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Within a spontaneously broken gauge group we carefully analyze and calculate triple gauge boson

vertices dominated by triangle one-loop Feynman diagrams involving heavy fermions compared to

external momenta and gauge boson masses. We perform our calculation strictly in four dimensions and

derive a general formula for the off-shell, one-particle irreducible (1PI) effective vertex which satisfies the

relevant Ward Identities and the Goldstone boson equivalence theorem. Our goal is to search for

nondecoupling heavy fermion effects highlighting their synergy with gauge chiral anomalies.

Particularly in the standard model, we find that when the arbitrary anomaly parameters are fixed by

gauge invariance and/or Bose symmetry, the heavy fermion contribution cancels its anomaly contribution

leaving behind anomaly and mass independent contributions from the light fermions. We apply these

results in calculating the corresponding CP-invariant one-loop induced corrections to triple gauge boson

vertices in the SM, minimal Z0 models as well as their extensions with a fourth fermion generation, and

compare with experimental data.
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I. INTRODUCTION

In general, the Appelquist-Carazzone [1] theorem states
that the effect from a heavy fermion mass m at low energy
observables is suppressed by powers of m. However, this
theorem does not hold for theories with chiral gauge cou-
plings or large mass splitting within gauge multiplets, a
situation known to take place in the minimal Standard
Model (SM) of particle physics [2–4]. Failure of the de-
coupling of a heavy fermion from radiative corrections
requires breaking of a local gauge symmetry and, in addi-
tion, breaking of a global symmetry by these corrections
[5,6].

Another aspect of theories with chiral gauge couplings is
the Adler-Bell-Jackiw or chiral anomaly [7–10]. This is the
situation where certain classical Ward Identities (WIs) are
violated by quantum corrections (for reviews see [11–13]).
For a model that is non-anomaly free, anomalous Ward
Identities render it nonrenormalizable and nonunitary. This
problem shows up in every symmetry breaking stage of
the model. In order to cancel chiral anomalies associated
with axial (AAA) or vector-axial (VVA) currents in gauge
theories, we either need to stick to only by-construction
anomaly-free gauge groups, or, to introduce additional
chiral femionic fields [14,15].

An energy region of experimental interest corresponds
to the case where a fermion mass m is very heavy, m2

Z <
s � m2, so that it cannot be pair-produced at Tevatron,
LHC or a future lepton-collider. If this fermion is chiral
i.e., it receives its mass from the Higgs mechanism which
is also responsible for the gauge boson mass, then the
question of the decoupling of this particle would cause a

problem in anomaly cancellation and therefore to gauge
invariance. This question has been tackled in many papers
in the literature most notably by D’Hoker and Farhi in
Refs. [16,17]: decoupling of a fermion whose mass is
generated by a Yukawa coupling induces an action func-
tional of the Higgs field and gauge boson fields term,
analogous to Wess-Zumino-Witten (WZW) term [18,19]
in chiral Lagrangian. Then D’Hoker and Farhi showed that
the theory without the decoupled fermion but with the
WZW term is gauge invariant. Applications of this non-
decoupling effect have been utilized in many physics
projects from hadronic up to electroweak physics of the
SM and beyond; see, for example, Refs. [20–26]. However,
to our knowledge, the above conclusion has not been drawn
in the broken phase of theories with spontaneous gauge
symmetry breaking like the SM. It is after all meaningful to
discuss nondecoupling effects only in theories where the
physical masses appear explicitly.
The problem when discussing decoupling effects or in

general physics associated with the fermionic triangle
graph is related to the question: what is the correct result
for such a graph? The answer depends on the physical set-
up in which it arises [27]. For example, as we shall show
below in the case of SM, gauge invariance and Bose
symmetry are enough to set the triple neutral gauge boson
vertices finite and well defined. Only then can we reach the
conclusions for the theory at the heavy fermion mass limit.
If the SM gauge group is extended by extra Uð1Þ’s then

