flavoring away makes a simple j-plane
pole structure, like that of Harari-Freund, unlike-
ly.

Note that we are not saying that a model with
final-state interactions cannot yield asymptotic
Regge behavior. The EN model, multiperipheral
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FIG. 15. A “multiperipheral” kernel with XX flavor-
ing absorbed out by the decrease of non-XX production.

by construction, has a leading pole. One can even
add suitable interactions among all pairs of final
particles and still retain asymptotic Regge be-
havior.}® This is not the issue. The problem is to
construct explicit amplitudes in which the flavor-
ing threshold effects are wiped out, consistent with
the simple P +f Harari-Freund scheme. That is,
one is obliged to get the correct ¢*°t nonleading be-
havior in the region around flavoring thresholds,
and this we claim is at least very difficult if one
tries to absorb away the flavoring effects.
We can illustrate the above remarks with a con-
“crete example. Since K(s,) is supposed to be
structureless, assume that it has the form
7 2< < 2
K(s,)= {gz(s’/s") HET (6.1)
) 0 otherwise,
and take m?>s,. v is arbitrary. To this we
should superpose momentum-transfer dependences
from exchanges, vertices, etc. This can be re-
placed as far as thresholds go by an appropriate
redefinition of s, here and in Eq. (6.2). (Specifical-
ly for spinless exchange [K(s,)ds; replaces g°m,?
in Eq. (A3) of the Appendix).

Physically m, can be taken as the mass of a non-
strange resonance (p,f,...), while m, is supposed
to be above the threshold for the major part of,
e.g., BB production. Figure (15) indicates the
structure of K. As s, increases, the production of
nonstrange mesons decreases to offset the flavor-
ing piece of K. The total kernel K will govern the
physics.

The partial-wave projection of K is

K,:fO””_’s_f (ﬁ)"'lx(s,) (6.2)

So \So

G

We now see that s,<m? is required so that K,~0
as Rej =~ ©, a condition which must be satisfied by
partial-wave amplitudes (see Appendix).

The D, function analogous to Eq. (2.5) is then

D,=1-K, (6.4)

e ()7 () 7). e

Exactly as in the previous discussions, there
will be an energy region in which the m, term will
not contribute. Thus it is convenient to define

. 2 2\™j .
D1=1+ygj ("Z—l) : (6.6)
- "o

These functions have the following three proper-
ties: ‘

(1) D, has a leading zero at some j=a [because
(0* —a*)/x>0 it b>a>1)].

(2) D, has a leading zero at some j=d (with
a>y).

(3) @<a [since both (¥ ~4)™ and (m2/sg) are
decreasing functions of j].

The fact that D, has a leading zero is, of course,
expected since at high enough energies the total
K(s;) can be iterated and this must lead to simple
Regge behavior. Again D, plays the role of an
“unflavored” D function with its leading zero at &.
However, unlike the situation considered in Sec.
II, a is below &. Since the kernel is manifestly
positive this looks at first sight impossible. What
it really means is that there must be strong sec-
ondary D j'l pole contributions at low energies.
These play the role of increasing the low-energy
effective power of ¢*°* from the incomplete form
s*™? to the correct model behavior s*™ at these
low energies. This is exactly the opposite of the
Harari-Freund scheme where the secondary f
decreases the effective power of ¢t°t from the lead-
ing Pomeron behavior. We believe that this exam-

. ple illustrates the difficulties one will inevitably

encounter in constructing a multiperipheral model
in which flavoring is absorbed through a structure-
less total kernel. ‘

VII. THRESHOLDS, FLAVORING, AND THE REGGEON
FIELD THEORY (RFT)

In this section we shall comment on the influence
of thresholds in the critical RFT,'*! especially
regarding some recent work involving finite-en-
ergy scaling corrections to the asymptotic scaling
laws.'® Our point will be that the standard RFT
scaling corrections are incomplete and do not take
into account thresholds that provide extra scales
and involve finite-energy complications that are
essential.

