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We analyze the SU ( 5 ) X U ( 1 )' × U ( 1 ) 4 × SO ( 10 ) X SU ( 4 ) superstring model with a spontaneously broken hidden sector down 
to SO (7) × SO ( 5 ) taking into account non-renormalizable superpotential terms up to eight order. As a result of the hidden sector 
breaking the "exotic" states get a mass and the "observable" spectrum is composed of the standard three families. In addition, 
Cabibbo mixing arises at sixth order and an improved fermion mass hierarchy emerges. 

One of  the very few realist ic superstr ing models  
[ 1,2 ] that  are phenomenological ly  promiss ing is the 
" f l ipped"  [3]  ~1 S U ( 5 ) × U ( 1 ) ' × U ( 1 ) 4 × S U ( 1 0 )  
× SU (4)  superstr ing model.  In recent art icles [ 5-9  ] 
the model  has been s tudied thoroughly taking into 
account  non-renormal izable  correct ions [6 ] to the 
chiral superpotent ia l  up to fifth order.  The result of  
this analysis was to de te rmine  a VEV pat te rn  that  sat- 
isfies F-  and D-flatness and predicts  an almost  real- 
istic hierarchical  mass structure for the mat ter  fer- 
mions.  The gauge symmetry  breaking pa t te rn  SU (5)  
× U ( 1 ) '  × U ( 1 ) 4 - , S U ( 5 )  × U ( 1 ) ' - , S U ( 3 ) c ×  
SU (2)  L × U ( 1 ) r leaves the "h idden  sector"  gauge 
group SO (10)  × SU (4)  unbroken. A problematic  left- 
over  of  the analysis was the presence o f  the massless 
exotic states f4,/-~ (see table 1 ) together  with a com- 
b ina t ion  o f  surplus superfields in s tandard  mat ter  
representat ions (f~, l, ¢- , i =  1, ..., 3). Another  potent ia l  
problem of  the model  is the existence of  baryon num- 
ber  violat ing terms appear ing as effective d imens ion  
5 operators  [ 10,1 1 ]. This problem,  as it has been ar- 
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~l See also ref. [4]. 

gued [ 11 ] is related to the previous  one since these 
terms involve the surplus matter- l ike fields. 

The model  is der ived in the free fermionic  formu- 
lat ion o f  four d imensional  strings and is defined by 
eight vectors o f  boundary  condi t ions for all world 
sheet fermions.  The massless spectrum generated by 
this basis is composed  o f  the gravi ton supermult iplet ,  
the gauge supermult iplets ,  and the seventy chiral 
superfields l isted in tables 1 and 2. In a previous ar- 
ticle [ 7 ] the quart ic  and  quint ic  correct ions to the 
cubic superpotential  were computed  and it was shown 
that  the F-  and D-flatness condi t ions  were satisfied 
with the following basic choice o f  vanishing VEVs: 

(J)12=~12 =l~)3 =!J)4 =~3 = f  4= T i=Ai=O , (1) 

together with eight solvable constraint  equations. This 
solut ion predicts  two pairs o f  Higgs isodoublets  and 
one extra pair  o f  triplets. In fact, it can been shown 
[ 12,13 ] that,  ignoring the SU (5)  × U ( 1 ) breaking 
VEVs (i.e. taking Fi=Fs=O),  this basic choice sat- 
isfies F-flatness to all orders. Nevertheless,  an un- 
pleasant feature of  this solution is that the exotic states 
f4,/-~ that  cannot  be part  of  the low energy phenom-  
enology stay massless to the computed  order  of  non- 
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Table 1 
Chiral supeffields in terms of their SU (5) X U ( 1 )' × U ( 1 )4 quantum numbers. 

26 March 1992 

Ft(10,½; ½,0,0,0) f~(3, 3. . - - ~ ,  - ~ ,  0, 0 , 0 )  
r2(10, 21; 0, --½,0, 0) L (3 ,  --~;0, --½, 0, 0) 
F3(10, ½; 0, 0, ½, - ½ )  f3(5, ~; 0, 0, ½, ½) 
1:,(1o, ½; - ½, o, o, o) A(5, ~; ½, o, o, o) 
Fs(i0, -½;0, ½, 0, 0) ~(3, -~;0,  -½, 0, 0) 

h~(5, - 1; 1, 0, 0, 0) h2(5, - 1;0, 1, 0, 0) 
h-t(5, 1;--l, O, O, O) h-2(5, 1;0, -- 1, O, O) 
h4s(5, - 1; -- ½, -- 21, O, O) tt/-45 (5, l; ½, ½, O, O) 

