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Abstract. We demonstrate full spectral phase/amplitude distribution retrieval
of an arbitrary superposition of the third and fifth harmonic fields of 800 nm central
wavelength, fs laser radiation, through a cross-correlation approach. Using the
retrieved distributions, the temporal profile of the total harmonic field has been
reconstructed and found to be in agreement with simulations. The results reveal
the suitability of the approach for full temporal characterization of a low-order
harmonic superposition and thus for attosecond pulses.
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1. Introduction

The determination of the entire spectral phase distribution of a high frequency radiation field is
a key parameter and at the same time an important prerequisite for the precise reconstruction
of radiation pulses with ultra-short duration, such as the recently generated single and trains of
attosecond (asec) pulses. The latter are emitted during the nonlinear interaction of low frequency,
many-cycle, intense fs laser radiation with a gaseous medium in a well established process
known as harmonic generation [1]. The harmonic spectrum consists of a series of peaked
frequency distributions around the odd harmonics of the driving laser field frequency and it
exhibits a characteristic behaviour. The emission of harmonics with photon energies lower than
the ionization energy of the nonlinear medium follows lowest order perturbation theory (LOPT)
and thus the harmonic yield drops rapidly with harmonic order. Harmonics with photon energies
higher than the ionization energy are emitted non-perturbatively exhibiting essentially constant
yield with harmonic order up to the cutoff region. The underlying emission mechanism in this case
is successfully described by the three step model [2]. According to the superposition principle
of wave mechanics, asec light localization comes about when a number harmonics from the thus
generated spectrum possessing proper phase and amplitude relations are superimposed in time
and space.

The availability of UV/VUV pulses with duration of the order of 1 fs and more importantly
of vacuum ultra-violet/extreme ultra-violet (VUV/XUV) asec pulses constitutes a breakthrough
in the quest towards real time investigations of ultra-fast nuclear and electron dynamic processes
of high interest to a number of different disciplines. Such investigations require in the first place,
tractable and detailed pulse characterization measurements. While for intense asec pulse trains,
approaches based on second-order XUV autocorrelation have been successfully implemented [3],
in many cases XUV intensities are low, leaving no other option than the utilization of approaches
based on cross-correlation measurements between the XUV and the driving laser radiation
[4]–[6]. The most widely used cross-correlation techniques are the atomic streak camera [4], the
RABBIT [5] and the CRAB–FROG [6]. Moreover, an XUV version of the SPIDER technique
appeared recently in the literature [7].

The mapping of a spectral phase distribution can be achieved by measuring in a cross-
correlation type of measurement the phase difference between all spectral components of the
radiation to be characterized relative to the phase of a reference field. For the reconstruction of
the temporal profile of a harmonic field Eq or a superposition of harmonic fields

∑
q Eq, the

reference phase can be q-times the phase of a Fourier transform limited (FTL) fundamental laser
field, q being the order of each harmonic of the superposition. This reference phase appears in
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interaction schemes involving a linear driving process at frequency ωq interfering with a nonlinear
one at frequency qω, like those utilized in the phase sensitive coherent control technique [8].
In this technique, the yield of the interaction of matter with a bichromatic field is controlled
through the relative phases of the two phase-correlated waves. In an inverse manner, measuring
the variation of the interaction yield, information about the relative phases of the interfering
interaction channels can be extracted and thus the field phase distributions may be retrieved.

We have recently proposed a cross-correlation approach based on this principle,
i.e. on the ionization of atoms through two interfering pathways, namely single photon
(h̄ωq) and q-photon absorption (qh̄ω), that allows for full spectral phase distribution retrieval
of ultra-short harmonic pulses [9]. Here, the term ‘full’ is justified as both the relative spectral
phase between harmonics as well as between different frequency modes within the bandwidth of
each harmonic are accounted for. A simplified ‘all optical’ version of the approach, measuring
the total harmonic generation yield instead of ionization has been successfully implemented
in reconstructing the temporal profile of FTL as well as chirped third harmonic fields of a
Ti:sapphire laser produced in a gas medium [10]. In this modified version the ‘phase control’
is not only through quantum interference control of the induced atomic polarization, but also
through macroscopically controlled phase matching between the interfering fields.