anomaly cancellation conditions become more involved.
Recently, the authors of Refs. [28,29] noted that such
cancellations may occur inside a ‘‘cluster’’ of anomaly-
free heavy fermion sector which is not accessible by the
current colliders, leaving behind nondecoupling effects in
trilinear gauge boson vertices of the extra massive gauge
boson Z0 and those of the SM Z0ZZ, Z0WW, Z0Z� that may
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be observable at low energies. These effects are visible in
the energy region where MZ0 � gv <

ffiffiffi
s

p � m� �v. For
these nondecoupling effects to occur it is necessary for
fermions and gauge bosons to receive mass from the same
Higgs boson and there must be a hierarchy between
Yukawa and gauge coupling, ��Oð1Þ � g. In this paper
we also elaborate on this issue categorising conditions
among couplings where such a situation occurs. We then
present a few toy-model examples with two or three differ-
ent external gauge bosons.

We note in passing that, within field theory, mixed
anomaly cancellations via 4d Green-Shwartz mechanism
have been discussed and analyzed phenomenologically in
many papers e.g. [30–35].

Our goal here is to construct a perturbative, gauge
invariant one-loop proper effective vertex for three external
gauge bosons that incorporates both chiral anomaly ambi-
guities together with nondecoupling effects induced by
heavy fermions in an explicit manner. We would like to
apply this effective vertex in order to:

(i) investigate the interplay between chiral anomaly
effects and nondecoupling effects of individual par-
ticles in trilinear gauge boson vertices in the SM and
its extensions,

(ii) categorise all possible models of mixed anomaly
cancellations and nondecoupling effects of very
heavy fermions that are directly unreachable at the
LHC,

(iii) search for phenomenological implications at
colliders.

General Lorentz-invariant expressions for three gauge
boson vertices have been analyzed in detail in
Refs. [36,37]. One-loop corrections in the SM for the
VWW, V ¼ Z, � using dimensional regularization were
considered in [5] with special emphasis on the nondecou-
pling effects due to large doublet mass splittings. The first
correct calculation for the Z�� vertex was performed in
Ref. [38] while for ZZ� in Ref. [39]. Phenomenological
studies including expectations for those interactions at
hadron and lepton colliders were studied in detail in
Refs. [40–43]. Finally, a complete 1PI vertex for three
off-shell gauge bosons is a useful tool in analyzing low
energy inelastic scattering processes with a photon in the
final state. Dark matter scattering off atomic electrons and
nuclei mediated by light gauge boson particles is one
application among many (see Refs. [44–46]).

The outline of our article is as follows: in Sec. II, we
first present the 1PI effective action for the triple gauge
boson vertex and then in Sec. III we discuss all possible and
general nondecoupling effects from heavy fermions. These
two sections are supplemented by three Appendices A, B,
and E, which contain all relevant details of our calculation.
The generality of 1PI vertex, ����, presented in Sec. II, is
to some extend a new result. In addition, the discussion of
anomaly driven nondecoupling effects given in Sec. III, is

also, to the best of our knowledge, a new material.
Section IV contains applications of the general vertex in
the SM, in minimal Z0 models and their extensions with a
fourth sequential generation. Special care has been given to
the synergy between the chiral anomaly and the nondecou-
pling contributions in order to clarify relevant issues in the
literature. Appendices C and D deal with the evaluation of
charged external gauge boson triple vertices and with
analytical expressions of various integrals, respectively.
Section V concludes with a brief discussion of our findings.

II. THE TRILINEAR GAUGE BOSON VERTEX

In this section we briefly present the main results for the
three gauge boson 1PI vertex, ����. The details of this
calculation are given in Appendices A and B. Furthermore,
the behavior of ����ðsÞ at high energies s, and issues on
gauge invariance and Goldstone boson equivalence theo-
rem are discussed in the subsequent subsections.