045(1,0; ½, 21, 1,0) q~+(l, 0; ½, --21,0, 1) 
¢T4s(1,0; --½, --½, - -1 ,0)  ¢7+(1, O; --½, ½,0, - -1)  
qO2s(1, O; O, --1, 1,0) qb31(l, 0; 1,0, - -1 ,0)  
t2~23(1,0;0 , 1, - -1 ,0)  ~31(1, 0; --1, 0, 1,0) 
¢~(1, 0; ½, --½, 0, 0), i=1 ..... 4 0~(1,0; --½, ½, 0 ,0) ,  i=  1 ..... 4 

l~(1, ~;-½,0, O, O) 
l~(1, ~; 0,-21,0,0) 
15(i, ~;o,o, ½, ½) 
f,~( 1, 5.1 -~,  ~, 0, 0,0) 
t~(l, ~ ;o , -½,o ,o)  

h3(5, - 1;0, 0, 1,0) 
~3 (5 ,1 ;0 ,0 , - -1 ,0 )  

~_(1,0;  ½, --½,0, --1) 
6_(1, O; --21, ½, O, 1) 
¢12(1, 0; --1,1,  0, 0) 
~12(1, O; 1, - 1, 0 ,0)  
q~1(1, 0; 0, 0, 0, 0), I =  1 ..... 5 

Table 2 
Chiral superfields in terms of their U( 1 )' ×SO(10) ×SO(6) 
×U( I )4 quantum numbers. 

A,(O; 1,6;0, -½, 21,0) 
A2(O; 1,6; -½,0 ,  ½,0) 
zJ3(O; 1,6; -½, -½,0 ,  ½) 
a4(0; 1, 6; 0, -½, ½, 0)  
As(0; 1, 6; ½, 0, -½, 0) 
-~,(-~; 1,~1; - l ,  ¼, l, ½) 
f l ( ~ ;  1, 4; - - l ,  l ,  - - t ,  ½) 
Z, ( -~ ;  1,4; l, l, --l, ½) 
Q,(~; 1, 4; - l ,  ~, +~, 0) 

' ~' - l , l , - i , - ½  Y2(~, 1, 4; ) 
X,(~; 1,4, - l ,  - l ,  - l ,  --½) 

T,(0; 10, 1; 0 , - ½ ,  ½,0) 
r:(0; 10, 1;-½, 0, ½, 0) 
r~(0; 10, 1;-½, - ½ , 0 , - ' )  
T4(0; 10, 1;0, ½, --½,0) 
Ts(0; 10, I; -½,  0, ½, 0) 
£2(-~;  1,a; - I ,  ¼, ~,-½) 
Y2(~; 1,4; -¼,  ¼, - l ,  - ½ )  
Zl(5; 1, 4; __l, - - l ,  l, --½) 
0 , ( - ~ ;  1, ~; - L  t, - l ,  o) 
~1(-~; 1,;,; l , - I ,  l, _½) 
:?~(-~; 1, ;,; - I ,  t, l, -½) 

renormalizable interactions. On the other hand, as it 
has been pointed out [ 11 ], at fifth and sixth order 
there exist terms that involve f3, and IS which gener- 
ate d = 5  baryon number  violating operators  and 
would lead to proton decay if these states were to stay 
massless and to be interpreted as part  of  a mat ter  gen- 
eration. It is therefore highly desirable to render the 
pairsf3,f4 and IS,/-~ superheavy. 

As it can be seen in tables 1 and 2, the quantum 
number  signature of  the productsf4f3 and/ '~  l~ is (1, 
0; 4, 0, ½, ½ ) under SU (5) × U ( 1 ) '  × U ( 1 ) 4. All chiral 
fields have an integer charge for the last U ( 1 ) gauge 
group except F3 ( - ½ ), A3 ( ½ ) and T3 ( - ½ ). Thus, a 
mass term for the unwanted exotic states must nec- 
essarily involve at least one of  these fields an odd 
number  of  times. This holds to all orders of  non-re- 

normalizable couplings. Already at fourth order such 
a term is present in the form 

(f4f3 + l-~lC3) ( T3. T4) / M ,  

where M ~  101 s GeV. At sixth order also we have the 
similar terms 

c c  T3"T4 
(f4 f3 W/-,]/3 ) [ ~  C~l  ~¢ i  + ~+ ~+ 

T3.T,  ] 
+ ~ (02~23 + g 2 ~ , )  • 

This suggests to investigate the (part ial)  breakdown 
of  the hidden SO(10)  group. Note that although in 
principle the desired mass terms could arise also as 
~f40" (F3" f~ )m/M l- ' -2m, in which case there 
would be no necessity to break the hidden sector, no 
such terms were found up to eight order. 