In the RFT without thresholds,'* the mass coun-
terterm 8A = a(7,%) — 1 is obtainable from the
bare triple-Pomeron coupling ¥, through a non-
perturbative relation in 7, in two transverse di-
mensions. One makes the infrared j—1 or Ins -
approximation B(g)~ B'(g,)(g; —g) to the Gell-
Mann-Low function at the renormalized critical
coupling g; and one similarly approximates the
critical function ¥(g)=¥(g,) <0 to give the s=



critical behavior ot°t(s)~ (Ins) %1, Defining E
=1 -j as usual, the {=0 inverse unrenormalized
Pomeron propagator —il"“'”(E,'roz) (the gener-
alized D, function) is written as

iCYE 72 =E+dA ~Z(E, 72, (7.1)

where 3A=3(0,7,%) is adjusted for fixed 7, to make
L% yanish at E=0 or j=1. The Pomeron cuts
are all in Z. Using renormalization-group argu-
ments'*'® and the fact that = -0 as j—~=, one ob-
tains the (one-loop) expression

. I E, Ys
5A(1’02)z}.l12 f d]' [1 - (1 +],j1) ], (72)

1

where c,=¥(g,)/B8'(g,) is negative; a{ is the bare
slope; and E; "= —16ralc,/7,? is an RFT scale pa-
rameter in rapidity.

However, Eq. (7.2) diverges. In Refs. 16 it is
made finite through the introduction of cutoffs [in
7,(t) by Frazer et al. and via a threshold in a mod-
ified bare propagator by Garcia et al., which we
shall discuss further below]. It should be noted
that 8A is not a universal quantity,'® which means
that the critical bare intercept @, depends not only
on 7, but in principle on all sorts of finite energy
scales, two examples of which have just been men-
tioned. Once 0A is evaluated nonperturbatively in
7, as a function of these scales, one is allowed to
expand I'*1) “perturbatively” by expanding
Z(E,7y?) in a series in 72, viz —iI'%V=j _q,
+0(7,%). This is actually the physically relevant
expansion since @, does describe ¢*°t below RFT
thresholds. (Thus we never want to expand @, in
7,%). The expansion can be compared with scaling
laws assuming critical behavior at s-«, with RFT
scaling corrections having scale parameter E;™
and with experiment.

We next comment on the results obtained in Ref.
16, first ignoring flavoring. Frazer ef al. found
that the shape of do/dt at ISR is impressively well
reproduced by the asymptotic scaling law, for the
Pomeron propagator along with the leading scaling
corrections provided by the RFT, without cutoffs
or thresholds. In the light of our stress on the im-
portance of extra scales besides E;?, this result
is surprising. In fact we believe that the agree-
ment is fortuitous for several reasons. First, as
the authors mention, the ¢ dependence of the Pom-
eron-two particle vertex Y(¢) was ignored, as were
eikonal cuts. Both of these effects at £<0 are a
standard and probably necessary feature of lower-
energy phenomenology?*?? where the scaling laws
are certainly inapplicable, and they should there-
fore play an important role in do/dt at ISR. For
example, the modest and typical dependence y*(¢)
~ ¢%3 will lower their calculated do/dt by one and
two orders of magnitudes, respectively, at = -1
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and #= -2 GeVZ

Second, the dip-bump do/dt¢ structure in Frazer
et al.’s calculation arises from the interference of
the bare Pomeron pole with Pomeron cuts in .
Since these cuts all have loops and are eventually
connected to the external particles by bare poles,
their discontinuities at #=0 are on the order of

. Opp, the “high-mass double diffractive” piece of

ot°t, Experimentally opp appears to be quite

small.® Its total magnitude can be estimated by
factorization,® ¢,,<0,?/80,,, where the inequality
comes from the ubiquitous 7, finite-s suppression
effects. At ISR, 0,~0,;, S0 0p,<0'°t/40. Frazer
et al.’s oy, prediction can be estimated by sub-
tracting their Fig. 1 curves marked “bare Pom-
eron” and “exact” and reversing the absorptive
sign. Their ISR result is ¢,,> ¢t°/10, which is
too big. This indicates the importance of the
thresholds which we are claiming should be in RFT
graphs,’® and it also means that the interference
effects due to the Pomeron propagator are prob-
ably overestimated by an order of magnitude on
top of the ¥*(¢) effect already described.

Moshe'® calculates the y=0 plateau rise at ISR
by applying the RFT in subenergies s;=0(s'/?),
but as these are not large, threshold effects which
should have entered in the above results for do/dt
will be even more important here.

Garcia ef al. in a very interesting paper'® im-
prove the situation by introducing a threshold rap-
idity scale b, which makes all loops negligible
through ISR. They write the following at #=0:

iTWY(E, 7 2) = Ee™% + A —5(E, r,?) , (7.3)

where the lowest O(7,?) loop in = has its threshold
at Ins=3b,.'°> Below this value, the Mellin trans-
form of [-T'*+1)]™ reduces in the usual way to the
Mellin transform of a simpler function Af, where
Af= Beto!(j -1 ~gebod)™t, (7.4)

Here we have B=e% and g= 6Aeb. Now we see
that A§ is exactly of the form Eq. (1.2) of our can-
onical flavoring-renormalization amplitude with
b=b,. Thus, although their intended physics was
quite different, what Garcia et al. have actually
accomplished is to exhibit the form of the leading
RFT scaling ‘corrections arising from flavoring
thresholds. Although their parameters are not
ours, their Fig. 1 shows that even strong nonlead-
ing corrections are present at current energies.