A. The construction of ����

The relevant diagrams are depicted in Fig. 1 and their
evaluation is developed in Appendix B. What we basically
need in order to calculate the diagrams in Fig. 1 is the
interaction part of the Lagrangian

L int � e ����ð�þ ��5Þ�A�; (1)

where�ðxÞ is a 4-component spinor consisting of a pair of
two Dirac fermions coupled chirally to a vector field A�ðxÞ.
Flavour or spinor indices are silently implied. We shall
assume a model interaction for Eq. (1) that arises from a
spontaneously broken Abelian gauge theory. A toy model
as such is described in Appendix A. Then � and � in
Eq. (1) are real numbers (in units of e) related to linear
combinations of hypercharges [see for instance Eq. (A8)].
The integral representation for this diagram is given in

Eq. (B1). By naive power counting this integral is linearly
divergent. This means that when we make a shift of inte-
gration variable, e.g., p ! pþ a, the result depends upon
the choice of the arbitrary vector a�. This change is only
reflected in the form factors proportional to k1 and k2 in
Lorentz invariant expansion of ���� [see Eq. (2) below].
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i

FIG. 1. The one-loop effective trilinear gauge boson vertex,
����. The crossed diagram is obtained with the replacement
f�; �g $ f�; �g and k1 $ k2. Indices fi; j; kg denote distinct
external gauge bosons in general.
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As a result, the naive Ward Identities (WIs), Eqs. (B15),
(B16), and (B18), are violated by terms that contain the
arbitrary four vector a�. It is useful to write this four vector
as a linear combination of the two independent external
momenta: a� ¼ zk�1 þ wk�2 , with z, w arbitrary real

parameters.

In order to write out an explicit form for the trilinear
gauge boson vertex, say for three identical massive gauge
bosons, we make use of an explicit expression for the
triangle graphs first calculated by Rosenberg [38]. The
most general form of the axial tensor ����, consistent
with Lorentz and parity symmetry, is,

����ðk1; k2;w; zÞ ¼ ½A1ðk1; k2;wÞ"����k2� þ A2ðk1; k2; zÞ"����k1� þ A3ðk1; k2Þ"���	k�2k1�k2	

þ A4ðk1; k2Þ"���	k�1k1�k2	 þ A5ðk1; k2Þ"���	k�2k1�k2	 þ A6ðk1; k2Þ"���	k�1k1�k2	�: (2)

By naive power counting the dimensionless form factors A1;2 are infinite. They can be rendered finite by forcing them to
obey the relevant, albeit anomalous, Ward Identities. However, A1;2 are in general undetermined since they depend on
arbitrary parameters w and z. This arbitrariness can be fixed by physical requirements like, for example, conservation of
charge. On the other hand, the form factors (or integrals) A3...6 are finite having dimension of inverse mass square. The
latter can be found independently by direct diagrammatic methods. The whole procedure is described in detail in
Appendix B.

Therefore, nondecoupling effects should originate solely from the A1 and A2 parts of ���� but without any further
physical input they are undetermined. A direct calculation of A1;2 with dimensional regularization [47] or with Pauli-

Villars regularization is not a good choice when shifting integration variables within linearly (and above) divergent
Feynman integrals in four dimensions [48–50]. The outcome for a single external gauge boson (i ¼ j ¼ k in Fig. 1)
triangle graph is appended in Eqs. (B26)–(B28). From these expressions and from Eq. (2) we obtain A1ðk1; k2;wÞ and
A2ðk1; k2; zÞ in terms of the finite integrals A3...6. The corresponding results, in the case of three external identical gauge
bosons, are given by Eqs. (B37) and (B38) while the finite integrals A3...6 by Eqs. (B33)–(B35).

Furthermore, although Bose symmetry could constrain the arbitrary numbers w and z, it is not enough to eliminate them
altogether: a physical condition is needed, e.g., conservation of electric charge for fermions coupled to external photons or
vanishing triangle graph for on-shell momenta of massive gauge bosons or, even, a pure theoretical reason, like the
decoupling property.