In the present work, we report on the determination of the complete spectral phase
distribution of the superposition of the third and fifth harmonic fields generated in a gas medium
from a Ti:sapphire laser system. This proof of principle experiment demonstrates that through
this cross-correlation approach, apart from spatial effects [11], full spectral phase/amplitude
distribution retrieval and thus complete temporal reconstruction of asec waveforms can be
achieved.

2. The method

Harmonics are generated in a Xe gas cell, which henceforth will be called the first nonlinear
medium (NLM1), by a 1 KHz repetition rate Ti:sapphire laser system, delivering pulses of 1 mJ
energy/pulse and τL = 56 fs duration at 800 nm carrier wavelength (figure 1). The generated
harmonics co-propagate with the fundamental, entering a transmission grating Michelson
interferometer described elsewhere [12]. The interferometer selects the third and fifth harmonic
from the entire harmonic spectrum. The piezoelectric translation stage in the interferometer
allows for the introduction of a variable delay (phase shift) between the fundamental and the two
harmonic fields with a nominal step of ∼20 asec and maximum linear displacement of ∼15 µm.
The three fields, with frequencies ω, ω3 and ω5, are subsequently focused in a second Xe gas cell,
which henceforth will be called the second nonlinear medium (NLM2). In NLM2, the harmonics
are generated by the fundamental in the presence of the harmonic fields produced in NLM1. The
superimposed third and fifth harmonic fields to be characterized are cross-correlated with the
FTL laser field in three versus one and five versus one coupling schemes, respectively, as depicted
in figure 2. In order for the fundamental laser pulse to be FTL in the NLM2 a pre-compensated
fundamental pulse has been used. In the following discussion it is assumed that all interactions
are within the LOPT and that the fundamental field Eω(ω, z, t) is FTL. In NLM2, assuming that
the pulses are so long that time effects can be ignored and that the field is in steady-state within
the interaction volume, the propagation equation for the slowly varying amplitude of any of the
harmonic frequency components ωq (q = 3, 5) within the spectral region of interest, results in
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Figure 1. Top view (upper panel) and a side view (lower panel) of the
experimental set-up. L: f = 30 cm focal length lens. NLM1 and NLM2:
nonlinear medium (gas cell) 1 and 2. PH: pinhole. G: 600 lines mm−1 fused Silica
transmission grating. The grating is mounted on a translation stage. SM1, SM2
and SM3: f = 30 cm un-protected gold spherical mirrors. F: 3 mm thick BK7
filter. TS: translation stage. M4: un-protected gold flat mirror. MCP: microchannel
plate detector.

a harmonic field at the exit of the NLM2

Eωq
(z = L) = Eωq

(z = 0) + A

∫ L

0
P(ωq, z, t)e

−i�kzdz, (1)

where �k = kq − qk is the wavevector mismatch between the harmonic and the fundamental,
z = 0 is the position of the entrance to the NLM2, and thus Eωq

(z = 0) is the harmonic field
entering this medium, i.e. the field produced in NLM1. L is the length of NLM2 and A is
a constant. P(ωq, z, t) is the polarization of the medium at ωq, which in general consists of
interfering nonlinear PNL and linear PL terms:

P(ωq, z, t) = PNL(ωq, z, t) + PL(ωq, z, t) = χ(q)Eq
ω(z, t) + χ(1)ENLM1

ωq
(z, t), (2)

where x(q) and x(1) are the nonlinear and linear susceptibilities at ωq, respectively. Due to the
resulting three interfering terms in equation (1), the emitted intensity at ωq is

Iωq
= C + B × cos(ϕq(ωq) − qϕL) (3)

with C and B being constants and ϕq, ϕL the phases of the harmonic and fundamental fields,
respectively. Introducing a variable delay τ between the two fields the measured intensity becomes
oscillatory with τ and carries information about ϕq:

Iωq
(τ) = C + B × cos(ϕq(ωq) − ωqτ). (4)

Note that, in this ‘all optical’ arrangement, even when the linear term in equation (2) becomes
negligibly small, the measured signal carries the same phase information. This is not the case
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Figure 2. Coupling scheme in the NLM2. ω1i, i = 1. . . 5 denote the frequencies
of the modes within the bandwidth of the fundamental. ω3,5 are the frequency
distributions of the third and fifth harmonics, respectively. The double index for
the fundamental frequency has been for simplicity omitted in the text, as the use
of FTL pulses makes the explicit mode notation redundant.

when the measured quantity is ionization in the NLM2 [9] instead of harmonic generation, for
which the two terms in equation (2) have to be comparable in strength.