Note that if Garcia ef al. had included a thresh-
old behavior in 6A (without changing its E=0 val-
ue), thereby defining the mass counterterm 6A
=a,-1 by

BA(E, 7%) = e™F8A(r) , (7.5)

then their no-loop function A? would have changed
to the form Eq. (1.1). Below loop thresholds and
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above Ins=b,, ¢*°* would have reduced to the sim-
ple bare pole expression ¢t°t=s%"!  which with
their parameters would have held through ISR.
This type of threshold is the simplest one dis-
cussed in Ref. 15.

We emphasize that the thresholds in the Mellin
transform of the no-loop function A§, which plays
the crucial role in the phenomenology of Garcia
et al., actually had no physical interpretation in
their work. They arise because, as defined in Eq.
(7.3), T’ with =0 does not have a bare zero at
E +0A. Instead it has the canonical form of an in-
verse bare propagator with internal thresholds.
The phenomenology of Garcia et al. thus is form-
ally similar to ours, in the sense that the rise in
ot°t is attributed to bare-propagator threshold ef-
fects. If dA is redefined as in Eq. (7.5) these ef-
fects are eliminated, and ¢*°t is just s~ up to
RFT loop corrections. These corrections are
highly truncated due to thresholds, which is physi-
cally correct. At ISR, the largest RFT term is in
fact oy, the O(#,) triple-Pomeron vertex correc-
tion, which is not determined by the theory. We
believe therefore that the only realistic claim that
should be made for the relevance of the critical
RFT to available data is that o*°* basically behaves
as the bare-pole expression s*°™ and that o, can
perhaps be computed nonperturbatively from 7,
without too much ambiguity from the cutoffs needed
to make the nonperturbative relation finite.

We now discuss this last issue, and conclude the
section by making some general remarks regard-
ing the influence of flavoring on the RFT. Per-
turbation theory becomes even more complicated,
since at fixed s, thresholds both deflavor and cut-
off the expansion at finite order.'® We have argued
that flavoring provides crucial scales up to s/s,
~10° in o*°t. These scales, a priori, have an ef-
fect on the nonuniversal quantity 64, and we have
in fact tried to determine ¢, in this paper from
consistency between various pieces of data-involv-
ing these scales. We do not know whether or not
the world is consistent with the critical RFT at
asymptopia. Indeed, since flavoring in triple-
Regge phenomenology provides important scales
up to s/M? and M?*/s,=10°, only the triple coupling
#, of three unflavored Pomerons is determinable
from present energy data. In fact #, is very
large.®® Thus at present energies, we believe that
0A is not in principle determinable from relations
like Eq. (7.2) since the flavored coupling 7, has
not yet been measured, and the RFT scale E;" is
therefore actually unknown.

VIII. CONCLUSIONS

We have presented a comprehensive study of the
flavoring, of the Pomeron. This involved two main

aspects: .

(1) The knowledge that the unflavored Pomeron
P with intercept @<1 can and does describe data
below energies where flavoring is important (P,
<30 GeV/c).2»23

(2) The positions and magnitudes of the KX, BB,
..., flavoring threshold effects are just so as to
produce a flavored Pomeron with intercept a>1
and change the energy dependence of vacuum com-
binations of total cross sections from falling to
rising. All this is done in the Pomeron-f identity
framework.® This framework is dynamically mo-
tivated by detailed phenomenology within Venezi- -
ano’s flavor topological expansion.” It is heterodox
to the time-honored Pomeron + ideally mixed f ap-
proach. We see no striking advantage of this tra-
ditional idea in phenomenological terms. We be-
lieve its disarming simplicity is misleading at
least in that it seems not to be consistent with
flavoring. On the other hand, the Pomeron-f iden-
tity scheme with flavoring provides a realistic
possibility for the determination of the bare pa-
rameters of the Reggeon field theory from experi-
ment. The particle supporting properties of the
Pomeron can be simple if flavoring couplings g,,(¢)
vanish at timelike ¢ along with the cylinder cou-
pling.® If the g,(¢)~0, the complex A, trajectories
will not be present for Rej> 0 at timelike ¢ and will
therefore not contain particles, probably a desir-
able situation. Moreover,? both the P and the P
can pass through the f meson and be ideally
mixed; we need only demand that g, (m fz) =0. The
Pomeron in this picture thus ceases to be a mys-
terious entity. It is just a Reggeon elevated at t~0
by the cylinder splitting®” and by flavoring, and
as t> 0 becomes timelike it returns to its ideally
mixed exchange-degenerate state.®*?*