Similar considerations apply to our search for a so- 
lution to another  drawback of  the model, namely, the 
absence of  Cabibbo mixing. The only field that con- 
tains charge I quarks that stay naturally massless up 
to fifth order is F3. It seems reasonable to adopt  the 
interpretation that d-quarks are dominantly in F3. The 
Cabibbo angle would arise from the appearance of  
terms of  the type F,-.F3 with i=  1, 2, 4. The quantum 
number  structure of  these is either (3, I; -½ ,  0, ½, 
- ½ )  or (3, 1; 0, -½ ,  4, - 4 ) .  Again, all chiral fields 
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have an integer charge under the fourth U ( 1 ) except 
F3, d3 and T3. In fact, at sixth order a term of this 
kind appears. This term is 

(A2 "d3) q~23 
F2 "F3 hi M3 

and requires a broken SU (4) via A2, A3 d: 0. 
Before we proceed to investigate in detail the de- 

velopment of  non-vanishing VEVs by hidden sector 
fields, we should mention that there exists an alter- 
native approach that appears to provide us with sim- 
ilar results based on the existence of non-vanishing 
bilinear hidden sector condensates [ 14 ]. Neverthe- 
less, compatibility with the F-flatness constraints is 
not easy to achieve for the desired pattern ofconden- 
sates. Contrary to the case of  individual field VEVs 
that are only constrained by F- and D-flatness, the 
bilinear condensates are in addition related to the 
gaugino condensate in the limit of  global supersym- 
merry. It seems that condensation phenomena are 
unavoidably entangled with the question of the su- 
persymmetry breaking mechanism which has not yet 
been understood. A point that needs to be mentioned 
is that in the "partially broken hidden sector" ap- 
proach the strength of condensation phenomena is 
significantly decreased in proportionality to the scale 
of the surviving hidden gauge groups. Thus, they be- 
come much less important and it is justifiable to ig- 
nore them. On the other hand, the scale of  the surviv- 
ing hidden gauge group that results from SU (4), i.e. 
either SO ( 5 ) or SU (2) × SU (2), should not be too 
low so that fractionally charged states are perma- 
nently confined [ 15 ]. 

Let us now write down the F-flatness equations up 
to sixth order adopting the following initial vanish- 
ing VEV choice: 

~)12 = (]512 = (~)1= 1 ..... 5 =Al =zJ4 =,~5 = T, = F  2 = F  4 

=01 " ~ 2  =03  = 0 .  (2 )  

According to ref. [7] the choice q~2=~12=q~/=  
F4 = 03 = 0 is required by the tree level F- and D-flat- 
ness constraints, q72 =01 = 0  preserves the tree level 
top mass coupling and F2 = 0 is necessary to avoid 
rob=ms. Among the other hidden sector VEVs we 
shall insist that at least A2,/% T3, 7"4 ~s 0 for the rea- 
sons we have explained before and we shall also allow 
T2, Ts # 0 since the F-flatness constraints assocciate 

these VEVs with z~ 2 and T4 respectively. The non- 
trivial F-flatness constraints in this case are 

6W 
=FsO2( T2. T4) / M 2 2 0  , (3a) 

8F2 

6 W  
- -  =F3zg]q~,50+ 2 0 ,  (3b) 
6F3 

8W 
~ij~ 5 =F2f f s~450+ 2 0 ,  (3c)  

6W 

602 

+ [ 0 2 ( T ~ + A 2 + T 2 ) C ~ 2 3 + T 2 ~ 3 ' ] / M 2 2 0 '  (3d) 

6W 
- -  = 04 [ (J~23 ( T  2 + T 2 + d  2) + T2 ti33, ] / M 2 2 0 ,  
604 (3e) 

6W 
- -  = 0 -  [ ~ z 3 ( T ~ + T  2 +A22 ) + ~ 3 ,  T24]/Mz 
60+ 

+ { (/ffs"F3)2~4s + [ ( T Z T ~ ) +  (T3"T4)21045}/M 3 

2 0 ,  (3f) 

8W 
- -  =0+ [ ~E3(T] + T22 +A 2) + q53~ T ] ] / M  2 
50- 

+ T2,j2045/M3~O, (3g) 

6W ={TZA20 - + [ ( T 2 T ]  ) +  (T3.T4)210+}/M 3 
6045 

2 0 ,  (3h) 

6W 2 - 2  6~45 =F3F50+  2 0 ,  (3i) 

