FLIPPED SO(10)

K. TAMVAKIS
Physics Department, University of Ioannina, GR-45332 Ioannina, Greece

Received 16 October 1987

Abstract

We construct an $N=1$ supersymmetric $\operatorname{SO}(10)$ GUT broken down to $\mathrm{SU}(3)_{C} \times \operatorname{SU}(2)_{L} \times U(1)_{Y}$ with an intermediate flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$ gauge symmetry. A solution to the triplet-doublet mass-splitting problem is proposed in terms of a non-minimal missing-partner mechanism.

Although all contemporary unification efforts are dominated by the superstring philosophy, model building at energies below M_{P} faces a focusing problem caused by the proliferation of different compactified superstring theories [1,2] or four-dimensional string theories [3]. Despite the fact that uniqueness is lost, the new freedom allows for the construction of problem-free GUTs inspired by the superstring.
In a recent article [4] an $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ theory was propoesd (termed flipped $\mathrm{SU}(5)$), which later was shown to be obtainable from manifold compactification of the ten-dimensional heterotic string [5]. In the present short letter we construct a conventional SO(10) GUT that breaks down to the standard model through an intermediate flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ stage. We find that in order to realize the missing-partner mechanism we have to extend the Higgs sector of the model making use of the $126+\overline{126}+210$ representations which break flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ down to $\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ and naturally split the masses of colour-triplets from Wein-berg-Salam isodoublets. Neutrinos come out naturally light through a standard see-saw mechanism.
Among the different breakings of $\mathrm{SO}(10)$ down to the standard model, the breaking $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5)$ $\times \mathrm{U}(1)_{X} \rightarrow \mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ can occur in two distinct ways [6]. One way is to have $\mathrm{SU}(3)_{\mathrm{C}} \times$ $\operatorname{SU}(2)_{L} \times U(1)_{r}$ contained in $\mathrm{SU}(5)$. Then, $\mathrm{SU}(5)$ is the standard Georgi-Glashow $\operatorname{SU}(5)$. An alternative way is to have $\operatorname{SU}(5)$ being a different subgroup of $\operatorname{SO}(10)$ than the Georgi-Glashow SU(5). In that case (flipped $\operatorname{SU}(5))$, its decomposition into $\operatorname{SU}(3)_{C} \times S U(2)_{L} \times U(1)_{Z}$ is not the standard model but one is led to it after linearly combining Z and X into the weak hypercharge $Y . Z$ is the generator of $\operatorname{SU}(5)$ which commutes with $\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}}$. In order to get the standard hypercharge assignments of the Glashow-Weinberg-Salam model, we must have $Y / 2=1 / 5(X-Z) . \quad Z$ is normalized for the five-dimensional representation as $\operatorname{diag}(-1 / 3,-1 / 3,-1 / 3,1 / 2,1 / 2)$. In the flipped model $\operatorname{SU}(3)_{C} \times \operatorname{SU}(2)_{L}$ is embedded in $\operatorname{SU}(5)$ but $\mathrm{U}(1)_{Y}$ is embedded in $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$.
Matter fermions, i.e. quarks and leptons, accommodate themselves in chiral superfields in the (10,1), ($\overline{5}-3$) and $(1,5)$ representations of $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$
$F(10,1) \equiv\binom{N^{c} Q=\binom{u}{d}}{d^{c}}, \quad F(\overline{5},-3) \equiv\binom{u^{c}}{\ell=\binom{e}{v}}, \quad F(1,5) \equiv e^{c}$.
Notice the flipping $\mathrm{d}^{\mathrm{c}} \leftrightarrow \mathrm{u}^{\mathrm{c}}$ and $\mathrm{N}^{\mathrm{c}} \leftrightarrow \mathrm{e}^{\mathrm{c}}$ in comparison to the standard Georgi-Glashow positions. These multiplets fit exacty in the 16 spinorial representation of $\operatorname{SO}(10)$
$F(16) \equiv F(10,1)+F(\overline{5},-3)+F(1,5)$.
Higgs chiral superfields containing the Weinberg-Salam doublets naturally occupy the 10 representation
$h(10)=h(5,-2)+h^{c}(\overline{5}, 2)=\left\{\begin{array}{c}D^{c} \\ h^{c}=\binom{h^{+}}{h_{0}^{+}}\end{array}\right)+\binom{D}{h=\binom{h^{-}}{h_{0}}}$.
The "light" Higgs doublets are accompanied by coloured Higgs triplets D, D".
Matter Yukawa interactions are expressible in terms of the superpotential

