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Neither the SU(3), SU(2) and U(1) gauge couplings nor the gaugino masses need be universal at the grand unification scale 
M x in supergravity theories. The experimental value of sin20w is naturally reproduced only if M x is somewhat less than the 
Planck mass M v. In this case with SU(5) broken by an adjoint 24 of Higgs there is a simple sum rule relating the SU(3), SU(2) 
and U(1) gaugino masses J(,. Requiring that the supersymmetry breaking leptoquark mass splitting vanish as in no-scale 
models would impose the specific non-universal ratios ,/¢3: Jr'2:J¢1 = 5: - 5: - 1 at M x. In this case m + / m g  is half the usual 
value derived from universality, while m b / m  ~ takes its usual value. 

With the recent discovery [ 1 ] of the intermediate 
gauge bosons at the CERN ~p-collider, one of the 
central predictions of the SU(3) X SU(2) X U(I)  stan- 
dard model has been confirmed. Although the standard 
model is not completely tested, there is a growing be- 
lief among physicists that it describes physics correct- 
ly at least up to energies of the order of the electro- 
weak scale. A theoretically unsatisfying feature of the 
model however, is that it contains a number of free 
parameters whose determination requires one to go 
beyond SU(3) X SU(2) × U(I).  This has led to the 
enterprise of grand unification in which the standard 
gauge group is unified in a larger group such as SU(5) 
at an exponentially distant mass scale. Parameters 
such as the electroweak mixing angle or quark to lep- 
ton mass ratios, which were free in the framework of 
SU(3) X SU(2) X U(I) ,  can now be determined in re- 
markable agreement with measured values. Supersym- 
metry has been introduced in the unification pro- 
gramme as an improvement over conventional pertur- 
batively renormalizable gauge field theories since it 
automatically solves the technical aspects of the gauge 
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hierarchy problem associated with fundamental 
scalars * t .  More specifically, unification in the frame- 
work o f N  = 1 local supersymmetry (supergravity) of- 
fers unexpected fruits such as a possible understanding 
of the origin of the electroweak scale itself and thus 
completely solving the gauge hierarchy problem of 
conventional GUTs, as well as improving enormously 
our understanding of the absence of any observable 
cosmological constant [3]. Unification in the frame- 
work o f N  = 1 supergravity should of course repro- 
duce the standard predictions of sin20 w and m b / m  r 

as well as a set of  relations among the parameters 
associated with the new particles of the theory. In 
particular, one would naturally expect to have mass 
relations among gauge fermions. 

In this paper, under general assumptions we derive 
and analyze the gauge fermion mass relations implied 
by unification. Contrary to the chiral sector of the 
theory whose spectrum is determined in a model-de- 
pendent way, gauge fermion masses are strongly con- 

*1 For reviews see ref. [2]. 
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strained by the unifying group and at the same time 
related in a model-independent way. 

l e t  us consider a supersymmetric SU(5) gauge 
theory with an arbitrary chiral matter superfield con- 
tent coupled to N = 1 supergravity. All gauge and 
matter terms in the component lagrangian are expres- 
sible in terms of  two fundamental functions of  chiral 
superfields [41. These are a chiral function f~(q~) 
which transforms as the symmetric product of  two 
adjoint representations [in the case of  SU(5)a ,3  = 
1, ..., 24] and is an analytic function o f  the left- 
handed chiral superfields ¢i, and the Kahler potential 
G(¢i, ¢p~) which is a singlet under the gauge group 
and is a real function o f  chiral superfields. The struc- 
ture of  the kinetic terms of  gauge superfields is deter- 
mined by f,,#. The same term in the superspace 
lagrangian that gives rise to gauge supermultiplet kine- 
tic terms also generates bilinear gauge fermion terms 
that lead to gaugino masses when supersymmetry is 
broken. In component field form the lagrangian reads 
(we use natural units in which Mp/x/rg-~ = I) 

e - l Z  = ~ Re fa ts ( -  ½ Xal~X #) 

1 
- i i lm fa3 e -  1Du(e kaTu75 h#) 

- ~  Re faaF~uvFfS"v + ~ i ImfaaFg~/Tauv 

+ ] e-G/2G i(G-1)/(aj~aB/adp*/) ha)t O + h.c. + .... (1) 

in the notation o f  Cremmer et al. [4]: G i - ~G/3cki 
and ( G - I ) / i s  the inverse matrix of  G[ = 3G/~¢*i3q~]. 