It is straightforward, albeit tedious, to generalize ���� in Eq. (2) to the case of three distinct external, massive or
massless, gauge bosons (i � j � k in Fig. 1). With the assignments depicted in Fig. 1, the generalized Ward Identities for
vertices �, �, � are written, respectively, as1

q��
���ðk1; k2; w; zÞ ¼ imAi

���ðk1; k2Þ þ
e3½ð�i�j þ �i�jÞ�k þ ð�i�j þ �j�iÞ�k�

4
2
"����k1�k2�ðw� zÞ; (3a)

�k1�~�
���ðk1; k2; w; zÞ ¼ imAj

~���ðk1; k2Þ þ
e3½ð�j�k þ �j�kÞ�i þ ð�j�k þ �k�jÞ�i�

4
2
"����k1�k2�ðw� 1Þ; (3b)

�k2��̂
���ðk1; k2; w; zÞ ¼ imAk

�̂��ðk1; k2Þ þ
e3½ð�k�i þ �k�iÞ�j þ ð�k�i þ �i�kÞ�j�

4
2
"����k1�k2�ðzþ 1Þ; (3c)

where the corresponding �, ~�, and �̂ are appended in Eqs. (B47) and (B48). It is remarkable here to note the i’th gauge
boson mass, mAi

¼ �2�iev, in front of the pseudoscalar 1PI function ���. This term and the analogous in Eqs. (3b) and
(3c) are the source of heavy fermion mass nondecoupling effects since in the formal limit of m ! 1 there is a remaining
piece of order e3"����k1�k2�=4


2 in ���� for example. On the other hand, it shows that currents which are associated to
unbroken symmetry generators i.e., to massless gauge bosons, do not provide any nondecoupling effect in ����. Moreover,
���, ~���, �̂�� depend linearly upon the Yukawa coupling �, that is responsible for the fermion mass through the Higgs
mechanism and vanishes in the limit of � ! 0.2

Using theWI’s for the vertices � and �, i.e., Eqs. (3b) and (3c) as well as Eq. (2), we obtain the following expressions for
the integrals A1 and A2:

1In order not to clutter the notation we suppress indices i, j, k in the following expressions for �’s.
2Throughout, we assume chiral fermions that receive mass through Yukawa interactions with the Higgs field.
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A1ðk1; k2;wÞ ¼ ðk1 � k2ÞA3 þ k21A4 �
e3m2�j


2
I1ðk1; k2; mÞ þ e3½ð�j�k þ �j�kÞ�i þ ð�j�k þ �k�jÞ�i�

4
2
ðw� 1Þ; (4a)

A2ðk1; k2; zÞ ¼ ðk1 � k2ÞA6 þ k22A5 � e3m2�k


2
I2ðk1; k2; mÞ þ e3½ð�i�k þ �i�kÞ�j þ ð�i�k þ �k�iÞ�j�

4
2
ðzþ 1Þ; (4b)

where the ‘‘nondecoupled’’ integrals are given by

I1ðk1; k2;mÞ ¼
Z 1

0
dx

Z 1�x

0
dy

�ð�i�k þ�k�iÞ þ 2x�i�k

�
;

(5a)

I2ðk1; k2;mÞ ¼
Z 1

0
dx

Z 1�x

0
dy

ð�i�j þ�i�jÞ � 2y�i�j

�
;

(5b)

with

� � �ðk1; k2Þ
¼ xðx� 1Þk22 þ yðy� 1Þk21 � 2xyk1 � k2 þm2: (6)

The following limits,

lim
m!1m

2I1ðk1; k2; mÞ ¼ � 1

6
ð3�i�k þ �i�kÞ; (7a)

lim
m!1m

2I2ðk1; k2; mÞ ¼ 1

6
ð3�i�j þ �i�jÞ; (7b)

are also useful in simplifying formulae when discussing
synergies of anomalous and nondecoupling terms.
We are now ready to complete ���� in Eq. (2) by

reading directly from Eq. (B47) the finite (in four dimen-
sions) terms A3...6. We find:

