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Abstract

We study solutions of Einstein’s equations corresponding codimension n > 2 global
topological defects with de Sitter slices. We analyze a class of solutions that are cylindrically
symmetric and admit positive, negative or zero Bulk cosmological constant. We derive the
relevant graviton equations. For an extended brane, the properties of the solution depend
on appropriate boundary conditions that the exterior solutions have to satisfy near the
core. As an alternative we consider matching copies of the exterior solution related by
symmetry. We show that we can get localization only when the Bulk cosmological constant
is negative. We obtain a condition on the global defect symmetry breaking scale which
ultimately controls the size of the n − 1 internal dimensions at the position of the brane.
The induced metric on the brane, in the case of mirror spacetimes, is a direct product
of a de Sitter space and an (n − 1)-sphere, while the metric of the embedding spacetime
is a warped product and the actual size of the (n − 1)-sphere changes as we move along
the radial direction. The solutions possess naked singularities, which nevertheless satisfy
no-flow conditions.

http://arxiv.org/abs/hep-th/0303096v1


1 Introduction

The idea that the ordinary spacetime can be associated with a Brane embedded in a higher
dimensional space has received considerable attention in the last few years[1][2][3][4]. This
alternative to Kaluza-Klein compactification assumes the localization of matter degrees of
freedom on a topological defect or Brane[5]. Such assumptions are backed by expectations
of matter field localization through specific String Theory dynamics forD-Branes[6]. In con-
trast, gravity propagates in the Bulk but it retains its four-dimensional character through
an effective localization on the Brane resulting from the curvature of extra dimensions[7][8].
Such is the case of a 3-Brane in a 5-dimensional AdS spacetime where gravitation on the
Brane is Newtonian with corrections small at macroscopic scales. Models with more than
one extra dimensions have also been constructed based on higher codimension or trans-

verse dimension defects. Although a number of such solutions are known, arising either
from local or global defects, graviton perturbations have only been studied, to the best of
our knowledge, in the case of flat 3-Branes[9], [10], [11], [12], [13].

There is a considerable interest in de Sitter space lately, to a large extent motivated by
the astrophysical evidence in favor of a present phase of accelerated expansion. Indepen-
dently of that, there is plenty of motivation to study de-Sitter Branes made up of scalar
fields in the Bulk that form a global defect. In this paper we explore a class of codimen-
sion n > 2 spacetimes with non-flat 3-Branes and examine their gravitational excitation
spectrum and its localization properties.

Let us consider a d-dimensional spacetime composed of a q-dimensional Brane embedded
in n extra dimensions (d = n + q). The Brane corresponds to a global defect arising from
n scalar fields φa interacting through a potential

V (φ) =
λ

4
(φaφa − η2)2

Such a potential allows for solutions with non-trivial mappings of the vacuum manifold,
the (n − 1)-sphere φaφa = η2, onto the n-dimensional space transverse to the Brane. The
simplest non-trivial configuration is

φa = ηf(r)
ya

y

with y2 ≡ yaya, ya = {y cos θ1, y sin θ1 cos θ2, ...}, and {θ1, . . . , θn−1} angular coordinates on
the unit (n− 1)-sphere. r is a radial coordinate on the space transverse to the defect and
for solutions representing a defect the profile of f(r) goes from a vanishing value at the
center of the core to 1 at the outside. Defined in this way the core of the defect is the region
where the potential is significantly different from zero. This is the region that defines the
Brane.