$$
\begin{align*}
W_{0} & =F(16) F(16) h(10) \\
& =F(10,1) F(10,1) h(5,-1)+F(10,1) F(\overline{5},-3) h^{c}(\overline{5}, 2)+F(\overline{5},-3) F(1,5) h(5,-2) \\
& =Q d^{c} h+Q u^{c} h^{c}+l e^{c} h+\ell N^{c} h^{c}+Q Q D+d^{c} N^{c} D+e^{c} u^{c} D+Q \ell D^{c}+d^{c} u^{c} D^{c} . \tag{4}
\end{align*}
$$

We have suppressed Yukawa coupling constants and family indices. In the final expression of W_{0} in terms of standard model fields we recognize the first four terms as the usual set that provides masses for d, u and e as well as a Dirac mass for neutrinos upon $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ breakdown. The rest of the couplings, involving D and D^{c}, are baryon-number violating. For example, D -scalar exchange generates a dimension-six operator $u d\left(u^{c}\right)^{*}\left(e^{c}\right)^{*}$ that leads to proton decay $\left(p \rightarrow n^{0} e^{+}\right)$. In order to avoid conflict with the observed proton stability D and D^{c} should be superheavy. We shall return to this problem later and show how to provide masses for the D's.

The first stage of symmetry breaking, namely $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)_{x}$, since we are talking about a conventional grand unified theory, can be achieved by a non-vanishing vacuum expectation value of a real antisymmetric tensor representation with an even number of incides such as 45 or 210 . The 45 representation decomposes under $\operatorname{SU}(5) \times U(1)_{X}$ as
$\mathrm{A}(45)=\mathrm{A}(1,0)+\mathrm{A}(24,0)+\mathrm{A}(10,-4)+\mathrm{A}(\overline{10}, 4)$.
A non-vanishing $\langle\mathrm{A}(1,0)\rangle$ breaks $\mathrm{SO}(10)$ to $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$. A drawback of 45 is that its cubic self-coupling is antisymmetric and therefore for a single 45 it vanishes. A quadratic superpotential would maintain 45 at vanishing vacuum expectation value and $\mathrm{SO}(10)$ would stay unbroken. This can be avoided by representation doubling or the introduction of other representations. Another useful representation that possesses quadratic and cubic self-couplings and can also couple to 45 is the 210 which decomposes under $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ as

$$
\begin{align*}
& \mathrm{B}(210)=\mathrm{B}(1,0)+\mathrm{B}(5,8)+\mathrm{B}(\overline{5},-8)+\mathrm{B}(10,-4)+\mathrm{B}(\overline{10}, 4) \\
& \quad+\mathrm{B}(24,0)+\mathrm{B}(40,4)+\mathrm{B}(\overline{40},-4)+\mathrm{B}(75,0) . \tag{6}
\end{align*}
$$

A non-vanishing $\langle\mathrm{B}(1,0)\rangle$ breaks $\mathrm{SO}(10)$ to $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$. We can be agnostic temporarily about the precise form of the superpotential that induces the $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)_{x}$ breakdown and assume that the breaking occurs through a $\operatorname{VEV}\langle\mathrm{A}(45)\rangle=\langle\mathrm{A}(1,0)\rangle \neq 0$. We shall return to the question of how this occurs at the end of the paper.

