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We construct an N= 1 supersymmetric SO(10) GUT broken down to SU(3)c×SU(2)L×U(1  ) rwith an intermediate flipped 
SU( 5 ) N U(l  )x gauge symmetry. A solution to the triplet-doublet mass-splitting problem is proposed in terms of a non-minimal 
missing-partner mechanism. 

Although all contemporary unification efforts are dominated by the superstring philosophy, model building 
at energies below M p  faces  a focusing problem caused by the proliferation of  different compactified superstring 
theories [ 1,2 ] or four-dimensional string theories [ 3 ]. Despite the fact that uniqueness is lost, the new freedom 
allows for the construction of  problem-free GUTs inspired by the superstring. 

In a recent article [4] an SU(5) ×U( I  )x theory was propoesd (termed flipped SU(5)), which later was shown 
to be obtainable from manifold compactification of  the ten-dimensional heterotic string [ 5 ]. In the present short 
letter we construct a conventional SO(10) GUT that breaks down to the standard model through an interme- 
diate flipped SU(5) XU(1 )x stage. We find that in order to realize the missing-partner mechanism we have to 
extend the Higgs sector of the model making use of the 126 + 126 + 2 l0 representations which break flipped 
SU (5) X U ( l )  x down to SU (3) c X SU(2) L X U (1) y and naturally split the masses of colour-triplets from Wein- 
berg-Salam isodoublets. Neutrinos come out naturally light through a standard see-saw mechanism. 

Among the different breakings of SO(10) down to the standard model, the breaking SO(10)~SU(5)  
X U ( 1 ) x ~ S U ( 3 ) c X S U ( 2 ) L X U ( 1 ) y  can occur in two distinct ways [6]. One way is to have S U ( 3 ) c ×  
SU (2) L X U ( I ) y contained in SU (5). Then, SU (5) is the standard Georgi-Glashow SU (5). An alternative way 
is to have SU( 5 ) being a different subgroup of SO (10) than the Georgi-Glashow SU (5). In that case (flipped 
SU(5)) ,  its decomposition into S U ( 3 ) c × S U ( 2 ) L × U ( 1  )z is not the standard model but one is led to it after 
linearly combining Z and X into the weak hypercharge Y. Z is the generator of SU(5) which commutes with 
SU ( 3 ) c × SU (2) L. In order to get the standard hypercharge assignments of the Glashow-Weinberg-Salam model, 
we must have Y/2=l/5(X-Z) .  Z is normalized for the five-dimensional representation as 
diag( - 1/3, - 1/3, - 1/3, 1/2, 1/2). In the flipped model SU(3 )c×SU(2)L  is embedded in SU(5) but U(1 ) yis 
embedded in SU(5) XU(1 )x. 

Matter fermions, i.e. quarks and leptons, accommodate themselves in chiral superfields in the (l 0, l ), ( ~ - 3 )  
and (1, 5) representations o fSU(5)  ×U(1 )x 

F ( 1 0 , 1 ) -  

d c 

, F ( 5 , - 3 ) ~  

l uC 

, F ( I , 5 ) - e L  (1) 

Notice the flipping dC*-~u c and NC,--,e ~ in comparison to the standard Georgi-Glashow positions. These multi- 
plets fit exacty in the 16 spinorial representation of  SO (10) 
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F(16) -F(10 ,  I ) + F ( 5 ,  - 3 ) + F ( 1 ,  5) .  (2) 

Higgs chiral superfields containing the Weinberg-Salam doublets naturally occupy the 10 representation 

h(10) = h ( 5 , -  2) +h~(5,2) = 

D e D 

+ h h-  (3) 

The "light" Higgs doublets are accompanied by coloured Higgs triplets D, D c. 
Matter Yukawa interactions are expressible in terms of the superpotential 

Wo =F(16)F(16)h(10) 

=F(10, I)F(10, 1 ) h ( 5 , -  1)+F(10, 1)F(5, -3)hC(3, 2 ) + F ( 5 , - 3 ) F ( 1 ,  5 ) h ( 5 , - 2 )  

= QdCh+QuCh c +£eCh+£N~h ~ +QQD+dCNCD+eCuCD+Q£D c +d~u¢D c . (4) 

We have suppressed Yukawa coupling constants and family indices. In the final expression of Wo in terms of 
standard model fields we recognize the first four terms as the usual set that provides masses for d, u and e as 
well as a Dirac mass for neutrinos upon SU (2) L × U (1) r breakdown. The rest of the couplings, involving D and 
D c, are baryon-number violating. For example, D-scalar exchange generates a dimension-six operator 
ud(u¢)*(e¢) * that leads to proton decay (p~n°e  + ). In order to avoid conflict with the observed proton stability 
D and D ~ should be superheavy. We shall return to this problem later and show how to provide masses for the 
D's. 