8W 
6~1-""" ~ = (~23 (J~31 "tt" ½ (02 "Jt-042)+ 0 _ 0 +  = 0  , (3j) 

a___~w = ~ , ~ ,  +0+0- +½(C+~+ff~,) 
8~12 

+ [ (E l  ' f f5)2+ ( T 4 " T s ) 2 +  (T4" T2) 2 

+ T2(T2 S + T22 +A 2) ] / M 2 2 0 ,  (3k) 

8W 
- ½ T 2 2 0 ,  (3£) 

8q~23 

8W 
8~23 - ( T2 + A~ + T 2) (0 -  0+ +022 +02) /M2,~ O, 

(3m) 
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aW 

81~31 

8W 

8qh 

~W 

~q~3 

fiW 
8,/h 

8W 
8q~5 

8W 
6A2 

- ½ ( T ] + A ~ + T ] ) = 0 ,  (3n) 
6~31 

8W 
- T,](¢_ 0+ +02 z +042)/M2~0, (30) 

_ (d22 + T])tib23(0_ 0+ +0 2 +042)/M3~0, 

(3p) 

--½(04~'~-045~45-~-0_~_ "{ -0+~+)=0 ,  (3q)  

- -  = 0 1 0 2  = 0 ,  (3r) 

- -  =¢7304 = 0 ,  (3s)  

=z~2[ ¢31-[- (J~23(0-- 0+ + 0 2  +024) /M2 ] ~ 0 ,  

(3t) 

~W 
- -  = T42A30_045/M 3 ~ 0 ,  
6A3 

~W 
- -  = (if5 "F3)A3~3(I)31/M3,~'O , && 

8W 
- -  = (F~.F3)~3 [1 + ( 0 , d ,  + 0 ,~4~  

+ ~ + 0 +  + O - q  ~- +~23CI)23)/M2]/M 

+ [zJ2(T2"T4)O2]/M2,'~O, 

8W 
5T~ 

~W 
aT~ 

8W = 02 T,/ , /5 
8T~ 

"4- T4 [ (i~23 -'F (~31 (0--0+ + 0  2 +02)/M2 

-[- (z~20 - 045 -[- T20+ 045 ) / M3 

+ (T4 "T3)T3¢+Oas/M 3 ] ,~0,  

8W 
8T5 = 02 T,/x/5 

+T5[¢2~31 + ~ 2 3 ( 0 - 0 +  +022 + 0 2 ) / M 2 ]  ~ 0 ,  

(3u) 

(3v) 

(3w) 

- -  =T2[¢~31 + ( ~ 2 3 ( 0 - 0 +  -{'0 2 + 0 2 ) / m  2] ~ ,0 ,  

(3x) 

-[T24T3+(T4"T3)T4]O+~4s/M3~O, (3y) 

(3z) 

(3aa) 

where W denotes the superpotential. The wiggled 
equality symbol indicates that in front of all non-re- 
normalizable interactions we do not display the cal- 
culable numerical coefficient. Note also that all cou- 
plings involving A 2 and T 2 are identical up to a fixed 
phase. 

In addition to F-flatness we also have the D-flat- 
ness conditions. Starting with the observable sector 
SU (5) × U ( 1 )' × U ( 1 ) 4 we have the following five 
conditions: 

IF112+ lF3[2= IF sl2, (4a) 

1045 I 2 -  l~45 12= 1~  "]- ~( IF, 12- IF312- Iffs 12) 

+½([A 3 [2+IT 3l 2) , (4b) 

l@23 12- l~23 12= 10+ I 2 -  [0+ ]2__1( [02 I 2-1- 1O4 ]2) 

+½( Id, I~+ 1¢7~ 12+ Id~ 12) 

+~(IF, 12+IF312+31Fsl 2) 

+ ½ (I T4 12- Id3 12) , (4c) 

] ¢2623 ]2__ 1~23 12__ l~31 12+ l~31 12 

1 2+ =-g~-½(IAEI  Id312) 

-½([T212+IT312+ITsI2-IT412) , (4d) 

[~- 12- I¢+ I 2...{- 10+ 12- 10- 12 

-- ~ ¢ +  ½ (IF3 12+ IT3 12- IA312), (4e) 

with ~= 90g2e ~/96~ 2, where g is the gauge coupling 
constant and q~ is the dilaton field. Note that the con- 
ditions (4) naturally imply VEVs of order AM for 
the various fields justifying a perturbative treatment. 
The SO (10) × SU (4)D-flatness constraints are gen- 
erally expressed as 

ATriAl=O, (4f) 
1=2,3 

Z T~ 2ATI=O, (4g) 
1=2,3,4,5 

where z ", with a =  1, ..., 15, are the SU(4) generators 
and 2 ~, with A = 1 ..... 45, are the SO (10) ones. 