In the minimal case (fa3 = 5a3), the gauge kinetic 
terms acquire their familiar form and the gaugino 
mass term vanishes. A non-trivial fa# will in principle 
be a function of  all chiral superfields, but we need 
only consider those that get large expectation values. 
Such are gauge-singlet fields z i that make up the 
"hidden" sector, and "observable" fields associated 
with the SU(5) breakdown to SU(3) X SU(2) X U(1), 
such as a chiral superfield in the adjoint (24) repre- 

i _  a i sentation E~ - E (~)~'/x/~. The SU(5) breaking can 
also be achieved with a field in the 75 representation 
[5] but for the moment let us restrict ourselves to the 
simplest case of  the 24 and come back later to the 75. 
Keeping in mind that fa# transforms as the symmetric 
product of  two adjoint representations, the most ge- 
neral form it could have is 

fa3= A(z  .... )6a# + B(z  .... )da3,rE'r , (2) 

plus higher order terms in Y~ like C(z .... ) Y~a Z3* 2, 
etc. As we will see later, to explain in a natural way 
the nearness of  sin20 W to conventional GUT predic- 
tions, we will need to assume (01 El0) < 1, in which 
case higher orders may be neglected. In eq. (2) ,A and 
B are gauge invariant functions of  the chiral super- 
fields. Therefore, if we ignore all other fields except z 
and Z for the reasons stated, they should be analytic 
functions o f  z, Tr(Z2) = E~Z ~ and d ~ . r  E~F_~En' , 
although the latter two are negligible if ( 0 [E[0 )<  1, 
as we suppose. The group-theoretic symmetric coef- 
ficient da#~, is defined as dab v = 2 T r ( { ~ / 2 ,  k#/2}k~/ 
2) with ~ / 2  the generators of  SU(5) in the adjoint 
representation. 

Returning to the lagrangian (1), we see that in 
order to regain the familiar minimal form of  the kine- 
tic terms 

the gauge fields have to be rescaled according to 

F~uv ( ] ~ x ) l / 2 = ~ v ,  A~(f~)  1/2=A=, ~a0a~)l/2 =~a,  

(3) 

where the coefficients]'~ are taken from 

£gzo,  z0)  = £ ~ . ~  = a(zo, ...)~,,~ + d.~v z~a(z  o, ...) 

= [A(z 0 .... ) + E o B ( z  0 .... )c ]Sa# ,  (4) 

with z 0 and Z~ = 6"r'24E 0 the values of  the scalar 
fields at the minimum. The representation invariants 

da324 ~ ce~ a3 are 

c,~ = 2 / X / ~  (,~ = 1 ..... 8 ) ,  

= - I /2v 'T -5  (a = 9 ..... 20 ) ,  

= - 3 / V q 5  (a = 21 ,22 ,  23 ) ,  

= -1 / .V /~  (a = 24) ,  (5) 

where we have assumed for simplicity that f~ 3 is real, 
but our results are true more generally. The rescaling 
conditions (3) go together with the definition of  re- 
scaled gauge couplingsga according to 

ge, f 1/2 =g . (6) 

*2 Such terms give contr ibutions to both/"a3 and its derivatives 
suppressed by extra powers o f  £ .  We shall see later that  it is 
reasonable to ignore them.  
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Thus, the first striking consequence of  a non-trivial 
f,~a is the modification of  the standard unification 
condition at the unification scale M X. Now, this con- 
dition reads 

o~ G = a3(Mx)f3  = ot2(Mx)f2 = -~ ot '(Mx)fl . (7) 

The gauge couplings are no longer equal at M X. The 
classic renormalization group analysis that led to the 
predictions of  sin20w and M X has to be re-examined 
and we intend to do so later. 