One can quite easily find solutions that solve Einstein’s field equations in the region
outside the core/Brane, that is, where f(r) = 1. A complete spacetime solution should also
include the solution for the core region, which should me matched to the exterior solutions at
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some matching surface. We consider the outside region and see up to what point this might
be sufficient in discussing the localization of gravity. In addition to the energy-momentum
tensor for the scalar fields, we include the effect of a Bulk cosmological constant Λ whose
sign we leave arbitrary. For a class of known cylindrically symmetric solutions for the
exterior region we write the graviton equation and find the exact solutions. Ultimately, in
order to determine whether gravity is actually localized we need to know the specific form of
the core matter content and geometry. Instead of fixing the matter on the core, we proceed
by considering the brane as an infinitely thin wall with n− 1 internal dimensions of finite
size. We do this by matching two mirror copies of the exterior solutions. In this picture
although standard matter is somehow localized along the transverse direction it can still
see the n− 1 internal dimensions. We thus have two requirements in order to get localized
gravity. On the one hand we need to look at the behavior in the direction transverse to the
wall, and on the other, just as in standard Kaluza-Klein dimensional reduction, we need the
internal dimensions at the wall position to be small enough so that modes wrapping around
them are correspondingly massive. This thin wall approach allows us to study the spectrum
in more detail, even if we keep our analysis qualitative. For the class of solutions at hand,
we find that gravity can be localized only for a negative Bulk cosmological constant and
for a certain range of the global defect parameters.

Here is the plan of the paper. In section 2 we present the class of cylindrically sym-
metric solutions, taken from [14] with appropriate reparametrizations. They correspond to
solutions with de Sitter slices and backgrounds with negative, positive and zero Bulk cos-
mological constant. In section 3 we write the relevant equations for the graviton in warped
geometries with a spherically symmetric section. In section 4 we give the radial equation
and solve it. We also write the boundary conditions set by the specific nature of the matter
making up the core. In section 5 we construct and analyze the mirror spacetimes mentioned
above. We explain our conclusions in section 6.

2 Cylindrically symmetric Branes

We begin by writing down the solutions that we are going to take as background solutions.
They are represented by cylindrically symmetric metrics of the form

ds2 = dr2 + e2A(r)
(

L2dΩ2
n−1 + ĝµνdx

µdxν
)

(1)

where r is the radial coordinate in the space transverse to the Brane and dΩ2
n−1 is the

line-element for a unit radius (n− 1)−dimensional sphere. We shall take the metric ĝµν on
the Brane to be that of an q−dimensional de Sitter space. The curvature of this de Sitter
space will be parametrized in the usual way as R̂µν = (q − 1)H2ĝµν and R̂ = q(q − 1)H2.
The associated energy-momentum tensor is

T r
r = −

(

(n− 1)η2

2L2
e−2A + Λ

)

, T ν
µ = δν

µT
r
r , T i

j = −δi
j

(

(n− 3)η2

2L2
e−2A + Λ

)
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The following solutions exist [14]

e2A(r) =











α2
+ sin2 (β+(r0 − r)) (Λ > 0)
α2

0(r − r0)
2 (Λ = 0)

α2
− sinh2 (β−(r0 − r)) (Λ < 0)

L2 =
(n− 2 − κ2η2)

(q − 1)H2
(2)

For the first and the third cases we have

α2
± =

(q − 1)(d− 1)H2

2κ2|Λ| , β2
± =

2κ2|Λ|
(d− 2)(d− 1)

(3)

while in the second case

α2
0 =

(q − 1)

(d− 2)
H2 (4)

κ2 ≡ 8πG gives the gravitational coupling on the Bulk .

We note that to be well defined we need n ≥ 3. At some value of r the above exterior
solutions should match the undetermined core solution. Without loss of generality we will
take this matching hypersurface to be at r = 0. We also note that these geometries are
characterized by a naked singularity at r = r0. At that point the energy-momentum tensor
diverges. This should not come as a surprise since this corresponds to the vanishing of the
radius of the (n− 1)-dimensional spheres.