The most important prerequisite of the flatness so- 
lution that we are after is that the Higgs mass matrix 
should allow for at least one pair of massless Higgs 
isodoublets which should include//45 and some lin- 
ear combination of ht, he in order to preserve the tree 
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level up-down quark masses. We have computed the 
non-renormalizable corrections to the Higgs penta- 
plet mass matrix up to eighth order. There is a mul- 
titude of contributing terms that, even within the 
special vacuum choice (2), leave no doublets mass- 
less in general. A necessary requirement in order to 
protect the above doublets, is to enlarge the vanish- 
ing VEV choice further by taking ~2 

0+ =¢-  =¢7+ =¢7_ =0,  (Sa) 

and also imposing the additional constraints 

A22 + T2= T2. T3 =O . (5b) 

This choice makes all corrections vanish and pre- 
serves the standard form of the Higgs pentaplet mass 
matrix that is derived at the cubic level [ 7 ]. 

Let us proceed now to solve the flatness conditions 
keeping in mind the conditions that control the cor- 
rections to the Higgs pentaplet mass matrix as ex- 
pressed by eqs. (5). We start our analysis considering 
eqs. (3z), (3aa). It is clear that there exist two dis- 
tinct cases depending on wheather 02 = 0 or not. The 
case 02=0, requires 04# 0 (otherwise eqs. (3z), (3x) 
imply q03t = q023 = 0 ) and then (3aa), ( 3x ), ( 3s ) lead 
tO¢l = Ts=0 .Then  eqs. (3x), (3t),  (3r),  (3j), (3f) ,  
(3w) are impossible to solve unless if we assign VEVs 
of order M to a large set of fields, namely @3t, q33~, 
IJ)23, ~23, ¢4, ~4, 045, ~45" Thus this case is obviously 
rejected. 

We can now continue our analysis by looking at the 
second case, namely 02¢0. This must be accom- 
panied with Ts~0, ~ =0, according to eqs. (3aa), 
(3r). Eqs. (3a), (3d), (3~), (3aa)now require 

T2.T4=T4.Ts=T2=T~ =0 (6) 

in addition to (5a), (5b), while eqs. (3z), (3aa) lead 
to the constraint 

1 2 ~02 ~ [~23 "~" ~31 (0 2 + 0 2 ) / M  2 ] 

X [q b31 + 4523(0~ + 0 2 4 ) / M  z ] . (7) 

Further, we notice that the choice 04~-'~'-0 is not al- 
lowed since it leads to incompatibility of eqs. (3t),  
(3x) and (7). Thus we have to impose ¢3 =0  in or- 

~2 Note that the choice ~+ = 6 -  = 0 also gets rid of  the sixth order 
terms (0+ cl123 + 6 -  ~3t )F4 F3 'F3 f5 that cause proton decay, 
without using any antisymmetry assumptions as in ref. [ 10 ]. 

der to satisfy (3s). The F-flatness equations (3a) -  
(3aa) are then reduced to 

[ ( F s . F 3 ) 2 ~ 4 5 + ( T 3 . T 4 ) 2 0 4 5 ] / M 3 ~ - . , O ,  (8a) 

~23 ~31 "~- / (02 ..~042 ) = 0 ,  (8b)  

~23 ~31 ..~ 1~2 .~ (FI '/~5)2/M2 ~ 0 , (8c) 

04~4 "~ 045 ~45 ~-~0, (8d) 

qb3, + q323 (0 2 +024)/M2=0, (8e) 

(ff5 'F3)A3 [ 1/M+ (04¢4 + 045 ¢745 + ~23 t ~ 2 3 ) / M 3  ] 

~ 0 ,  (8f) 

~02t 2m,[~23+tJ~31(Ox+O2)/M 2] 
X [~31 + t/523 (02 + 0 2 ) / M  2 ] ,  (8g) 

T4 z (T5/¢2) x/~ [¢31 + ~23(0 ] +02)/M21 ~ 0 .  

(8h) 

An immediate implication ofeqs. (Sa), (8g) is 

~23 ~23 ~'~ M2 , (9)  

which combined with eqs. (4) implies large VEVs of 
order M for both untwisted moduli fields qb23, q323. 
This choise does not spoil the perturbative treatment 
of non-renormalizable terms, because any non-van- 
ishing superpotential term (of order n > 3 ) involving 
these fields should also include at least four twisted 
fields [ 13 ] and is therefore sufficiently suppressed. 
Furthermore, in this case the associated Higgs phe- 
nomenon can also be realized directly at the string 
level [ 16 ]. 