For a polychromatic field, as is the case in the present experiment, the total harmonic signal
at the exit of NLM2, spatially integrated and recorded through a microchannel plate (MCP)
detector, is the incoherent sum of intensity contributions of the type of equation (4) from all the
spectral components involved in the interaction, i.e.

ITOTAL(τ) ∝
∑
q=3,5

∫
ωq

B(ωq) cos(ϕq(ωq) − ωqτ)dωq. (5)

The summation, although redundant, is introduced in order to denote that the harmonic field is
spectrally localized around the third and fifth harmonic of the fundamental. A Fourier transform
of the cross-correlation signal of equation (5) yields the entire spectral phase distribution for the
two harmonics under investigation.

3. Results and discussion

A numerical simulation of the experiment, utilizing a three-dimensional (3D) ray tracing code
and a code accounting for the dispersion introduced by propagation in dispersive elements, has
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been performed5, and the results are compared with the measurements. For the 3D ray tracing, the
3D capabilities of the OPTICA® package of MATHEMATICA® have been used. An analytical
code has been developed in MATHEMATICA® based on the Sellmeier dispersion formula [13],
in order to determine the group velocity dispersion (GVD) introduced through propagation and
thus the pulse duration of the fundamental and the harmonics. Using these codes, we have
accounted for all effects of the beam propagation through all dispersive elements of the set-up,
diffraction at the grating, the reflection by the tilted mirrors and the focusing characteristics of
the beams in NLM2. Furthermore, we can also assess the geometrical aberrations introduced by
the optical design used. In the analysis, parameters such as distances, focal lengths, tilt angles
are equated to the experimental ones. From these calculations the complex fields Eω(ω, t) and
Eωq(ωq, t) (q = 3, 5) of the fundamental, third and fifth harmonic respectively at the entrance
of NLM2 have been extracted. The cross-correlation trace shown in the inset of figure 3(a) has
been simulated for a delay τ range from −25 to 25 fs applying the interference formula:

I(τ) ∝
∫

dt

[∣∣∣D1E
3
ω(t − τ)ei3ω(t−τ) + D3Eω3

(t)ei(ω3t+at2)
∣∣∣2

+
∣∣∣D1E

5
ω(t − τ)ei5ω(t−τ) + D5Eω5

((t + �τ)ei(ω5(t+�τ)+b(t+�τ)2
∣∣∣2

]
, (6)

where τ is the variable delay, Eω, Eω3 and Eω5 the field envelopes of the fundamental, third
and fifth harmonic respectively, a and b the chirp values of the two harmonic fields and �τ the
delay between the third and fifth harmonic pulse respectively, introduced through the dispersive
elements as derived from the above mentioned calculations. Di (i = 1, 3, 5) are constants, the
values of which are chosen so that the amplitudes of the interfering terms in each of the two
interference pairs are equal and the ratio of the maxima of the two superimposed interferograms
is equal to the experimental ratio of the intensities of the fifth to the third harmonic. Note that
equation (6) is equivalent to (5).

By a Fourier transform of the trace, the spectral phase distribution of the superposed third
and fifth harmonic field in the 50 fs time gate window has been obtained (figure 3(a) and (b)). The
third harmonic phase shows no frequency dependence, while the fifth harmonic phase depicts a
quadratic dependence on the frequency. The latter originates from the linear chirp induced by the
propagation of the radiation through the dispersive optical materials, which for the third harmonic
is negligible. The harmonic spectral amplitudes were assumed to be equal to the experimental
values. Using the above spectral phase and amplitude distributions the simulated harmonic field
superposition has been reconstructed. The pulse duration of the reconstructed temporal profile
is found to be close to the FTL value of 32 fs for the third harmonic pulse and 270 fs for the
chirped fifth harmonic pulse. The temporal separation between the third and fifth harmonic field,
induced by the propagation of the fields in the dispersive materials, is partially compensated in
the experiment by changing the grating position in the interferometer [12] (and see footnote 5).
In the simulation, this temporal separation between the two harmonic pulses is arbitrarily
set to 120 fs.