Let us now analyze the gaugino mass matrix 

"8 = ~} e -~ ; /2G i (a  - l  ¢.'( a ~ ,  / O,;b*/)/.4- ~ " (8) 

Using SU(5) covariance, the K~tler potential depen- 
dent factor can always be written as 

Gi(G-I)~ = Pl(Zo, Y_,O)~ ]z + P2(z0, Zo)t51~' ~..~3' (9) 

(in no-scale models [3] P2 = 0). Finally, we get 

c~a~  = ~5~m3/2(1-' + co, AY_,O)/(A + ce, Y_,oB ) , (10) 

where as a shorthand notation we have introduced 

F = ~ [el(OA/az)o + 2 e  2 z02(aA/aZ2)0l ,  

A - ~  le~(aBlaz)o +e2B+ 2~.o~(a~/aZ~)o]. (11) 

Thus, grand unification in general allows different 
gaugino masses at M x ,  contrary to the commonly as- 
sumed equal values. Eq. (10) can be put in a more 
transparent form using eqs. (4) and (6). Then, 

c~  a = m3/2 ( r  + C A~0)f~-I 

2 2 = m3/2(gJg ) (F + caA]~0), 

o r  

c'~jg2=(m3/2/g2)(F+co~AY.,O) ( a t M x ) .  (12) 

It is already evident that since c ~  a depends only on 
two arbitrary functions 1" and A, we must find rela- 
tions among the different gaugino masses. Substitut- 
ing the group factor ca,  we get 

c'~3/o~ 3 = (m312/OtG) (F + 2A~0/X/i"5 ) , 

"7~ 2/a2 = (m3/2/aG) (F - 3 ~ 0 A / x ~ ) ,  

C/~lS/~ or'-- (m312/OtG) (F - 1~0 A/X/~)  , (13) 

which implies 
$ 

c)~ 3/or 3 = _~  c)~2/o~ 2 + ] QIf 1/] or' . (14) 

Since the ratios cllCi/ct i are renormalization group in- 
variant, the same relation holds for all energy scales 
/.t < M  x .  Relation (14)depends only on the assump- 
tion that SU(5) is broken to SU(3) X SU(2) X U(I)  
with a non-vanishing expectation value of  the adjoint 
1~ which is < 1. No assumption was made on the form 
of  the K~ihler potential ( i .e . ,P 1 and P2) or on the 
form of  A and B. I fwe  were to include in f,~a a term 
of  the form C(z, ~;2 .... ) ~ a ~ # ,  the expression for 
Q~ 1 would change to 

$ t 
c?~ 1/~ ct = (m3/2/OtG)(F- ]~0A/V/~ + ~02E), 

where 

E - P1 aC/az + 2P2(C+ z~ ac/az 2) . 
This extra term, however, is suppressed even if ~0 is 
just an order of  magnitude below Mp. 

In the case that we set the heavy leptoquark gau- 
gino Majorana masses equal to zero, as required if 
their loops are not to make large contributions to the 
vacuum energy, which would be disastrous in many 
models [6], we obtain an additional constraint. 
Indeed, for 

c~  .~,~ : m 3 / 2 ( F _  y_,OA/2VF~)/(A- ZoB/2x/q~)=0 ' 

we get 

3/0t3 = 5(m3/2Y_,OA/2VF~t~G), 

c ~  2/a2 = - 5  (m3/2 ZoA/2x, /~CtG),  ( 1 5) 
5 r 

Q'~i/~ot = - (m3/2  ZOA/2Vri"5OtG), 

Therefore, in this case the gaugino masses scale as 

( c~3 /a3) : (Qf~2 /a2) : (Q~l /Sa ' )=5: -5 :  - I .  (16) 

This is in sharp contrast to the usually assumed equa- 
lity c~  3(Mx ) = ell( 2(MX ) = ¢~ I (Mx ) which together 
with a3(Mx)  = ot2(Mx) = ~ a ' (Mx)  = ot G leads to 

c~3/Ot 3 = c~  2/or 2 = cfftl/~Ct' . 

It should be pointed out also that if we neglect neu- 
tral Higgs fermion mixings, as is appropriate for 
C~l ,  2 "~Mw, the photino now has a mass 

c//~. = ~ sin2Ow ~ 2,  

in contrast to the usual expression [7] which is twice 
as large. 

As we have already stated, our mass relation (14) 
can change if SU(5) is broken down [5] to SU(3) X 
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SU(2) × U(1) with the help of  the 75 representation 
whose expectation value is 

ZOO4;. ' ,#  + 2Ci.  l, - 8! l} (17) 1 I 1 ' 
with 

A c = d i a g ( 1 , 1 , 1 , 0 , 0 ) ,  A w = d i a g ( 0 , 0 , 0 , 1 , 1 ) .  