For the choice (9), eq. (8f)  requires F3 = 0 in or- 
der to avoid also ¢464 ~ 045¢45 ~M2. Then (8a) sug- 
gests 045=0 but unfortunately this leads to 04 =0  
through eq. (4d). This is impossible since we must 
have q~4 # 0 in order to guarantee the charm quark 
mass term [7]. The only way out is to "satisfy'the 
constraint (8a) approximately, in the sence that this 
F-term is smaller than the expected value of the su- 
persymmetry breaking. Guessing ~3 

#3 The radiative corrections to scalar masses are necessarily of 
the form 

f d20 d2g , 
(~m2)O*O = J- - -M-T-  (¢+-- . ) (0  +.. .)(02F+.. .)(02F*+.. .)  

=O0* ( FF* ) / M "2 . 

Thus, F<~MSrn = O (  10 t° GeV) . 
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( T3" T4)2045/M 3 ~ ( 101° GeV) 2 

leads us to take ~4 

T3, T4 ~ 1014-15 G e V .  (10) 

Note that the generated f3f4 mass in this case of 
"small" T3"T4 is of the order of 1014 GeV which is 
very acceptable and safe. 

The SU(4) ×SO(10)  symmetry breaking is sub- 
ject to the constraints of D-flatness (4f) ,  (4g), as well 
as to the constraints (5b), (6). The SU(4) D-flat- 
ness can be easily satisfied by taking `42 and A 3 to be 
real. Choosing`42 = (a,  0 ..... 0) 11.43----- (fl, 0 ..... 0 )  with 
ot*=a, fl*=fl statisfies the SU(4) D-flatness (4f)  
automatically and breaks SU (4) just to SO ( 5 ). This 
is desirable since we do not want to lower too much 
the confinement scale of the fractionally charged 
states. A general VEV for `42 and `43 breaks SU(4) 
down to SO (4) = SU (2) X SU (2) and this is actually 
the case T2 = 0. For the SO (10) D-flatness we first 
note that (8h) can be written as Ts=~T4 with ~ de- 
pending on singlet VEVs. The choice 

T4 = (7, i~,, 0, ..., 0 ) ,  

T5 =~(?, iy, 0, ..., 0 ) ,  

T 3 = ( 1 +c~ 2) 1/20,, - iy ,  0, ..., 0 ) ,  

T2 = (0, 0, ia, 0 .... , 0 ) ,  (11) 

with ~,*=~, and 6*=g, breaks SO(10) to SO(7), is 
SO (10) D-flat and satisfies all the constraints (5), 
(6). 

Let us now return to our F- and D-flatness con- 
straints (8), (4), (9). Eqs. (8b) - (8h) ,  (9) yield 

02 ~04"~ ~23~31, (12a ) 

~ 4 ~ ~ ,  (12b) 

045~45 ~Mx/~31 ~Sl , (12c) 

g~,~, N/~31 / (~23 , (12d) 

in addition to (9). Assuming real VEVs for the sin- 
glet fields we can now proceed to the solution of the 
D-flatness equations (8). According to eqs. ( I 0 ) -  
(12) we can ignore/'3, T4,/'5 terms and obtain 

~4 Note that in this case the confinement scale (A~0) of SO(10) 
isA~0~< 104 GeV. 

p 2  1 ~ ,  (13a) 

2 V2 045 -04~ = ~o~, (13b) 

V 2= IF1 I 2= IF512=1~+2(1~2312- 1~2312) 

q- (102 12+ 104 12- 1~4 ]2) , (13C) 

0 / 2  1 ~  2 15 - ( ]~z31  1~23/2-1qb3112+1~31] 2) 
(13d) 

Eqs. (12), ( 13 ) together with (9) determine all the 
non-vanishing VEVs of our solution, except 9,, in 
terms of the three NS fields, namely ~31, ~31 and one 
of ~23, ~23. Thus we are left with only four free 
parameters. 

Summarizing our results, up to this point, we have 
found a solution that violates sixth order flatness by 
at most ( 101° GeV) 2, an amount expected to be tol- 
erated by supersymmetry breaking. The non-vanish- 
ing VEVs are the singlets 02, 04, ~4, ~31, ~31, ~23, 
~23 and the hidden fields A2, `43, T2, T3, T4,/'5. This 
solution has qbz3, ~23 ~O(M), T3, T4, Ts~ 1014 GeV 
and all non-vanishing VEVs can be determined in 
terms of four parameters as given in eqs. (9), ( 1 1 ), 
(12) and (13). 