What remains to be done? The determination of
the flavoring of other trajectories, preferably from
inclusive data as we did for the Pomeron-f, is im-
portant. - For simplicity we did not specifically in-
clude low-lying vacuum singularities like the pre-
dominantly AX( f’) trajectory or the possible gqgg7
(o) trajectory.®* Flavoring mixes these trajec-
tories with the P-f, as discussed in Ref. 8. As
mentioned in the Introduction, the determination
of the amount of flavoring of nonvacuum trajec-
tories like the p (which is probably not very much)
could be done by subtracting 7*p inclusive data.
This would determine the planar content of flavor-
ing as opposed to the cylinder part.®

A second interesting problem is related to the ¢
dependence of flavoring parameters g,(f) which
cannot be directly obtained from inclusive data.

A possible -approach for ¢<0 would simply be to
use do/dt data, which would be worthwhile. Care
must be taken, not only with Regge cuts, but with



the curvature of the flavored P trajectory due to
the ¢ dependence of flavoring and to the ¢ depen-
dence of the cylinder coupling. An indirect aid
comes from our analysis here. In the Appendix
we show that the high BB effective threshold re-
quires strong damping in the #’ exchanges connect-
ing the BB pair to the rest of the multiperipheral
chain. This indicates that in an overlap calcula-
tion BB loops would be strongly suppressed in £,
i.e.; the overall ggz(#) = 0 quickly for spacelike
t.*1® Hence BB pairs probably contribute only at
small ¢# and high s. This is in the right region to
contribute both to the emergence of small-¢
“breaks” in do/dt at high s and the rise of the total
inelastic cross section o(b, s) at large impact pa-
rameters.3*3° The details of the larger-¢ struc-
ture (dips, etc.) hinge, as in any Regge analysis,
on j-plane cuts. Flavoring will influence this
structure since it affects both poles and cuts (cf.
Sec. IB). For example, it could move dip posi-
tions around.
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APPENDIX: HOW MULTIPERIPHERAL MODELS PRODUCE
DELAYED THRESHOLDS

In this Appendix we review strong-coupling so-
lutions'! to multiperipheral models that contain the
delayed effective inelastic thresholds discussed
in the text. It is important to recognize that these
are very general effects. Physically the thresh-
olds are due to effects coupled with ¢/ cutoffs in
exchanged legs of the multiperipheral chain. Sub-
energies are required to be above a certain mini-
mum value in-order that ¢/, is below the #’ cutoff
appropriate for the production of a given clus-
ter.:*!® Numerical calculations of cluster multi-
peripheral models with exact phase space exhibit
clear ¢!, effects (cf. Fig. 16 in the first paper
of Ref. 20). Weak-coupling models with output tra-
jectory a(g)=a,+a,g do not treat the kinematics
well enough to exhibit the effect, which only shows
up in O(g™ with 2> 2. The thresholds are char-
acterized in the Feynman-Wilson gas analogy by
repulsive hard cores in rapidity,'® where the rel-
evant parameters are just the b, of the text. Their
values cannot be simply ascertained without study-
ing the underlying multiperipheral model in some
detail. We shall sketch the highlights of the ap-
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proach, first for a single cluster production of
mass m,, and then for the production of two clus-
ters with mass m; and m,. We restrict ourselves
to the spinless exchange of a particle of mass
m,,. The extension to Reggeon exchange involves
more indices but no new physics.%

The main idea is to utilize the Fredholm nature
of the multiperipheral integral equation by con-
structing upper and lower bounds to the partial
cross sections which produce upper and lower
bounds for the output a(g), valid for any g, which
have all ¢,#0. This is done by approximating the
second-kind Legendre function of the Froissart-
Gribov formula which appears directly in the equa-
tion after its 0(2,1) transform has been taken. For
spinless exchange this roughly involves replacing
Q;(2) ~0(z9") and approximating z by separable
forms. The relevant variable is a boost B(y,y) be-
tween legs with momentum transfers #'= —y, 1
= -y (at £=0) which is defined as

. -
coshB(y,§)=ln2“(TB)§§2 . (A1)

Lower bound (1.b.) and upper bound (u.b.) solutions
are obtained by taking the approximations®*