The corresponding choice fo r fa  a is then 

• x31 .~[ ikl ./~13 = A(z,Tr  Z2)6 ~ +B(z ,Tr Z2) kT~. "k] - ] l  

--(,4 + B~Z0/Z~),~,~a. (18) 

The representation coefficients D a are calculated to be 

D a = - l  ( a=  1 ..... 8 ) ,  

= 1 (4 = 9, ..., 20) , 

= - 3  ( c ~ = 2 1 , 2 2 , 2 3 ) ,  

= 5 ( 4 = 2 4 ) .  (19) 

Finally, the gaugino masses are 

c)~ 3/43 = (m3/2/oq3)(p, _ A') , 

c)~r 2/42 = (m312/ot G) ([-,' _ 3A') , 

9~1/~4'  = (m3/2/ac,)(v '  + 5a ' ) ,  (20) 

and the mass relation that follows is quite different 
from the one previously obtained, 

c~ 3/43 = ~ c~2/42 + t C~l/_~a, " (21) 

Again, in the case of  vanishing leptoquark gaugino 
Majorana masses we get 

(97{3/43) : (c)'/~2/a2) : (c'fl~l/~4 ')  = -1  : - 2 : 2  , (22) 

which is also different from (16). 
Let us now go back to the modified boundary con- 

dition for the gauge couplings in the case with an ad- 
joint 24 of  Higgses E, and examine its consequences 
for the standard predictions of  sin20 w and M X. The 
unification condition now reads 

43(Mx) = 42(Mx)f2/f3 = ~ ( /1 / f3)4 ' (Mx)  =-f314G " 
(23) 

Notice that (23) requires/3, /2 , f l  > 0. Independently 
of  any constraint, the f ' s  satisfy an identity imposed 
by the fact that they all depend on only two arbitrary 
functionsA and B, 

f 3  m 3 $ - ~ f 2  + I l l  • (24) 
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Since they must all be positive, we must in addition 
have 

f2 <-~h or /'3 < ~/'1. (25) 

The f ' s  do not appear in any expressions for the 
gaugino masses at any energy, since 

c~ a/g2 = m3/2(1-, + ca Y, oA)/g2 , 

is a renormalization group invariant quantity. How- 
ever, the renonnalization group equations for the 
three gauge couplings certainly depend on the f ' s  
explicitly. 

We fred it convenient for later use to define 

m 0 = m3/2I", (26) 

and 

71 -5 / f  3 , ~ -  l / f  I . (27) 

Then automatically ]'2 = ] (1[~ - 2/r/), and the bound- 
ary condition a tM X can be written 

oq 3 = 543(Mx)/r/= ] ( 1 / ~ -  2/r/)42(Mx) 

= 5a'(Mx)/3/j ( r />  2/j > 0 ) .  (28) 

The one-loop renormalization group equations for the 
three gauge couplings are 

431 (/,t) = 43-1(Mx) - (b3/2u) In (Mx/P) 

= 5/v4 c - (b3/2rr) ha (Mx/it), 

a - I  (p) sin20w(it) = 4~-1 (M x) _ (b 2[2n) In (Mx/it) 

= (5/34G) (1/~ - 2/7/) - (b2/2rr) ln (Mx/ i t ) ,  

} ,~-1 (it) cos2Ow(it) = }c ; -  I(M x) 

- (b I/2n) ha (M x lit) = l ]~ ~3 - (b 1/27r) In (Mx/it) . 

Defining 

D = ]b3(r///j - 1 ) -  ~b I - b2,  

we obtain 

In (/14 x ~It) = (27#0) [a -  1 (it) _ _] (r/If - 1 )a~ -l (U)], 

sin20w(it) = ~ (r//~ - 2)c~(it)4~-l(it) 

+ [ 1 - ] 4(/2)4~ 1 (p)(.q//j _ l)] 

X [}b3(r / /~-  2) - b 2 ] D  -1 , (29) 

oq31 = ~ 77 {4~ -1 (it) + b 3 [or-1 (it) - ~  (r/[~ - 1 )ot~l (/a)]D - I  ) 
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In the minimal case of  two Higgs doublets the renor- 
malization group coefficients are b 3 = 3, b 2 = - 1  and 
b I = - 3 3 / 5 .  