Let us now come to the doublet and triplet mass 
matrices. For our flatness solution all non-renormal- 
izable contributions to the doublet mass matrix (M2), 
up to the eighth order, vanish. M2 has therefore the 
following tree level form: 

0 o°) 0 t~23 0 , 
342 = 1 ~23 0 ~45 (14) 

0 045 

which is characterized by two pairs of massless dou- 
blets [ 7 ]. The triplet mass matrix takes the form 

M2 
M3= , (15) 

cV V 0 d~" UO] 

in a Dl, D2, 03, D45, d~ and/51,152, D3,045 ,  d~, ba- 
sis, where M2 is given in (14). 

The entries in ( 15 ) stand for 

V= <F1 ) ( 1 +...), (16) 
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aV= (F1) (02/M2+...), 

bV=- ( F , )  [ 0 4 5  (I~131 +02tJ~23/M2)/M2 +...], 

~-- (F~) (1 +...), 

cl?--_ (jOs) [024(1 +¢J)z3¢z~23/M2)/M2+...], 

dlT-  ( F 5 )  [q~4~ q~23(1 +Cba3Cbz3/M2)/M2+...], 

( 16 cont 'd)  

where dots stand for higher order corrections. Two 
pairs of  triplets acquire mass of order M together with 
the corresponding doublets in ME. Two more pairs 
receive masses through the triplet doublet splitting 
mechanism [17,3,4] of  order  V which is the 
SU (5) X U ( l ) '  breaking scale. Finally the remain- 
ing pair of  triplets stays massless; these are 
approximately 

Do 045  El , r~ 
"~ 1~23 L~ 2 "1-L/45 , 

( (2)31 - -  C1~23 )2  

"t- ~31q~45 q_cdq~23 __ dtJ~31 (i~23 __C~23~45 D45- 
(17) 

Since the lightest generation up-quarks are still with- 
out a mass term to sixth order, we cannot declare this 
triplet harmless or dangerous and the issue is post- 
poned for a higher order of  computation.  It is possi- 
ble that the massless triplet pair will become massive 
at some higher order. For instance, if at some order a 
pentaplet mass term h45h-2 appears, all triplets will 
become heavy and one pair of  doublets will remain 
massless. 

The terms relevant to the mat te r - fermion mass 
matrix, including non-renormalizable corrections 
only where it is necessary, are [ 7 ] 

F4"F4 h, ~gx/~ bbCH~, (18a) 

F2 "F2 hz--,gx/2 ss~H2 , (18b) 

F, f5 ~4s ~gw/~ tt~//45 , (18c) 

F2f2f[45(~4/M)~gx//2c~ccC//45(~4/M) , (18d)  

f~ l~ h~ --* gx//-2 zr~n~, (18e) 

(f2l~ +ff l~)h:- ,gx/~ (eeC'+#~)H: ,  (18f) 

F2 'F3 h i (A2 "A3 ~23 / M3 ) 

--,gx/~c2(otfl~23/M3)(sdC+dsc)n, , (18g) 

where ct and c2 denote the numerical values of  the 
corresponding non-renormalizable coefficients which 
are of  order O ( 1 ) [ 6 ]. The fields Hi,  //2 and/ /45  
denote the doublet components  of  the pentaplet 
Higgses in self-explanatory notation. They are ex- 
pressed in terms of  the massless isodoublets (Ho, 
n'o, Ho, H'o) [7]: 

H~ = - cos 0 ' /4o + N tan 0 sin 0' H~ + .... 

H2 = sin 0' Ho - N tan 0 cos 0' H~ + .... 

//45 = - (N/cos  0' ) H~ + .... (19) 

where the dots stand for the contribution of  the 
massive isodoublets and 0 = t an -  ~ ( - 045 / q~23 ), 0' - 
t an -  1 ( q1331 / q)23), 0--- t an -  L ( - q~45 / ciB23 ), 0' 
tan -~ (~31/1J~23), N =  (1 + t an20+ tan20 ' ) - l / 2  and 
N---- ( 1 + tan2~i+ tan20 ' )-~/2 

The expressions ( 18 ) are based on the assignments 

F 4 = ( (t, b); be; u ~ ) ,  F2 = ( (c, s); sO; v~) ,  

F 3 =- ( (u, d);  d~; v~) ,  

f5----((/z, uu,); t¢) ,  f 2 -  ((e,  v~); c~) ,  

Z - ( ( ~ ,  v~);uC), 

l ~ - / t  ~, l ~ - e  ¢', l ] -=zc.  