In the above H is an arbitrary parameter. The effective q−dimensional curvature
changes along r as

R̂ef = R̂e−2A =
2qκ2Λ

(d− 1) sin2(β+(r0 − r))
,

q(d− 2)

(r0 − r)2
,

2qκ2|Λ|
(d− 1) sinh2(β−(r0 − r))

(5)

for Λ > 0, Λ = 0, Λ < 0, which clearly does not depend on H . However we find it
convenient to keep it. We can fix it by demanding that it gives the actual Hubble parameter
at a given radial position. For example, by demanding that it gives the actual Hubble
parameter at r = 0 we have

H2 =
2κ2Λ

(q − 1)(d− 1) sin2(β+r0)
,

(d− 2)

(q − 1)r2
0

,
2κ2|Λ|

(q − 1)(d− 1) sinh2(β−r0)
(6)

This is clearly equivalent to normalizing the warp factor so that we have eA = 1 at r = 0.

3 Graviton equation

When considering gravitational perturbations for a gravity-scalars system like the global
defect we have considered, the scalar variations δφa, for a transverse, traceless graviton
in the harmonic gauge, decouple[15] from the graviton and, thus, can be ignored. In the
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present section we will derive the equation that corresponds to this traceless graviton for a
general warped geometry of the type

ds2 = e2A(y)dŝ2 + ds̃2 ≡ e2A(y)ĝµνdx
µdxν + γabdy

adyb (7)

where dŝ2 is q−dimensional and ds̃2 n−dimensional. For such metrics we can write the
perturbation modes as a product

hµν(x, y) ≡ e2A(y)φ(y)ǫµν(x)

and one finds that the equation for φ coincides with the equation for a scalar field, namely,

∇̃2φ+ q∇̃A ∇̃φ+ e−2A m2φ = 0. (8)

where m2 is the mass term of the q−dimensional spin-two perturbations and the tildes
denote geometrical quantities calculated using the metric ds̃2 of the extra dimensions 1.

Since the solutions that we want to study are cylindrically symmetric, we should spe-
cialize to the class of metrics that can be written as (7) with

ds̃2 = γabdy
adyb = dr2 +R2(r)dΩ2

n−1 (9)

where r is a radial coordinate in the space transverse to the brane and dΩ2
n−1 defined as

in the previous section. Because of the symmetries of the solution it is natural to write
φ(y) = ψ(r)Zℓ(Ω) where Zℓ(Ω) are spherical harmonics in S(n−1). The equation they satisfy
is

✷Zℓ + ℓ(ℓ+ n− 2)Zℓ = 0 (10)

where ✷ here is the box operator on S(n−1). Plugging this into (8) we get the following
equation for ψ(r)

ψ′′ + ψ′
(

q A′ + (n− 1)
R′

R

)

+

(

m2e−2A − ℓ(ℓ+ n− 2)

R2

)

ψ = 0 (11)

For the particular solutions displayed in the previous section we had R(r) = LeA(r). In
this case the equation simplifies even further reducing to

ψ
′′

+ (d− 1)A′ψ′ +

(

m2 − ℓ(ℓ+ n− 2)

L2

)

e−2Aψ = 0 (12)

1The ordinary-space graviton factor satisfies the equation [16]

−1

2
∇̂2

ǫµν +

(

−H
2 +

m
2

2

)

ǫµν = 0
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The normalization of the modes is given by the term [9]

∫

e(d−3)Aψ2 dr
∫

L(n−1)Z2
ℓ (Ω) dΩn−1

∫

√

ĝĝµνǫλκ,µǫλκ,ν

So, the condition for normalizable q−dimensional modes, in our choice of metric, reduces
to

∫

dr e(d−3)A(r)ψ2(r) <∞ (13)

The normalization integral includes the core region where we do not know the solution, and
extends up to the limiting singular point r0 of the outside region.

The zero modes (m2 = ℓ = 0) for the solutions displayed in the previous section can
be easily derived from the above equation. Imposing the normalization condition for them
we see that the integral between r = 0 and r = r0 is finite only for the constant zero
mode solution ψ0(r) = const.. The other linearly independent choice gives a divergent
contribution to the normalization integral due to its behavior near the singularity at r = r0.