The measured cross-correlation trace for the superposed third and fifth harmonic fields is
shown in the inset of figure 4(a) in the range of −25 to 25 fs. The solid black lines in figure 4(a) and
(b) depict the spectral phase distribution retrieved through the Fourier transform of the measured
cross-correlation trace which is found to be in very good agreement with the simulated one. Here,

5 Detailed analysis of the calculations and description of the experimental apparatus will be given in forthcoming
publication by E Skantzakis et al.
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Figure 3. (a) Inset: the simulated cross-correlation trace between the fundamental
(IR) and the superposed third and fifth harmonic fields. (a) and (b): Fourier
transform spectra. Grey line: spectral amplitudes of the third and fifth harmonic.
Black line: extracted spectral phase distribution of the simulated superposed third
and fifth harmonic field. Dash-dot line: parabolic fit of the central part of the
spectral phase distribution.

the Fourier transform procedure has been corrected for the contribution of the 50 fs gate window.
Using a modified geometry of the experimental set-up [9], the first-order autocorrelation trace
has been recorded, from the Fourier transform of which the spectral amplitudes of the harmonics
have been obtained (figure 4(a) and (b)). The spectral widths of the harmonics are found to
be in good agreement with those expected from LOPT. From the retrieved spectral phase and
amplitude distribution, the superposed harmonic field has been fully reconstructed and is shown
in figure 5(a) and (b). The pulse duration of the third and fifth harmonic is found to be 31 ± 5 and
260 ± 40 fs, respectively. These values are in agreement with those from the simulation. Due
to an incomplete compensation through the displacement of the grating, there is a remaining
time delay of 65 fs between the two fields. Figure 5(b) shows the interference structure of the
superposed third and fifth harmonic field. The low contrast of the beating is due to the significantly
different amplitudes of the third and fifth harmonic. This result indicates that the approach is not
restricted to harmonic fields with almost equal intensities, being sensitive also to a weak signal
modulation.

4. Conclusions

Concluding, the full spectral phase and amplitude distribution of an arbitrary superposition of
the third and fifth harmonic fields of 800 nm central wavelength, fs laser radiation, has been
measured through a cross-correlation approach. Using the measured spectral phase/amplitude
distributions, the temporal profile of the superposed harmonic field has been reconstructed and
found to be in agreement with simulations. The results demonstrate the suitability of the approach
for full temporal characterization of broad band short wavelength radiation, such as high-order
harmonic superposition and thus of asec pulses. The technique is rigorously applicable, as long
as harmonic generation in the NLM2 can be treated by LOPT. This sets an upper limit to the
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Figure 4. (a) Inset: the recorded cross-correlation trace between the fundamental
and the superposed third and fifth harmonic fields. (a) and (b): Fourier transform
spectra. Grey line: spectral amplitudes of the third and fifth harmonic extracted
by the Fourier transform of the first-order AC trace of the third and fifth harmonic
fields. Black line: measured spectral phase distribution of the superposed third and
fifth harmonic field. Note that there is no phase shift between the two phase axes
scales. Thus, the phases between the two harmonics and within the bandwidth
of each harmonic are simultaneously determined. Red dash-dot line: Gaussian
fits. Blue dash-dot line: parabolic fit of the central part of the spectral phase
distribution.
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Figure 5. (a) The reconstructed field of the third and fifth harmonic superposition.
(b) Part of the reconstructed field showing in detail the interference structure of
the superposed third and fifth harmonic field.

order of the harmonics that can be characterized. Using He as NLM2, phases of fields including
harmonics up to the 15th of the 800 nm laser radiation can be retrieved. Utilizing Xe as NLM1,
XUV radiation with a bandwidth of ∼10 eV and slowly varying spectral amplitude can be treated
and thus asec pulses as short as ∼250 asec can be fully reconstructed. For the characterization
of waves with wavelengths below the LiF limit a free standing transmission grating [12] or an
alternative cross-correlation arrangement has to be used. Extension of the approach to photon
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energies larger than the ionization potential of He is subject to a beyond LOPT validity assessment
of the approach for each specific case, through theoretical modelling [14]. As an IR-UV/VUV
cross-correlation technique, based partially on quantum interference effects, the present approach
is related to the RABBIT approach [5], with the advantage (albeit within the limitations discussed
above) of accounting for the chirp also within the bandwidth of the individual harmonics. The
method is applicable as well to coherent broad band continua (i.e. to isolated asec pulses) and
can be further extended to use iterative algorithms fitting trial waveforms to measure traces as
the FROG [15] and CRAB–FROG [6] techniques do. Moreover, as an ‘all optical’ method it is
simpler to implement, not requiring tedious energy resolved measurements.
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