A3ðk1; k2Þ ¼ � e3½ð�i�j þ �i�jÞ�k þ ð�i�j þ �i�jÞ�k�

2

Z 1

0
dx

Z 1�x

0
dy

xy

�
; (8a)

A4ðk1; k2Þ ¼
e3½ð�i�j þ �i�jÞ�k þ ð�i�j þ �i�jÞ�k�


2

Z 1

0
dx

Z 1�x

0
dy

yðy� 1Þ
�

; (8b)

A5ðk1; k2Þ ¼ � e3½ð�i�j þ �i�jÞ�k þ ð�i�j þ �i�jÞ�k�

2

Z 1

0
dx

Z 1�x

0
dy

xðx� 1Þ
�

; (8c)

A6ðk1; k2Þ ¼ �A3ðk1; k2Þ: (8d)

One could guess the expressions above with i � j � k
from the ones with a single identical gauge boson
i ¼ j ¼ k by exploiting simple combinatoric algebra
in Eqs. (B33)–(B35), (B37), and (B38). One can check
that all the above form factors obey the Bose symmetry
specified in Eqs. (B39a)–(B39c).

In summary, our main result is the trilinear gauge
boson vertex ���� of Eq. (2), supplemented by form
factor components Ai¼1...6 read from Eqs. (4) and (8).
Equation (2) satisfies the relevant Ward Identities
stated in Eq. (3) which originate from the partial
conservation of vector and axial vector symmetries in
(A9).

B. Unitarity

We can make full use of the effective vertex ���� in
order to calculate, as an example, the matrix element for
the process ZZ ! ZZ with an intermediate massive vector
boson Z0. We perform the calculation in the center of mass
frame with the following kinematics:

p1 ¼ ðE; 0; 0; pÞ; p2 ¼ ðE; 0; 0;�pÞ;
k1 ¼ ðE; p sin�; 0; p cos�Þ;
k2 ¼ ðE;�p sin�; 0;�p cos�Þ;

"ðp1Þ ¼ 1

mZ

ðp; 0; 0; EÞ; "ðp2Þ ¼ 1

mZ

ðp; 0; 0;�EÞ;

"ðk1Þ ¼ 1

mZ

ðp; E sin�; 0; E cos�Þ;

"ðk2Þ ¼ 1

mZ

ðp;�E sin�; 0;�E cos�Þ;

where p1 and p2 are the four-momenta of incoming
particles, k1 and k2 the four-momenta of outgoing parti-
cles, "ðp1Þ, "ðp2Þ, "ðk1Þ, "ðk2Þ are the polarization vectors
of the incoming and outgoing particles, respectively, and �
is the scattering angle of the outgoing Z boson in the center
of mass frame. Nonzero contributions arise only from t and
u-channels since the s-channel amplitude vanishes in this
frame. Working in the unitary gauge, we find a contribution
to ZZ ! ZZ due to loop-induced ����

Z0ZZ of Eq. (2) as,
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M ¼ Mt þMu

¼
�
E2sin2�

t�m2
Z0

�
½ðA1 � A2Þ þ p2ð1� cos�ÞðA3 � A6Þ�2

þ
�
E2sin2�

u�m2
Z0

�
½ðA1 � A2Þ þ p2ð1þ cos�ÞðA3 � A6Þ�2;