In order to study the massive spectrum it is convenient to transform the graviton equa-
tion into a Schrodinger type differential equation. This can be achieved by introducing a
new variable z and a new graviton function χ(z) defined through

dz = e−Adr , χ = e(d/2−1)Aψ (14)

In the following we will refer to this choice as the conformal gauge. After these transfor-
mations the graviton equation takes the Schrodinger form

{

−1

2

d2

dz2
+ V (z)

}

χ(z) =
m2

2
χ(z) (15)

where the potential V is defined in terms of the warp function as

V = −1

4
(d− 2)

(

Ä− 1

2
(d− 2)Ȧ2

)

+
1

2L2
ℓ(ℓ+ n− 2) (16)

Moreover, for χ(z) the normalizability condition is the usual one, that is,

∫

χ2(z) dz <∞. (17)

4 Spectrum

We can work the transformation to the conformal gauge for each of the solutions presented
in the previous section. In the case of positive Bulk cosmological constant Λ > 0 we obtain

e2A =
α2

+

cosh2(α̃z)
(18)
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in terms of α̃2 ≡ α2
+β

2
+ = (q − 1)H2/(d − 2). The variable z takes values in the range

z0 < z < ∞, where z0 ≡ z(0). At the singularity r = r0, the variable z reaches infinity.
The potential as a function of z is

V (z) =
1

2L2
ℓ(ℓ+ n− 2) +

α̃2

8

{

(d− 2)2 − d(d− 2)

cosh2(α̃z)

}

(19)

The general solution of the above Schrodinger problem is given in terms of hypergeo-
metric functions as

χ(∓)(z) = cosh(α̃z)(∓√
c)

2F1[d/4 ±
√
c/2, (2 − d)/4 ±

√
c/2 ; 1 ±

√
c ; 1/ cosh2(α̃z)] (20)

with c used as a shorthand for

c =
(d− 2)2

4
+

(d− 2)ℓ(ℓ+ n− 2)

(n− 2 − κ2η2)
− (d− 2) m2

(q − 1)H2
(21)

To check normalizability we look at the behavior as z → ∞

χ(±)(z) ∼ e±
√

cα̃z (22)

The behavior changes qualitatively at m = mc, which is the value that makes c = 0

m2
c = H2 (q − 1)

4

{

(d− 2) +
4ℓ(ℓ+ n− 2)

n− 2 − κ2η2

}

(23)

For c < 0, or equivalently m2 > m2
c , asymptotically the functions approach plane waves

χ(±)(z) ∼ e±i
√

|c|α̃z (24)

so both will in principle lead to acceptable continuum modes. For c > 0, or 0 < m2 < m2
c ,

only one type of modes is normalizable, namely,

χ(−)(z) ∼ e−
√

cα̃z. (25)

These modes correspond to the discrete part of the massive spectrum. The number of
discrete modes and their mass eigenvalues will depend on z0 and the boundary conditions
at that point. Note that for m2 = 0, ℓ = 0, which corresponds to c = (d− 2)2/4, we recover
the ψ0(r) = const. zero-mode.

For a vanishing Bulk cosmological constant Λ = 0 the variables are related as

r0 − r = r0e
−(z−z0)α0 (26)

while the range of z is as in the previous case. Here we arrive at a constant potential

V =
α2

0

8
(d− 2)2 +

1

2L2
ℓ(ℓ+ n− 2) (27)
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Again, the solutions depend on the parameter c defined above in (21). For c > 0 we have
a continuum of plane wave solutions

χ(±)
m (z) = Nme

±iα0

√
|c|z (28)

defined in the half line z0 < z <∞. The bounded solutions arising for c > 0

χ(−)(z) = N (−)e−α0

√
cz (29)

are subject to the appropriate boundary conditions at z0.

Similarly, in the case of negative Bulk cosmological constant Λ < 0, we have

e2A =
α2
−

sinh2(α̃z)
(30)

for the same range of parameter z0 < z <∞ and using again α̃2 = β2
−α

2
− = (q−1)H2/(d−2).