A beautiful property of the flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$ model [4] is that the minimal Higgs representations that perform the breaking $S U(5) \times U(1)_{X} \rightarrow \operatorname{SU}(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$, namely (10, 1) and ($\left.\overline{0},-1\right)$, at the same time solve the triplet-doublet mass-splitting problem [7]. This is the simplest known realization of the missing partner mechanism. More specifically, the chiral supermultiplets
$\mathrm{H}(10,1)=\left(\begin{array}{cc}\mathrm{N}_{\mathrm{H}}^{\mathrm{c}} & \left.\begin{array}{c}\mathrm{Q}_{\mathrm{H}} \\ \mathrm{d}_{\mathrm{H}}^{\mathrm{c}}\end{array}\right), \quad \overline{\mathrm{H}}(\overline{10},-1)=\left(\begin{array}{cc}\overline{\mathrm{N}}_{\mathrm{H}}^{\mathrm{c}} & \overline{\mathrm{Q}}_{\mathrm{H}} \\ \overline{\mathrm{d}}_{\mathrm{H}}^{\mathrm{c}}\end{array}\right) .\end{array}\right.$
can break $\mathrm{SU}(5) \times \mathrm{U}(1)_{X} \rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ obtaining a non-vanishing vacuum expectation value in the D-flat direction
$\langle\mathrm{H}(10,1)\rangle=\langle\overline{\mathrm{H}}(10,-1)\rangle=\left\langle\mathrm{N}_{\mathrm{H}}^{\mathrm{C}}\right\rangle=\left\langle\overline{\mathrm{N}}_{\mathrm{H}}^{\mathrm{C}}\right\rangle \neq 0$.
A superheavy value of this scale induces large masses for D and D^{c} through the couplings
$\mathrm{H}(10,1) \mathrm{H}(10,1) \mathrm{h}(5,-2)+\overline{\mathrm{H}}(10,-1) \overline{\mathrm{H}}(10,-1) \mathrm{h}^{\mathrm{c}}(\overline{5}, 2)$

$$
\begin{equation*}
=N_{H}^{c} d_{H}^{c} D+Q_{H} d_{H}^{c} h+Q_{H} Q_{H} D+\bar{N}_{H}^{c} \bar{d}_{H}^{c} D^{c}+\bar{Q}_{H} d_{H}^{c} h^{c}+\bar{Q}_{H} \bar{Q}_{H} D^{c}, \tag{9}
\end{equation*}
$$

while the doublets h and h^{c} remain massless. Thus, nucleon instability is avoided in a natural way.
A naive $\mathrm{SO}(10)$ promotion of $(10,1)$ and $(\overline{10},-1)$ into 16 and $\overline{16}$ is nevertheless disastrous. $\mathrm{H}(\overline{5},-3)$ and $\overline{\mathrm{H}}(5,3)$ will have couplings

$$
\begin{align*}
& \mathrm{H}(\overline{5},-3) \mathrm{H}(10,1) \mathrm{h}^{c}(\overline{5}, 2)+\overline{\mathrm{H}}(5,3) \overline{\mathrm{H}}(\overline{10},-1) \mathrm{h}(5,-2) \\
& \quad=\mathrm{N}_{\mathrm{H}}^{c} \ell_{H} h^{c}+\mathrm{Q}_{H} \ell_{H} D^{c}+\mathrm{d}_{\mathrm{H}}^{c} u_{H}^{c} D^{c}+\mathrm{Q}_{H} u_{H}^{c} h^{c}+\bar{N}_{H}^{c} \bar{\ell}_{H} h+\bar{Q}_{H} \bar{\ell}_{H} D+\overline{\mathrm{d}}_{\mathrm{H}}^{c} \bar{u}_{H}^{c} D+\bar{Q}_{H} \bar{u}_{H}^{c} h, \tag{10}
\end{align*}
$$

which will make the Weinberg-Salam isodoublets supermassive as well. These couplings cannot be avoided in SO(10) since they are related to those shown in (9). as a result, the minimal missing-partner mechanism, based on the $16+\overline{16}$, fails in $\mathrm{SO}(10)$.