(9)

where t ¼ ðp1 � k1Þ2 ¼ �2p2ð1� cos�Þ and u ¼ ðk1 �
p2Þ2 ¼ �2p2ð1þ cos�Þ. The factors A1 and A2 in Eq. (4)
are dimensionless and, in the limit of E2 ! 1 vary at
worse as constants while from Eq. (8) we have A3 ¼
�A6 which asymptotically goes like E�2. Therefore at
high energies E2 ! 1, terms inside the square brackets
in Eq. (9) behave like constants and so the amplitude does
at high energies. This means that unitarity is satisfied as
is of course expected for a renormalized theory. It is
worthwhile noting that in the limit E2 ! 1 we obtain
ðA1 � A2Þ / cðw� zÞ, where c is the anomaly prefactor
present in the second term in the r.h.s of Eq. (3a). There is
still however a finite and nonvanishing constant contribu-
tion from the A3;6 form factors in Eq. (9) which for every

particle contribution reads,

lim
E2!1

M ¼ �
�

c

4
2

�
2
sin2�

�
1þ 2ðw� zÞ þ ðw� zÞ2

2sin2�

�
:

(10)

We observe that the unknown parameters w and z still
remain in the amplitude. Only the relation w ¼ z removes
them from the asymptotic limit. We shall come back at this
point when discussing the Z0	ZZ-vertex in section IVC.

C. Goldstone boson Equivalence Theorem
and R�—independence

There are literally N-ways to derive the Ward Identities
of Eq. (3). A classical method is to demand invariance of
the path integral under the combined local vector and axial-
vector gauge transformations (A9). We can then represent
these WI’s diagrammatically to prove the Goldstone Boson
equivalence theorem [51–53]. This is most clearly ex-
plained in Lorentz gauge (� ¼ 0) where the gauge fixing
term (A10) does not involve the Goldstone boson field ’.
Then conservation of the gauge current implies that q� can
be contracted directly with ���� and also with the deriv-
atively coupled Goldstone boson to ���. In principle there
is a third contribution from possible mixings with other
gauge bosons, say Z0, that couple to the same fermions in
the vertex. This last mixing must necessarily be propor-
tional to ðg�� � q�q�=q

2Þ and when contracted with q�,

vanishes. Therefore, by using rules from the toy model in
Appendix A it is straightforward to see that we recover the
classical WI (3a), without the anomalous term. While a
possible gauge boson mixing contributes to ����, it does
not contribute to WIs in (3). At very high energy, the

longitudinal polarization vector is "L�ðqÞ ’ q�=mA, where

mA is the gauge boson mass. In other words for an
anomaly-free model, Eq. (3a) or the sum of the diagrams
in Fig. 2, can be written as,


L�ðqÞ���� ¼ i���: (11)

This equation tells us that at the high energy limit, the
physical amplitude with the gauge boson in vertex � is
replaced by the vertex with a Goldstone boson that ‘‘has
been eaten’’. However, as is evident from Eq. (3a), the
relation (11) is broken by possible gauge anomalies. This is
another reason why the latter should be absent.
One can easily check by studying, for example, the

fermion-antifermion annihilation process to two gauge
bosons with the toy model of Appendix A, that Eq. (11)
is the required condition for the amplitude to be gauge
�-independent. Again the anomalous term must be absent.

III. NONDECOUPLING EFFECTS

Heavy fermion nondecoupling effects can be cast in two
classes:
(A) effects that arise from a large mass splitting be-

tween particles within an anomaly-free multiplet.
(B) anomaly driven effects that originate from decou-

pling a whole anomaly-free multiplet.

In case (A), formal decoupling of the heavy particle that
participates in the anomaly cancellation mechanism will
leave at low energies an effective Lagrangian ����� that
accounts for the anomaly cancellation missing piece
[16,17,21]. In case (B) the Higgs coupling to fermions
will be much larger than the gauge coupling with the latter
being approximately zero when the fermion mass is going
to infinity [28,29].