It is straightforward to obtain the potential as

V (z) =
1

2L2
ℓ(ℓ+ n− 2) +

α̃2

8

{

(d− 2)2 +
d(d− 2)

sinh2(α̃z)

}

(31)

It is clear that form2 > m2
c (see eq (23)), we obtain again the continuum of asymptotic plane

waves. The existence of acceptable normalizable modes in the interval [0, m2
c ] depends on the

boundary conditions to be imposed at z0. The exact form of the two linearly independent
solutions is given by

χ(z)(∓) = sinh(α̃z)d/2 cosh(α̃z)−(d±2
√

c)/2
2F1[d/4±

√
c/2, (d+ 2)/4±

√
c/2 ; 1±

√
c ; 1/ cosh2(α̃z)]

(32)
with c defined as before.

The discrete part of the spectrum, including the zero mode, in all the above three cases
rests on the boundary conditions at z0, where the outer solutions should match the core
solutions. One expects that a regular solution at the center of the core will be possible only
for a discrete set of values of m2.

As z → ∞ we encounter the naked singularity. For acceptable solutions we impose
unitary boundary conditions, which amount to a no flow condition into the singularity
for conserved quantities. From the invariance due to the symmetries along the brane one
obtains the constraint

lim
z→∞

e(d−2)A(z)ψ(z)ψ′(z) = 0 (33)

We have ψ(z) = e−(d−2)A(z)/2χ(z) and as z → ∞ for all three cases the discrete modes
go as ψ(z) ∝ e−(d−2)αz/2−α

√
cz so that the above turns into

lim
z→∞

e−α
√

cz = 0, (34)
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so the condition is fulfilled. For the continuum modes on the other hand (c < 0) ψ(z) ∝
e−(d−2)αz/2−iα

√
|c|z so now the left hand side of the condition reads

lim
z→∞

e−iα
√

|c|z. (35)

This is a wildly oscillating function and corresponds to a function χ which is not normal-
izable in a strict sense. As usual realistic states will be described by a superposition that
leads to a normalized function which means that χ → 0 as z → ∞ and therefore the
condition will be fulfilled as well. Normalizable modes therefore automatically satisfy the
no-flow condition and we do not have to worry about new boundary conditions imposed by
the singularity.

One can be more specific about the boundary conditions set by the interior solution on
the metric functions outside [17]. Taking into account the symmetry of the solution we can
expect the TAB components through the interior to be

T r
r = fr(r), T µ

ν = δµ
ν f0(r), T θ

θ′ = δθ
θ′fθ(r) (36)

The exterior solution extends from r = 0, the matching hypersurface, to the singularity
at r = r0. The core region, on the other hand extends from r = −rc which gives the center
of the solution, to the hypersurface r = 0. If we integrate Einstein’s equations, in the form
Ra

b = κ2[T a
b − δa

bT/(d− 2)], through the core region −rc < r < 0 we obtain

R′Rn−2eqA|0−rc

=
κ2

d− 2
[µr + qµ0 − (q − 1)µθ] + (n− 2)

∫ 0

−rc

Rn−3eqAdρ (37)

A′eqARn−1|0−rc

=
κ2

d− 2
[µr − (n− 2)µ0 + (n− 1)µθ]

+(n− 2 − κ2η2)
∫ 0

−rc

Rn−1e(q−2)Adρ (38)

where

µi ≡
∫ 0

−rc

Rn−1eqAfi(ρ)dρ (39)

and i = (r, 0, θ)

To have a regular solution at the center, r = −rc, we will have the following conditions

R′(−rc) = 1, A′(−rc) = A(−rc) = 0 (40)

These can be used in (37),(38) so that the left hand side will give the appropriate boundary
conditions at r = 0.