The first stage of symmetry breaking, namely SO (10) --, SU ( 5 ) × U ( 1 ) x, since we are talking about a conven- 
tional grand unified theory, can be achieved by a non-vanishing vacuum expectation value of a real antisym- 
metric tensor representation with an even number of incides such as 45 or 210. The 45 representation decomposes 
under SU(5) ×U(I  )x as 

A(45) =A(I ,  0) +A(24, 0) +A(10, - 4 )  +A( 10, 4 ) .  (5) 

A non-vanishing ( A ( 1, 0) ) breaks SO (10) to SU ( 5 ) X U (1) x. A drawback of 45 is that its cubic self-coupling 
is antisymmetric and therefore for a single 45 it vanishes. A quadratic superpotential would maintain 45 at 
vanishing vacuum expectation value and SO (10) would stay unbroken. This can be avoided by representation 
doubling or the introduction of other representations. Another useful representation that possesses quadratic 
and cubic self-couplings and can also couple to 45 is the 210 which decomposes under SU (5) × U (1)x as 

B(210) =B(1, 0) +B(5,  8) +B(5, - 8 )  +B(10, - 4 )  +B( 1---0, 4) 

+B(24, 0) +B(40, 4) +B(40, - 4 )  +B(75, 0 ) .  (6) 

A non-vanishing ( B ( 1, 0 ) ) breaks SO (10) to SU ( 5 ) × U ( 1 ) x. We can be agnostic temporarily about the precise 
form of the superpotential that induces the SO (10)~ SU (5) × U(I )x breakdown and assume that the breaking 
occurs through a VEV (A (45))  = (A (1, 0) ) # 0. We shall return to the question of how this occurs at the end 
of the paper. 

A beautiful property of the flipped SU (5) X U (1)x model [4] is that the minimal Higgs representations that 
perform the breaking SU (5) × U (1) x ~ SU (3) c X SU (2) L X U (1) r, namely (10, 1 ) and ( 10, - 1 ), at the same 
time solve the triplet-doublet mass-splitting problem [ 7 ]. This is the simplest known realization of the missing 
partner mechanism. More specifically, the chiral supermultiplets 
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. , , 0  l ,  J 1, J ,7, 

can break SU (5) X U (1) x--} SU (3) c X SU(2) L X U(1 ) r obtaining a non-vanishing vacuum expectation value in 
the D-flat direction 

(H(10, 1 ) ) =  (IZI(10,- 1)) = ( N ~ )  = ( /q~)  ~ 0 .  (8) 

A superheavy value of this scale induces large masses for D and D c through the couplings 

H(10, l)H(10, 1)h(5, - 2 )  +I:I(10, - l)IZI(10, -1)hC(5, 2) 

c C C - C  - - C  C - c C ¢ =NHdHD+QHdHh+QHQHD+NHdHD +QHdHh +QHQHD , (9) 

while the doublets h and h c remain massless. Thus, nucleon instability is avoided in a natural way. 
A naive SO (10) promotion of (I 0, 1 ) and ( 1--0, - 1 ) into 16 and 16 is nevertheless disastrous. H ( 5, - 3) and 

FI ( 5, 3) will have couplings 

H(5, -3)H(10 ,  1)h~(3, 2) +I:I(5, 3)H( 10, - 1 )h(5, - 2 )  

= N~I2H hc +QH~H Dc +d~u~D c + QHu~h c +]~[~Hh+ QH~HD+a~fi~ID+ 0Hfi~th, (10) 

which will make the Weinberg-Salam isodoublets supermassive as well. These couplings cannot be avoided in 
SO (10) since they are related to those shown in (9). as a result, the minimal missing-partner mechanism, based 
on the 16 + 16, fails in SO (10). 

A representation of SO (10) other than 16, which is suitable for breaking SU (5) × U (1) x, is the 126. It decom- 
poses as 

C(126)=C(1, 10)+C(5,  2)+C(IO, 6) +C(1-5, - 6 )  +C(45, -2)+C(5--0, 2 ) .  (11) 

C( 50, 2) decomposes under SU(3L × SU(2)L× U(1 ) r as 

C(5--0, 2 ) = C ( l ,  1, 0 )+C(3 ,  1, 2/3)+C(3,  2, 1/3)+ (6, 3, 2 /3)+C(& 1, 4/3)+C(8,  2, 1).  (12) 