A. Non-decoupling due to large mass splitting

We are going to focus first on the simplest case with
three external identical gauge bosons. This means we set
i ¼ j ¼ k in the Ward Identities of Eq. (3) or else we look
directly at expressions, (B26)–(B28). In order to carry out a
systematic study of nondecoupling effects and their inter-
play with chiral anomalies it is essential to keep track of
the anomalous terms that depend on the arbitrary parame-
ters w and z. By exploiting Bose symmetries for on-shell
external gauge bosons, and specifically, (B39) among legs
j and k we find w ¼ �z, while with (B40) among legs i

FIG. 2. Graphical representation of the WI in Eq. (3a).
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and j we find (after some tedious algebra) 2w� z� 1 ¼
0. The solution of this system,

w ¼ �z ¼ 1

3
; (12)

finally fixes the arbitrary parameters w and z. Our obser-
vation is that these fixed values for the arbitrary parameters

correspond to the case of a particle decoupling from the
effective action, i.e.,

lim
m!1�

���ðk1; k2;w; zÞ ¼ 0 ) w ¼ �z ¼ 1

3
: (13)

We elaborate this point in what follows. The WIs now take
the form:

q��
���ðk1; k2;w ¼ 1=3Þ ¼ � e3�m2


2
"����k1�k2�I0ðk1; k2;mÞ þ e3ð�3 þ 3�2�Þ

6
2
"����k1�k2�: (14a)

�k1�~�
���ðk1; k2;w ¼ 1=3Þ ¼ � e3�m2


2
"����k1�k2�I1ðk1; k2;mÞ � e3ð�3 þ 3�2�Þ

6
2
"����k1�k2�; (14b)

�k2��̂
���ðk1; k2;w ¼ 1=3Þ ¼ � e3�m2


2
"����k1�k2�I2ðk1; k2;mÞ þ e3ð�3 þ 3�2�Þ

6
2
"����k1�k2�; (14c)

where the integrals I0;1;2 are defined in Eqs. (B5), (B22),
and (B23) respectively. The anomalous terms in (14) are
then allocated ‘‘democratically’’ in the three legs of ����

as one would have naively expected. Note also that since
limm!1m2I0 ¼ �limm!1m2I1 ¼ limm!1m2I2 ¼ 1

6 

ð�2 þ 3�2Þ the r.h.s of Eqs. (14a)–(14c) cancels identi-
cally, verifying our statement in Eq. (13). Therefore, for a
Dirac fermion pair circulating the loop as shown in Fig. 1
and for three identical external gauge bosons, at the formal
decoupling limit, the finite contributions are equal and
opposite to the anomaly contributions in the vertex. In a
Lorentz gauge, terms in ���� proportional to I0;1;2 arise
from the mixing between the Goldstone boson ’ and the
gauge boson as it is shown in Fig. 2. We should notice
however, that our calculation of WIs in (14) given in
Appendix B contains no reference to a particular gauge
choice.

For a Lorentz-invariant and renormalizable chiral gauge
theory the anomalous terms i.e., the last terms on the r.h.s
of Eqs. (14), have to be absent. The only way,3 consistent
with renormalizability4 [14,15], to remove the anomaly
terms, is to add a new Dirac fermion pair with opposite
� i.e., opposite hypercharges YL and YR. A consistent way
to describe heavy fermion decoupling effects is to perform
the calculation directly in the broken phase of the theory
where physical masses appear explicitly. Assuming that the
mass of the second (heavy) pair and the energy, s ¼ ðk1 þ
k2Þ2, is much bigger than the first (light) fermion pair, say,
m2

2 � s � m2
1 � 0, there is a nondecoupled term in the

1PI effective action which can be read off from Eqs. (B32),
(B37), and (B38) [or Eqs. (2) and (4) for i ¼ j ¼ k] to be,

�����ðk1; k2Þ � e3ð�3 þ 3�2�Þ
6
2

"����ðk1 � k2Þ�: (15)

This term remains in the 1PI effective function for the light
particle. In the heavy mass limit (m2 ! 1), the form
factors Ai¼3;...6ðk1; k2Þ vanish as 1=m2 leaving only the term

(15) in the low energy effective action which has no
‘‘memory’’ anymore from the heavy mass m2. Although,
the exact nonkinematic prefactor in Eq. (15), depends upon
model details, its magnitude (in e-units) is approximately,
�=
 and could be observable. Furthermore, the nondecou-
pling term (15) does not depend on the regularization
scheme, i.e., on the parameters w and z in Eqs. (B37) and
(B38), since the model is by construction anomaly-free.