Above we have given exact solutions for the modes in the outside region. To determine
the shape of gravity in the brane it is important to know the number and masses of the
discrete modes and this in turn requires knowledge about the detailed nature of the core.
Instead of choosing a possible core matter we prefer to study an alternative set-up, where we
consider an infinitely thin wall at z = 0 matching two mirror copies of the same spacetime.
This is what we will call the mirror spacetimes.
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5 Mirror spacetimes

Another way to model branes with higher codimension is to consider an infinitely thin
wall just as in the codimension one case. The difference being that the wall will have
the topology Mq × Sn−1. The infinitely thin wall is thus a factorized space unlike the
embedding spacetime which is not generally factorizable this way. In the present section
we shall consider matching two copies of the above manifolds across the Mq × Sn−1 wall
(for simplicity, we are assuming Z2 symmetry across the wall).

It is well known that for an infinitely thin wall the metric is continuous across the wall
but that the extrinsic curvature is discontinuous. We can characterize this discontinuity by
the jump of the extrinsic curvature across the wall, which is related to the localized energy
momentum tensor through

[K]ij − δi
jTr[K] = −κ2Si

j (41)

where Sij is the localized energy momentum tensor, Kij the extrinsic curvature and the
brackets denote the difference of a quantity at the two sides of the wall.

We can consider the present set-up as obtained from the one in the previous sections
by substituting what we referred to as the interior region by a mirror copy of the exterior
solution. Consequently the former smooth matching surface turns into a brane with an
induced localized energy-momentum tensor.

For the metrics at hand (7),(9) but in the conformal gauge eq(14), the explicit expression
for the extrinsic curvature reads

Kµ
ν = δµ

νA
′
we

−Aw ≡ δµ
νK0, Kα

β = δα
β

R′
w

R
e−Aw ≡ δα

βKθ. (42)

where primes denote derivatives with respect to the conformal radial coordinate z. We will
assume that

Sµ
ν = δµ

νS0 Sα
β = δα

βSθ (43)

which is consistent with the symmetry of our metric ansatz. From this we have that

κ2S0 = [(q − 1)K0 + (n− 1)Kθ] (44)

κ2Sθ = [qK0 + (n− 2)Kθ] (45)

A vacuum wall of tension σ is characterized by a localized energy-momentum tensor that
is proportional to hij , the induced metric on the wall, so that Sij = −σhij . We can see from
the above that this relation can only be satisfied if K0 = Kθ. Such vacuum walls will not
be obtained in general warped spacetimes with different warp factors for the q-dimensional
and (n − 1)-sphere parts. In that case the wall will have a non-uniform tension, different
for xµ and the angular directions. This is an interesting case to investigate since, unlike the
solutions that we are treating in this paper, they are not conformal to factorized spacetimes.
We expect to investigate this issue in the future.

Let us stay with the conformally factorized spacetimes. If we consider the solutions
used earlier in the paper, we will indeed obtain a vacuum wall when we match two copies
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of the spacetime. Since in order to represent a positive tension wall we will need the warp
factors to decrease away from the wall, we can paste two mirror copies of the solutions for
z in the range z0 < z < ∞ matching along the hypersurface given by z = z0 (r = 0 in the
original coordinates).

The tension σ of this wall will be given by

κ2 σ = −(d − 2)e−A(z0)A′(z0) (46)

As was the case above, we will encounter naked singularities at a finite distance from
the brane.

When we go on to study the graviton perturbations, the effective potential at either
side of the wall will be mirror copies of the potentials obtained above and in addition we
will have a term proportional to a δ function, which is the fingerprint of the discontinuity
introduced by the wall

−χ′′ +

[

Vr +

(

(q − 1)

2
[A′] +

(n− 1)

2

[R′]

R0

)

δ(z − z0)

]

χ = m2χ (47)

where Vr is the regular part of the potential, which has been calculated above for each of
the spacetimes.

Figure 1: Thin wall potentials for Λ > 0, Λ = 0 and Λ < 0 respectively.