2 2 -
expls(y’.:)”’)ll.b,,='(_111&7,},;—‘:_23()—;(5}”;¢1/2:ﬁ ’ (Aza)
expB(¥, %) | y.n, =%—9§—)—1+7y52- . (A2b)

The resulting solutions are of the usual N ,/ D,
form with D;=1 -K; and at =0,

g'm:2 = . [expB(y, )] ,
W V(). (89)

" j+1 0

Another common approximation, the trace approx-
imation® is obtained by replacing B(y,3) defined
in Eq. (A1) by B(y,y). Of the two bounds in Eq.
(A2), the lower bound is the more accurate.'*

In Eq. (A3), gV,.[y) is the cluster-production
vertex. A simple choice'? is to simply cut off the
integral with V, .= 6(A ~y). A= -t/ is thus the
maximum allowed exchanged momentum transfer.
Exponential cutoffs are more difficult to treat an-
alytically, but lead to similar results numerical-
ly. 2

The hard-core parameter b for this one channel
case is determined by the 'Rej- « limit of K; as
O(e™), This behavior is very general. It must
occur for the full partial-wave amplitude [cf. Eq.
(7.5) of Ref. 42], with the fall off in j determined
by the lowest threshold allowed by unitarity. Here
we are concerned with multiperipheral thresholds
which are higher lying and more relevant than very
low-energy effects which we consistently ignore.
The Rej— limit of Eq. (A3) is determined by the
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point y=y,, where g(y,y) is a minimum. It is
easily seen that y,,= min(m 2, A) for the Lb. case
and y,,= A for the u.b. case. Thus the true value
of b is bounded by :

, Ind A>mz2 2
n( Wk)<b< my A
c < 2
1n(2+ A +mc2) A mcs
(Ad)

In Eq. (A4) the upper bound on b from the lower
bound solution is the more accurate. Experts
should note that the solution quoted as an upper
bound solution by Goldberger'!

(y9)"/* expBly, 5) = [(m” + 29)(m,” + 25)]*/2
violates the upper-bound condition at y=%. The
resulting b>In(2 +m,2/A) is therefore unreliable.
The bounds on b in Eq. (A4) are similar to the
trace approximation result'?:

7;’;:). (A5)

If we set A=m,? we obtain b~1 in all three
cases; i.e., around one unit of rapidity is then
needed per cluster to overcome the ¢/, hard-core
effect.

We now consider the more complex case of two
types of produced clusters of mass m,,m,, still
with spinless m,, exchange. The equation becomes
a 2 X 2 matrix equation, with the D; function as
the determinant:

(1,1) (1,2)
1 -Kj -K;

Dj= —K(.z'l) 1 _K(2,2)

b

trace

= cosh"(

min

(A6)

In the approximation K{""K (%2 = K{L2K 21 D,
becomes

Dj=1 _K;lgl) —K;Z'Z), (A8)

This is of the form of Eq. (2.6) if we simplify
1-K{® toj—d, and interpret K2 as the flav-
oring terms proportional to g, or g5. K§***) and
K{*2 poth have the form of Eq. (A3) except that
thelr off-shell vertices can be different. The
above results for the b’s can then be used to de-
termine appropriate ¢/ exchange cutoff A param-
eters. If, for example, we set by =3 correspond-
ing to the fits we get Ay ~myz52/20. If we take the
BB cluster mass as, say, mzz°~6 GeV?, we get
Ag~0.3 GeV® This is rather small compared
with # distributions in canonical multiperipheral
models.?

From the derivation it is clear that a strong t
cutoff is 1mpl1ed for any heavy-cluster produc-
tion, including charm. On the other hand, lighter
KK clusters would be associated with a less strong
cutoff. All this would have relevance for overlap
calculations and the ¢ dependence of flavoring (see
Sec. VIII).

We close by quoting the lower -bound solution for
m,,=0 (e.g., massless m exchange) and V,,.=1.
The result is'***®

VT8% TG yma

K== TG+3/2

(A9)
This exhibits all the features of the generic form
used in Egs. (2.6) and (2.7). The A=<« value b
=1n4 is obtained, and the nonsense j= -n poles
are present. The j=0 pole in K is due to the
massless exchange coupled with our correct treat-
ment of 1, effects. Recall that an exchange-de-
generate Regge-Regge cut would produce a branch
point in K; at j=0. This important similarity of
the multiperipheral pion-exchange model*® and the
multi-Regge model was first pointed out in Ref.
30. It indicates the model-independent nature of
our assumptions for the forms of N; and D; used
in the text.
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