A representation of $\mathrm{SO}(10)$ other than 16 , which is suitable for breaking $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$, is the 126 . It decomposes as
$\mathrm{C}(126)=\mathrm{C}(1,10)+\mathrm{C}(\overline{5}, 2)+\mathrm{C}(10,6)+\mathrm{C}(\overline{15},-6)+\mathrm{C}(45,-2)+\mathrm{C}(\overline{50}, 2)$.
$\mathrm{C}(\overline{50}, 2)$ decomposes under $\operatorname{SU}(3)_{\mathrm{c}} \times \operatorname{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ as
$\mathrm{C}(\overline{50}, 2)=\mathrm{C}(1,1,0)+\mathrm{C}(\overline{3}, 1,2 / 3)+\mathrm{C}(3,2,1 / 3)+(6,3,2 / 3)+\mathrm{C}(\overline{6}, 1,4 / 3)+\mathrm{C}(8,2,1)$.
A vacuum expectation value $\langle\mathrm{C}(\overline{50}, 2)\rangle=\langle\mathrm{C}(1,1,0)\rangle \neq 0$ breaks $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$ down to $\mathrm{SU}(3) \times \mathrm{SU}(2)_{\mathrm{L}}$ $\times \mathrm{U}(1)_{r}$. Let us assume that we have $\mathrm{C}(126)+\overline{\mathrm{C}}(\overline{126})$ and that a D-flat VEV $\langle\mathrm{C}(1,1,0)\rangle=\langle\overline{\mathrm{C}}(1,1,0)\rangle \neq 0$ is generated at some superheavy scale. In order to couple $126+\overline{126}$ to the other Higgses present, namely the 10 , we need other representations. Since $126 \times 10=210+1050$, let us introduce 210 which, as it was mentioned before, could also be useful for the first stage of $\mathrm{SO}(10)$ breakdown. The superpotential needed reads
$W_{1}=\mathrm{C}(126) \mathrm{B}(210) \mathrm{h}(10)+\overline{\mathrm{C}}(\overline{126}) \mathrm{B}(210) \mathrm{h}(10)$.
Assuming that $\mathrm{B}(210)$ does not have an expectation value, we obtain
$\mathrm{C}(\overline{50}, 2) \mathrm{B}(75,0) \mathrm{h}(5,-2)+\overline{\mathrm{C}}(50,-2) \mathrm{B}(75,0) \mathrm{h}^{\mathrm{c}}(\overline{5}, 2)+\mathrm{C}(1,10) \mathrm{B}(\overline{5},-8) \mathrm{h}(5,-2)$

$$
\begin{align*}
& +\mathrm{C}(\overline{5}, 2) \mathrm{B}(1,0) \mathrm{h}(5,-2)+\mathrm{C}(\overline{5}, 2) \mathrm{B}(24,0) \mathrm{h}(5,-2)+\mathrm{C}(10,6) \mathrm{B}(\overline{5},-8) \mathrm{h}^{\mathrm{c}}(\overline{5}, 2) \\
& +\mathrm{C}(10,6) \mathrm{B}(10,-4) \mathrm{h}(5,-2)+\mathrm{C}(15,-6) \mathrm{B}(5,8) \mathrm{h}(5,-2) \\
& +\mathrm{C}(45,-2) \mathrm{B}(24,0) \mathrm{h}^{\mathrm{c}}(\overline{5}, 2)+\mathrm{C}(45,-2) \mathrm{B}(75,0) \mathrm{h}^{\mathrm{c}}(\overline{5}, 2)+(\text { analogous terms with } \overline{\mathrm{C}}) . \tag{14}
\end{align*}
$$

The contributions to masses come from the first two terms. The decomposition of $\mathrm{B}(75,0)$ under $\operatorname{SU}(3)_{C} \times \operatorname{SU}(2)_{L} \times U(1)_{Y}$ is

$$
\begin{align*}
& \mathrm{B}(75)=\mathrm{B}(1,1,0)+\mathrm{B}(3,1,-2 / 3)+\mathrm{B}(3,2,1 / 3)+\mathrm{B}(\overline{3}, 1,2 / 3)+\mathrm{B}(\overline{3}, 2,-1 / 3) \\
& \quad+\mathrm{B}(\overline{6}, 2,1 / 3)+\mathrm{B}(6,2,-1 / 3)+\mathrm{B}(8,1,0)+\mathrm{B}(8,3,0) . \tag{15}
\end{align*}
$$