The delta function gives a boundary condition at the position of the wall. In order to
satisfy the above equation, χ must be continuous but its derivative must have a disconti-
nuity. The jump of the derivative across the wall is given by

[χ′]

χ0
=

(q − 1)

2
[A′] +

(n− 1)

2

[R′]

R0
=

(d− 2)

2
[A′] (48)

where the last equality is valid only for the present conformally factorizable spacetimes.
The boundary condition is also satisfied by modes with χ0 = 0, [χ′] = 0, however these are
no concern to us since they are zero at the position of the brane and thus do not couple to
matter sitting there.

Eq (48) gives an explicit boundary condition at the wall. As we will show below, it is
trivially satisfied by the zero mode ℓ = 0, m = 0 in all three cases (Λ > 0, Λ = 0, Λ < 0).
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In Fig.(1) we can see the form that the thin-wall potentials take for each sign of the Bulk

cosmological constant.

For Λ > 0 the boundary condition (48) is

χ′
0

χ0

= −d− 2

2
α̃ tanh(α̃z0) (49)

As we showed earlier in the paper the discrete and continuum parts of the spectrum are
separated by c = 0. We showed that when c > 0 only one of the modes is normalizable,
if we now impose the boundary condition set by the wall, only some values of c will be
allowed, thus leading to the discrete spectrum. As is apparent from Fig.(1), we can expect
a number of discrete modes for different values of c.

a b c

Figure 2: boundary condition equation for Λ > 0. The depth of the well decreases from
left to right

In Fig.(2) we represent both sides of equation (49) as a function of c for three extra
dimensions (d = 7) and three different values of the wall tension. We can see that there
is a critical value of the tension σ+ such that for σ < σ+ there are two values of cs (with
s labelling the values) that satisfy the boundary condition. These lead to two towers of
states if we allow for ℓ 6= 0 modes

m2(ℓ, s) = H2 (q − 1)

4

{

(d− 2) − 4cs
(d− 2)

+
4ℓ(ℓ+ n− 2)

n− 2 − κ2η2

}

(50)

where c1 = (d− 2)2/4 corresponds to the lowest lying value which leads to

m2(ℓ, s = 1) = H2 (q − 1)ℓ(ℓ+ n− 2)

n− 2 − κ2η2
(51)

these modes include the zero mode, ℓ = 0, and then modes with massesm2 ∼ H2/(n− 2 − κ2η2)
which will become more and more massive as κ2η2 → n− 2.

For Λ = 0 the boundary condition (48) is

χ′
0

χ0
= −d − 2

2
α̃ (52)

and only the c1 value satisfies the boundary condition for m2 < m2
c .
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For Λ < 0 the boundary condition (48) is

χ′
0

χ0
= −d − 2

2
α̃ coth(α̃z0) (53)

Again only the modes with c = c1 satisfy the condition when m2 < m2
c .

What do we get from the above?. As is well known, because we have a de Sitter brane
we have a mass gap for the continuum spectrum. The continuum starts at m = mc which
is of the order of H for ℓ = 0. We recall that H is the actual Hubble parameter at the wall
and is given by eq (6). From the q-dimensional perspective the lightest of these modes will
be suppressed by their mass only on superhorizon length scales L > 1/mc ∼ 1/H . This
means that unless their wave functions are suppressed on the brane these modes will lead
to higher dimensional gravity. As we see in Fig.(1) there is no suppression for Λ > 0 or
Λ = 0 so we can conclude that gravity is not localized in these cases. As is the case in the
5-dimensional thin wall case, it seems that only the Λ < 0 can do the job.

In this last case we should take care of the modes trapped by the wall with masses given
by eq (51). In addition to the zero mode with ℓ = 0, we have all the others with ℓ 6= 0. It is
thus important that these are massive enough, from the q-dimensional point of view, so that
at observable distances on the brane they can be neglected. This can always be achieved
by a symmetry breaking scale η sufficiently close to the critical value κ2η2

c ≡ (n− 2).