A vacuum expectation value ( C(50, 2) ) = ( C(1, 1, 0) ) ¢ 0 breaks SU(5) X U(1 ) x down to SU(3) X SU(2) L 
XU(1 ) r. Let us assume that we have C(126) +C(126) and that a D-flat VEV (C(I ,  1, 0) ) = (C(I ,  1, 0) ) ¢ 0 
is generated at some superheavy scale. In order to couple 126 + 126 to the other Higgses present, namely the 10, 
we need other representations. Since 126× 10=210+ 1050, let us introduce 210 which, as it was mentioned 
before, could also be useful for the first stage of SO (I 0) breakdown. The superpotential needed reads 

W, =C(126)B(210)h(10) +C(126)B(210)h(10) .  (13) 

Assuming that B (210) does not have an expectation value, we obtain 

C(5--0, 2)B(75, 0)h(5, - 2 ) + C ( 5 0 ,  -2 )B(75 ,  0)h~(3, 2)+C(1,  10)B(5, - 8 ) h ( 5 ,  - 2 )  

+C(5,  2)B(1, 0)h(5, - 2 )  +C(5,  2)B(24, 0)h(5, - 2 )  +C(10, 6)B(5, - 8)h¢(3, 2) 

+C(10, 6)B(10, - 4 ) h ( 5 ,  - 2 ) + C ( 1 5 ,  -6 )B(5 ,  8) h(5, - 2 )  

+C(45, -2 )B(24 ,  0)h~(3, 2) +C(45, -2 )B(75 ,  0)h~(3, 2) + (analogous terms with C) .  (14) 

The contributions to masses come from the first two terms. The decomposition of B(75, 0) under 
SU(3)c X SU(2) L X U(1 ) r is 

B(75) =B(I ,  1, 0) +B(3,  1, -2 /3 )  +B(3, 2, 1/3) +B(3, 1, 2/3) +B(3, 2, - 1/3) 

+B(6, 2, 1/3)+B(6, 2, -1 /3)  +B(8, 1, 0)+B(8,  3, 0) .  (15) 
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The first two terms in (14) give (D= (3, 1, -2 /3) ,  DC= (3, 1, 2/3)) 

(C(1, 1, 0))DB(3,  1, 2/3)+ (C(1, 1, 0))DCB(3, 1, - 2 / 3 ) +  .... (16) 

while no corresponding terms for h and h e exist since there are no colourless isodoublets in B (75). 
Therefore, we conclude that (13) can lead to superheavy masses for D and D c in combination with triplets in 

B (75, 0) e B (210) when (C (126) ) = ( C ( 50, 2) ) ~ 0 breaks SU (5) × U (1) x down to the standard model. The 
Weinberg-Salam doublets are kept massless. 

B (210) can be given a superheavy mass through a quadratic superpotential and its components pose no threat 
to mess up the light spectrum. C(126) however, apart from those components of the C (50, 2) that are eaten, 
would leave us with a huge number of massless stuff unless we include a suitable mass term for it in the super- 
potential. Since we assumed the B (210) has no expectation value, our only reasonable choice for the first stage 
of SO(10) breaking is to assume that (A(45) )  = (A(1, 0) ) ~ 0 and give B(126) a mass through its coupling to 
the A(45) VEV. This is possible only with a 120 representation. The required term reads 

W2 =C(126)A(45)G(120) +C( 126)A(45)G(120). (17) 

Decomposing G(120) under SU(5) ×U(I  )x, we get 

G(120) =G(5, - 2 )  +G(5, 2) +G(  10, 6) +G(  1--0, - 6 )  +G(45, - 2 )  + G(45, 2) .  (18) 

We see that, except C(1---5,-6), C(15, 6) and the singlets C(1, 10), C ( 1 , - 1 0 ) ,  the components of 
C (126 ) + ~ (i  26 ) match exactly with the components of G (120). Therefore, they can obtain large masses from 
the singlet expectation value (A ( 1, 0) ). The mass terms induced by (17 ) are 

W2 = (A(1, 0) ) [G(5, -2 )C(5 ,  2) +G(5,  2)C(5, - 2 )  +G(10, 6)C(]-0, - 6 )  + G(]-0, -6)C(10,  6) 

+G(45, -2)C(4-5, 2)+G(4--5, 2)C(45, - 2 ) + . . . ] .  (19) 

The Yukawa couplings in Wo generate quark and lepton masses but also neutrino Dirac masses which are 
naturally as large as md, m, or me. It is however possible to realize the see-saw mechanism if we couple C(126) 
to quarks and leptons. The required superpotential term is 

W3 =F(16)F(16)C(126) 

=F(10, 1)F(10, 1)C(50, - 2 ) + F ( 5 ,  - 3 )F (5 ,  -3)C(15,  6)+F(1,  5)F(1, 5)C(1, - 1 0 )  

+ F ( 5 , - 3 ) F ( I ,  5)C(5, - 2 ) + F ( 1 0 ,  I)F(10, 1)~(5, - 2 ) + F ( 1 0 ,  1)F(10, 1)C(5, - 2 )  