The first two terms in (14) give $\left(\mathrm{D}=(3,1,-2 / 3), \mathrm{D}^{\mathrm{c}}=(\overline{3}, 1,2 / 3)\right.$)
$\langle\mathrm{C}(1,1,0)\rangle \mathrm{DB}(\overline{3}, 1,2 / 3)+\langle\overline{\mathrm{C}}(1,1,0)\rangle \mathrm{D}^{c} \mathrm{~B}(3,1,-2 / 3)+\ldots$,
while no corresponding terms for h and h^{c} exist since there are no colourless isodoublets in $B(75)$.
Therefore, we conclude that (13) can lead to superheavy masses for D and D^{c} in combination with triplets in $\mathrm{B}(75,0) \in \mathrm{B}(210)$ when $\langle\mathrm{C}(126)\rangle=\langle\mathrm{C}(\overline{50}, 2)\rangle \neq 0$ breaks $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ down to the standard model. The Weinberg-Salam doublets are kept massless.
$\mathbf{B}(210)$ can be given a superheavy mass through a quadratic superpotential and its components pose no threat to mess up the light spectrum. $\mathrm{C}(126)$ however, apart from those components of the $\mathrm{C}(\overline{50}, 2)$ that are eaten, would leave us with a huge number of massless stuff unless we include a suitable mass term for it in the superpotential. Since we assumed the $B(210)$ has no expectation value, our only reasonable choice for the first stage of $S O(10)$ breaking is to assume that $\langle\mathrm{A}(45)\rangle=\langle\mathrm{A}(1,0)\rangle \neq 0$ and give $\mathrm{B}(126)$ a mass through its coupling to the $A(45)$ VEV. This is possible only with a 120 representation. The required term reads
$W_{2}=\mathrm{C}(126) \mathrm{A}(45) \mathrm{G}(120)+\overline{\mathrm{C}}(\overline{126}) \mathrm{A}(45) \mathrm{G}(120)$.
Decomposing $\mathrm{G}(120)$ under $\mathrm{SU}(5) \times \mathrm{U}(1)_{x}$, we get
$\mathrm{G}(120)=\mathrm{G}(5,-2)+\mathrm{G}(\overline{5}, 2)+\mathrm{G}(10,6)+\mathrm{G}(\overline{10},-6)+\mathrm{G}(45,-2)+\mathrm{G}(\overline{45}, 2)$.
We see that, except $C(\overline{15},-6), \bar{C}(15,6)$ and the singlets $C(1,10), \bar{C}(1,-10)$, the components of $\mathrm{C}(126)+\overline{\mathrm{C}}(\overline{126})$ match exactly with the components of $\mathrm{G}(120)$. Therefore, they can obtain large masses from the singlet expectation value $\langle\mathrm{A}(1,0)\rangle$. The mass terms induced by (17) are

$$
\begin{align*}
& W_{2}=\langle A(1,0)\rangle[G(5,-2) C(\overline{5}, 2)+G(\overline{5}, 2) \overline{\mathrm{C}}(5,-2)+\mathrm{G}(10,6) \overline{\mathrm{C}}(\overline{10},-6)+\mathrm{G}(\overline{10},-6) \mathrm{C}(10,6) \\
& \quad+\mathrm{G}(45,-2) \overline{\mathrm{C}}(\overline{45}, 2)+\mathrm{G}(\overline{45}, 2) \mathrm{C}(45,-2)+\ldots] \tag{19}
\end{align*}
$$

The Yukawa couplings in W_{0} generate quark and lepton masses but also neutrino Dirac masses which are naturally as large as $m_{\mathrm{d}}, m_{\mathrm{u}}$ or m_{e}. It is however possible to realize the see-saw mechanism if we couple C(126) to quarks and leptons. The required superpotential term is

$$
\begin{align*}
W_{3} & =\mathrm{F}(16) \mathrm{F}(16) \overline{\mathrm{C}}(\overline{126}) \\
& =\mathrm{F}(10,1) \mathrm{F}(10,1) \overline{\mathrm{C}}(50,-2)+\mathrm{F}(\overline{5},-3) \mathrm{F}(\overline{5},-3) \overline{\mathrm{C}}(15,6)+\mathrm{F}(1,5) \mathrm{F}(1,5) \overline{\mathrm{C}}(1,-10) \\
& +\mathrm{F}(\overline{5},-3) \mathrm{F}(1,5) \overline{\mathrm{C}}(5,-2)+\mathrm{F}(10,1) \mathrm{F}(10,1) \overline{\mathrm{C}}(5,-2)+\mathrm{F}(10,1) \mathrm{F}(10,1) \overline{\mathrm{C}}(5,-2) \\
& +\mathrm{F}(10,1) \mathrm{F}(\overline{5},-3) \overline{\mathrm{C}}(45,2) . \tag{20}
\end{align*}
$$