If  we now demand that the electroweak mixing 
angle lies in the experimentally observed [8] range 

0.21 <~ sin20w(Mw) <~ 0 .23 ,  

we find that the ratio r//~ is forced to take values in 
the rather narrow range [with a3(Mw) = 0.122] 

4.5 ~< r//~ ~ 5 . (30) 

This result holds independently of  any possible va- 
nishing o f  the supersymmetry breaking contribution 
to the masses of  the X, Y gauginos in the coset SU(5)/ 
SU(3) X SU(2) X U(1). The behaviour o f  sin20w(Mw) 
as a function of  r//~ is shown in fig. 1, where we also 
display the unification mass M X as a function of  rl/~. 
As can be seen from there, the observed range of  
sin20 w indicates that 

2 . 4 X 1 0 1 6 G e V ~ M x < ~ 3 . 5 X 1 0 1 7 G e V .  (31) 

In fig. 2 we show the behaviour o f  the combination 
r/oq3 as a function ofr//~.  Since in the experimentally 
favoured range (30) we find M x < M p ,  it presumably 
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Fig. 1. The unification mass M x and sin2Ow as functions of 
r~/~ [see (29)]. Shown also is the experimentally allowed 
range of sin2OW . 
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Fig. 2. The combination r/c~GU T = 5aa(Mx) as a function of 
n/~ [see (29)1. 

makes sense to demand that ct G ~ 1, which implies 
that r~ >~ 0.2. It is also interesting that in the range 
(30) the successful prediction for the ratio mb/m r re- 
mains practically unchanged. In general we would 
obtain [9] (at one-loop) 

mb/m r = [5ot3(/.t)/r/CZG ] r3 [al(/a)/~aG] r l  , (32) 

where F i = (?(i) _ ?(bi))/2bi ' where 7 (i) are the ano- 
malous dimensions. With r/a(; ~ 0.2, the ratio (32) 
is practically equal to the "naive" SUSY value. 

It is remarkable that the low-energy predictions 
(30 ) - (32 )  show such a consistency. In particular, the 
result (3 I) justifies a postenori the neglect o f  terms 
of  the type XaY,# in fa~,  which are suppressed by an 
extra power of  M x  /MP. 

The spectrum of  sparticles can now be expected to 
differ considerably from previous analyses [10,11]. 
If we parametrize the bare gaugino masses as 

c ~ , ( M  X) =$irn 0 ( i = 1 , 2 , 3 ) ,  

with m 0 as defined in (26), the isodoublet squarks 
and right-handed sleptons in radiative models will ac- 
quire masses 

m 2 = m 2 + C q O a ) m 2 ,  m 2 =m2+CR(la)m 2 (33) 
q ~R ' 
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where 

Cq0 ) =   J3(u) + 3  s20,) + 

C R ( U )  = , 

Si(ld ) ~ ( l[2bi){[cxl(U)/~i(Mx)] 2 -- 1}. (34) 

Setting sin20w(Mw) ~- 0.21 determines r///j and aGr/ 
(see figs. 1 and 2). Let us now concentrate on the in- 
teresting case of vanishing supersymmetry breaking 
mass splitting in the leptoquark vector supermultiplets 
as expressed by (16). At/z = M  w we fred that 

m~./m ;~ = 0.882 + O.104(m/rlmo)2 q g 

2 2 m.~R/m ~ = 0.0008 + O.104(m/rlmo) 2 (35) 

For r/m 0 = m we obtain m~. ~- 0.99m~- and m~'_ 
0.32m~-. Using the PETRA/PEP bound m~- R ~>~8 GeV 
we find that 

m E I > 5 5 . 6 G e V ,  m ~ / > 5 5 . 2 G e V .  (36) 

Therefore, the simplest possibility favours a two-squark 
or -gluino explanation [ 12] of the UA 1 monojet events. 
Another explanation [13] of the monojet events has a 
light [~O(5)GeV]  gluino and O(100) GeV squarks. 
This spectrum can be realized if m/~lm 0 ~- 62: a pos- 
sibility we cannot exclude although it appears surpris- 

ing. 
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