We therefore conclude that in the mirror spacetimes gravity can only be localized when
the Bulk cosmological constant is negative. We expect the same to be true for the solutions
with a realistic core as well.

6 Conclusions

In the present paper we have extended previous analyses on the gravity on braneworld
models by considering thick branes embedded in spacetimes with n ≥ 3 extra dimensions
and, most importantly, by allowing a non-flat brane geometry. In particular we have con-
sidered a brane geometry with n − 1 small compactified dimensions and q-dimensional de
Sitter slices. We refer to these branes as thick since they do not correspond to a perfectly
localized source in the extra dimensions. In the first part we have modelled the branes as a
global topological defect associating the brane with the core. The sources in the Bulk are a
cosmological constant and the scalar fields that make up the defect. The defect solution is
characterized by the fact that at some distance from its center the potential energy reaches
a minimum. We refer to this region where the fields have their vacuum values as the exterior
region. We have analyzed in some detail the solution in this exterior region with an eye at
the localization of the graviton. To this end we have written the relevant equations for the
metric perturbations around backgrounds described by warped geometries. We have fur-
ther specialized the equations for the case at hand, that of spherically symmetric solutions
as seen from the extra dimensions. We have derived the relevant equation for the radial
dependence of the perturbations and then applied it to the solutions at hand.
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We have assumed that the exterior solutions match at some boundary hypersurface an
unknown interior solution describing the core of the defect, that is, what we consider to
be the brane. Focusing on the exterior part of the solution we have found some necessary
conditions for gravity to be localized. They are not sufficient because the specific nature
of the core will affect the modes through the boundary conditions at the matching surface.
The degree of arbitrariness associated with choosing a suitable interior solution describing
the defect and matching it to the exterior solution can be circumvented by going to infinitely
thin branes. Meaningful and general conclusions can still be drawn in this approach. Thus,
in the last part of the paper we have turned our attention to mirror spacetimes. We have
taken each of the exterior solutions and we have constructed new solutions by pasting
two mirror copies of the same spacetime across a hypersurface, thus creating a thin wall
discontinuity which can be associated with the brane. Since we choose a hypersurface
orthogonal to the radial direction the resulting wall/brane has topology Mq × Sn−1.

This is not equivalent to considering the known 5D braneworlds with a number of
extra compactified dimensions. This would be the case if the d-dimensional solution was a
factorized geometry of the form Mq+1 × Sn−1. Instead we have a warped geometry. This
means that the size of the Sn−1 part is not constant throughout the spacetime. This new
approach allowed us to solve the problem completely since the presence of the infinitely thin
wall fixes the required boundary conditions. For the three signs of the Bulk cosmological
constant, the continuum spectrum starts at m ∼ H . Since H gives the Hubble scale on the
wall, these massive modes won’t be suppressed on the wall within the horizon and in order
to obtain q-dimensional gravity they should couple very weakly to the brane which only
happens for Λ negative. This is not enough however. The brane in the mirror spacetimes
has n− 1 internal dimensions and there are massive modes that wrap around these whose
function along the radial direction is the same as the zero mode and consequently are not
suppressed on the brane. They will destroy localized gravity unless they are massive enough
so that at observable distances on the brane they can be integrated out. For the solutions
considered here the mass of these modes in units of the Hubble parameter mass scale are set
by the symmetry breaking scale of the defect. It turns out that they can be made arbitrarily
massive by a symmetry breaking scale η2 that approaches the critical value (n−2)/κ2. For
such values of η, and always when Λ < 0, we conclude that gravity will be localized.

The solutions analyzed here possess naked singularities. Nevertheless, we have argued
that these can be circumvented by imposing no-flow boundary conditions. Indeed, we
find that the no-flow condition is automatically satisfied by normalizable modes[18]. The
solutions studied here are conformally factorizable and, in that sense, quite simple. We
hope to study the gravity of more general solutions, which are not conformally factorizable,
in the near future.
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