The last three couplings do not play any role since $\bar{C}(5,-2)$ and $\bar{C}(45,2)$ are supermassive. The $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ content of $\overline{\mathrm{C}}(15,6)$ is
$\overline{\mathrm{C}}(15,6)=\overline{\mathrm{C}}(1,3,2)+\overline{\mathrm{C}}(3,2,7 / 3)+\overline{\mathrm{C}}(6,1,8 / 3)$,
while $\overline{\mathrm{C}}(1,-10)=\overline{\mathrm{C}}(1,1,-4)$. The second and third terms in (20), in terms of standard model fields, are
$e^{c} e^{c} \bar{C}(1,1,-4)+u^{c} u^{c} \bar{C}(6,1,8 / 3)+\ell \ell \bar{C}(1,3,2)+\ell u^{c} \bar{C}(3,2,7 / 3)$.
The first term gives

$$
\begin{align*}
& \left(\begin{array}{ll}
\mathbf{N}_{(1,1,0)}^{c} & Q_{(3,2,1 / 3)} \\
d_{(3,1.2 / 3)}^{c}
\end{array}\right)\binom{\mathbf{N}^{c} Q^{Q}}{d^{c}} \\
& \times[\overline{\mathrm{C}}(1,1,0)+\overline{\mathrm{C}}(3,1,-2 / 3)+\overline{\mathrm{C}}(\overline{3}, 2,-1 / 3)+\overline{\mathrm{C}}(\overline{6}, 3,-2 / 3)+\overline{\mathrm{C}}(6,1,-4 / 3)+\overline{\mathrm{C}}(8,2,-1)] \\
& =\mathrm{N}^{\mathrm{c}} \mathrm{~N}^{\mathrm{c}}\langle\overline{\mathrm{C}}(1,1,0)\rangle+\mathrm{N}^{\mathrm{c}} \mathrm{~d}^{c} \overline{\mathrm{C}}(3,1,-2 / 3)+\mathrm{QQ} \overline{\mathrm{C}}(3,1,-2 / 3)+\mathrm{QQ} \overline{\mathrm{C}}(\overline{6}, 3,-2 / 3) \\
& +\mathrm{d}^{\mathrm{c}} \mathrm{~d}^{\mathrm{c}} \overline{\mathrm{C}}(6,1,-4 / 3)+\operatorname{Qd}^{\mathrm{c}} \overline{\mathrm{C}}(8,2,-1) . \tag{23}
\end{align*}
$$

Apart from $\overline{\mathrm{C}}(\overline{3}, 2,-1 / 3)$ which together with $\mathrm{C}(3,2,2 / 3)$ gets eaten, the rest of the $\overline{\mathrm{C}}$-fields appearing in (22) and (23) stay light. Since they participate in no other couplings to light fields they do not induce baryon-number violation apart from higher-dimensional baryon-violating operators in which at least one superheavy field participates.

These fields however can lead to very interesting exotic processes such as $\mu \rightarrow$ eeē since their couplings need not be flavor diagonal ${ }^{\# 1}$.
The first term in (32) is a Majorana mass for the right-handed neutrino which allows for the standard see-saw mechanism through

$$
\left(\begin{array}{ll}
\langle\overline{\mathrm{C}}(1,1,0)\rangle & \left\langle\mathrm{h}^{\mathrm{c}}\right\rangle \tag{24}\\
\left\langle\mathrm{h}^{\mathrm{c}}\right\rangle & 0
\end{array}\right),
$$

with $m_{\mathrm{N}} \sim\langle\overline{\mathrm{C}}\rangle$ and $m_{v} \sim\left\langle\mathrm{~h}^{c}\right\rangle^{2} /\langle\overline{\mathrm{C}}\rangle$.
We postponed talking about the superpotential sector that is responsible for the $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ symmetry breaking. We have just assumed that $\mathrm{A}(45)$ at least is present and that it receives an expectation value $\langle\mathrm{A}(1,1,0)\rangle \neq 0$. The simplest possible superpotential that has this property is

$$
\begin{equation*}
W_{3}=\frac{1}{2} \lambda_{1} \phi(1) \mathrm{A}^{2}(45)+\frac{1}{3} \lambda_{2} \phi^{3}(1)-\mu^{2} \phi(1), \tag{25}
\end{equation*}
$$