For the proposed flatness solution 0e {045, ~45, q~3~, 
q531}<<q~{q~z3, ~z3} according to (9) ,  (12) and 
thus expanding we get the fermion masses 

m, =gx /~  ( / / ~ )  +o(¢ /q~ ) ,  

mb=m, =gx/~ ( Ho ) + 0 ( ¢ 1 ~ )  , 

m<=m,c,( ( ~ 4 ) l M )  , 

ms=me=m~, 

=gv /2  [ (q53./q~z3) ( H o )  + (0,~/@~3) ( H ~ )  ] 

+o(¢/q~)  ~ , 

m u = O, 

ma =2(gczotfiqSz3/M 3 ) 2 ( Ho )2/rn~ + O ( 0 / q  ~) . 
(20) 

A nice mass relation is rnb/m~= 1 while a proble- 
matic one is m J m u =  1. We also see that the m~ and 
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m~, are suppressed by ~ /@ relatively to rob, ms, for 
natural  isodoublet  VEVs ( (Ho}  ~ ( H ~  } ), al though 
all these masses arise from the tree level superpoten-  
tial. This hierarchy persists even in the case where 
one pair  of  isodoublets  ' - (Ho, Ho ) become heavy. Fi- 
nally the lepton (e, e c') is not really the electron yet 
since in the cubic superpotent ia l  there exists a term 
- t  c X2 Z~ 12. In fact, this term, as well as higher order  cor- 

rections to it, is unique in the sense that  it mixes di- 
rectly through chiral interact ions the ord inary  mat ter  
to "h idden"  fractionally charged states. Never the-  
less, since these states are strongly coupled at high 

- t  energies it is certain that  the bound  state L ~ X 2 Z I ,  
with quan tum numbers  conjugate to IS = e  ~', will 
form. Then, the above chiral term would be inter- 
pre ted  as a mass term of  order  A for the normal ized  
chiral composi te  field L and e ~', where A is the scale 
o f  the relevant gauge group SO ( 5 ) or  SU (4) .  I f  only 
that term were present,  then e ¢' would have become 
supermassive and the model  would lack a right- 
handed  electron. However,  one should expect the 
format ion  of  the conjugate bound  states as well 

( Z =  Z I X I ,  - -  , Z~ Y2, ...). Although it is not theoret ical ly 
impossible  that  these bound  states are massless, it 
seems much more plausible that  they acquire masses 
smaller by a few orders  o f  magni tude  than the scale 
A. For  a mass term L/S of  order  A'  ~ 10-2/1 the elec- 
tron problem would be solved through the mass 
matr ix  

- (A l m~,~(L~, (21) (e L)  , 0 ]\e/ 

which gives a large mass for one combina t ion  and a 
small mass o f  the correct order  rne,~ mu(A ' /A)  for 
the other  combinat ion .  In contrast  to quarks and 
charged leptons the determinat ion of  neutrino masses 
is more compl ica ted  because o f  the mixing with the 
various singlet fields. This is not  a t r ivial  task and 
will be repor ted  elsewhere. 

Coming back to our  flatness solution (9) ,  ( 12 ) we 
see that  only three parameters  are involved in the fer- 
mion masses. I f  we had one pair  of  Higgs doublets  
only one addi t ional  pa ramete r  would be in t roduced 
(the VEV ra t io)  and  the relat ions (20)  would lead 
to definite predic t ions  for the fermion masses. Al- 
though this could be probably  the case when higher 
order  terms are taken into account,  as we have al- 
ready argued, unfor tunately this predic tabi l i ty  is lost 
when two pairs  of  doublets  survive, since three addi -  

t ional  parameters  are introduced.  
Our  conclusions can be summar ized  as follows. We 

found a D- and F-fiat  solut ion up to sixth non-renor-  
mal izable  order  that  correspond to a spontaneously  
broken h idden sector SO ( 10 ) × SU (4)  --, SO ( 7 ) X 
SO (5)  and  is character ized by four free parameters .  
The surplus states f3, l~,f4,/-~ become massive and 
decouple  from low energy phenomenology due to the 
deve lopment  o f  non-vanishing VEVs by hidden sec- 
tor  fields. There are two pairs  o f  massless Higgs iso- 
doublets  and  one pair  o f  massless coloured triplets 
up to eighth order. Higher  order  terms could in prin-  
ciple give masses to these tr iplets as well as to one o f  
the doublet  pairs. All quarks and charged leptons, ex- 
cept the up-quark which remains  massless, obta in  
masses that  have the correct hierarchical  structure. 
In par t icular  Cabibbo mixing arises through VEVs o f  
the h idden sector fields that  break the S U ( 4 )  

symmetry.  

One o f  us (K.T. )  wishes to thank the Minis t ry  o f  
Research and Technology, the CERN Theory  Divi-  
sion and the EEC (Science grant SC1-0221-CCTT) 
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