+F(10, 1)F(5, -3 )~ (45 ,  2 ) .  (20) 

The last three couplings do not play any role since C ( 5 , - 2 )  and C(45, 2) are supermassive. The 
SU(3)cXSU(2)L×U(I ) r content of C(15, 6) is 

C(15, 6)=C(1, 3, 2)+C(3,  2, 7/3)+C(6, 1, 8/3), (21) 

while C(1, - 10) =C(1, 1, - 4 ) .  The second and third terms in (20), in terms of standard model fields, are 

eCe¢(3(1, 1, -4)+ucu~C(6,  1, 8/3)+~£C(1, 3, 2)+~uC(3(3, 2, 7/3). (22) 

The first term gives 

dC(~,1,2/3) ] 

× [(3(1, 1, 0) +C(3, 1, -2 /3 )  +(~(~, 2, - 1/3) +(3(6, 3, -2 /3)+(3(6,  1, -4 /3 )  +C(8, 2, - 1)] 

=NCN ¢ ((~(1, 1, 0) ) +Y~dC(3(3, 1, -2 /3)  +QQC(3, 1, -2 /3 )  +QQC(6, 3, -2 /3)  

+dOd~C(6, l, -4 /3 )  +QdC~(8, 2, - 1).  (23) 
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Apart from C ( 3, 2, - 1/3) which together with C (3, 2, 2/3 ) gets eaten, the rest of  the C-fields appearing in (22) 
and (23) stay light. Since they participate in no other couplings to light fields they do not induce baryon-number 
violation apart from higher-dimensional baryon-violating operators in which at least one superheavy field 
participates. 

These fields however can lead to very interesting exotic processes such as ~t~ee~ since their couplings need 
not be flavor diagonal ~. 

The first term in (32) is a Majorana mass for the right-handed neutrino which allows for the standard see-saw 
mechanism through 

( ( C ( I ' I ' 0 ) )  ( h e ) )  (24) 
(h  e ) 0 ' 

with raN~ ( C )  and my~ (hC)2 / (C) .  
We postponed talking about the superpotential sector that is responsible for the SO (10) ~ SU (5) × U(1 ) x 

symmetry breaking. We have just assumed that A(45) at least is present and that it receives an expectation value 
( A (1, 1, 0) ) # 0. The simplest possible superpotential that has this property is 

]2203(1 ) --]/20(1 ) , (25) W3 = ½2, 0(1 )A2(45) + ' 

where 0(1) is an SO(10) singlet chiral superfield. A(45) analyzed under S U ( 5 ) × U ( 1 ) x  contains A(1, 0), 
A(10, 4), A( 1-0, - 4 )  and A(24, 0). As long as the singlet acquires a non-vanishing VEV the 10's get eaten and 
we are left with a singlet and the A (24, 0). The supersymmetric minimum is determined from (15) by 

0 W310A=2~ 0 A = 0 ,  0 W3100= ½21A 2 -t'29]-2 02 __]/2 : 0,  (26) 

which get solved for 0 = 0  and (A(1, 0) ) = xfl2]/2/2,. 
The resulting scalar potential 

Vv = 22,]/2 ]0(1 ) 12 + (2,]/2/2) ]A(1, 0) +A*( 1, 0) [2 + (cubic and quartic terms) (27) 

leaves A (24, 0) massless. This cannot be altered by couplings to B (210). A (24, 0) together with the left-overs 
of C (126) and C ( 126) survive massless down to low energies and presumably need a more complicated super- 
potential structure in order to avoid influencing renormalization group predictions. Nevertheless, the questions 
of SO(10)~  S U ( 5 ) ×  U(1 ) breaking and the realization of the see-saw mechanism are not addressed to the 
particular model we have proposed but are general questions adressed to any supersymmetric SO (10) GUT. 

Summarizing, we have proposed a conventional SO (10) GUT based on the superpotential 

W=F(16)F(16)h(10)  +F(16)F(16)C(126)  + [C(126) +C(126)]B(210)h(10)  

+ [C(126) +C(126)]A(45)G(120)  +M[B(210) ]  2 +W(B(210) ,  A(45), 0(1 ) ) ,  (28) 

with a flipped intermediate SU(5) x U(1 ) x symmetry which exhibits a missing-partner mechanism among 210, 
10 and 126. It is an open question whether such a theory can emerge from.a manifold compactification of a 
superstring theory or from a four-dimensional superstring theory with suitable boundary conditions. 

"t The couplings NCd c and QQ to C(3, 1, -2/3) are harmless since N ¢ is supermassive. The operator QQ(dCv) * is suppressed by the 
neutrino mass. 
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