where $\phi(1)$ is an $\mathrm{SO}(10)$ singlet chiral superfield. $\mathrm{A}(45)$ analyzed under $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ contains $\mathrm{A}(1,0)$, $A(10,4), A(\overline{10},-4)$ and $A(24,0)$. As long as the singlet acquires a non-vanishing VEV the 10 's get eaten and we are left with a singlet and the $A(24,0)$. The supersymmetric minimum is determined from (15) by
$\partial W_{3} / \partial \mathrm{A}=\lambda_{1} \phi \mathrm{~A}=0, \quad \partial W_{3} / \partial \phi=\frac{1}{2} \lambda_{1} \mathrm{~A}^{2}+\lambda_{2} \phi^{2}-\mu^{2}=0$,
which get solved for $\phi=0$ and $\langle\mathrm{A}(1,0)\rangle=\sqrt{2} \mu^{2} / \lambda_{1}$.
The resulting scalar potential
$V_{\mathrm{F}}=2 \lambda_{1} \mu^{2}|\phi(1)|^{2}+\left(\lambda_{1} \mu^{2} / 2\right)\left|\mathrm{A}(1,0)+\mathrm{A}^{*}(1,0)\right|^{2}+($ cubic and quartic terms $)$
leaves $A(24,0)$ massless. This cannot be altered by couplings to $B(210)$. $A(24,0)$ together with the left-overs of $C(126)$ and $\tilde{C}(\overline{126})$ survive massless down to low energies and presumably need a more complicated superpotential structure in order to avoid influencing renormalization group predictions. Nevertheless, the questions of $\mathrm{SO}(10) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)$ breaking and the realization of the see-saw mechanism are not addressed to the particular model we have proposed but are general questions adressed to any supersymmetric $S O(10)$ GUT.

Summarizing, we have proposed a conventional SO(10) GUT based on the superpotential

$$
\begin{align*}
W & =\mathrm{F}(16) \mathrm{F}(16) \mathrm{h}(10)+\mathrm{F}(16) \mathrm{F}(16) \overline{\mathrm{C}}(\overline{126})+[\mathrm{C}(126)+\overline{\mathrm{C}}(\overline{126})] \mathrm{B}(210) \mathrm{h}(10) \\
& +[\mathrm{C}(126)+\overline{\mathrm{C}}(126)] \mathrm{A}(45) \mathrm{G}(120)+\mathrm{M}[\mathrm{~B}(210)]^{2}+\mathrm{W}(\mathrm{~B}(210), \mathrm{A}(45), \phi(1)), \tag{28}
\end{align*}
$$

with a flipped intermediate $S U(5) \times U(1)_{X}$ symmetry which exhibits a missing-partner mechanism among 210, 10 and 126. It is an open question whether such a theory can emerge from a manifold compactification of a superstring theory or from a four-dimensional superstring theory with suitable boundary conditions.

[^0]
References

[2] D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B 256 (1985) 253; B 267 (1986) 75;
P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258 (1985) 46.
[3] K.S. Narain, Phys. Lett. B 169 (1986) 41;
M. Kawai, D.L. Lewellyn and H.H. Tye, Phys. Rev. Lett. 57 (1986) 1832;
I. Antoniadis, C. Bachas and C. Kounnas, Nucl. Phys. B 289 (1987) 87.
[4] I. Antoniadis, J. Ellis, J.S. Hagelin and D.V. Nanopoulos, preprint CERN-TH 4710/87.
[5] B.A. Campbell, J. Ellis, J.S. Hagelin, D.V. Nanopoulos and R. Ticciati, preprint CERN-TH 4788/87.
[6] S.M. Barr, Phys. Lett. B 112 (1982) 219;
J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Phys. Lett. B 130 (1984) 170.
[7] A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Phys. Lett. B 115 (1982) 380;
B. Grinstein, Nucl. Phys. B 206 (1982) 387;
C. Kounnas, D.V. Nanopoulos, M. Quiros and M. Srednicki, Phys. Lett. B 127 (1983) 82.

[^0]: \#1 The couplings $N^{c} d^{c}$ and $Q Q$ to $\bar{C}(3,1,-2 / 3)$ are harmless since N^{c} is supermassive. The operator $Q Q\left(d^{c} v\right)^{*}$ is suppressed by the neutrino mass.