B. Anomaly driven nondecoupling effects

This is a category of possible nondecoupling effects for
models possessing an anomaly-free cluster of heavy parti-
cles just above those known from the SM. We systemati-
cally then check anomaly cancellation conditions in Ward
Identities (3) by demanding the prefactors of I1;2 integrals
in Eqs. (4a) and (4b) to be nonzero. We are seeking for
minimal models with up-to three different gauge bosons
and up to the least n-Dirac fermions.
A model that contains one gauge boson X, with V-A

couplings as in Eq. (1), coupled to only one fermion is
impossible to exist because it is anomalous (except the
trivial case of a vectorlike particle where � ¼ 0). Adding
an extra fermion with the same mass but with opposite
axial-vector coupling (�) renders the model anomaly-free.
Such a simple particle content does not lead to nondecou-
pling effects because all these effects are proportional to
an odd power of the axial-vector coupling (� �2kþ1) and
therefore the sum over the two fermions vanishes. Similar
situation arises when more fermions are circulating in the
loop.
More interesting is the case where one has two, distinct,

external gauge bosons, X and Y, either massive or

3Of course there is the trivial case of vector multiplets i.e.,
� ¼ 0.

4We are not going to consider here the situation [30] of
incorporating nonrenormalizable counterterms to cancel the
anomalies at the expense of introducing a cut-off scale ��
4
v.
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massless. The cancellation of trilinear anomalies requires
the existence of at least two fermions with opposite axial-
vector couplings but again it is impossible to satisfy
instantaneously the mixed anomaly and nondecoupling
conditions [see below]. We first obtain the general condi-
tions for an anomaly-free model with two gauge bosons X
and Y. In notation of Eq. (1) these conditions read,

Xn
i¼1

ð�3
X þ 3�2

X�XÞi ¼ 0; (16a)

Xn
i¼1

ð�3
Y þ 3�2

Y�YÞi ¼ 0; (16b)

Xn
i¼1

ð�2
X�Y þ 2�X�Y�X þ �2

X�YÞi ¼ 0; (16c)

Xn
i¼1

ð�2
Y�X þ 2�X�Y�Y þ �2

Y�XÞi ¼ 0; (16d)

where n is the total number of fermions. Starting from
trilinear anomalies (16a) or (16b) we see that the case
n ¼ 1 requires only vectorial couplings, �X ¼ �Y ¼ 0.
Therefore for n ¼ 1 there is no nontrivial solution. For
n ¼ 2 the nonzero couplings must satisfy the following
conditions:

�X2 ¼ ��X1; �X2 ¼ ��X1 �Y2 ¼ ��Y1;

�Y2 ¼ ��Y1:
(17)

Turning to mixed anomalies (16c) and (16d), it is amusing
first to note that they are satisfied even with one internal
fermion (n ¼ 1), iff

�X ¼ �X; �Y ¼ ��Y; (18)

or

�X ¼ ��X; �Y ¼ �Y: (19)

Nondecoupling conditions are derived by the require-
ment that the prefactors of I1 and I2 integrals in Eqs. (4a)
and (4b) are nonzero. Hence, in the limit of k21, k

2
2 ’ s �

m2 at least one of the following algebraic expressions,Xn
i¼1

ð�2
X�Y þ 3�X�Y�XÞi;

Xn
i¼1

ð�2
X�Y þ 3�2

X�YÞi;

Xn
i¼1

ð�2
Y�X þ 3�X�Y�YÞi;

Xn
i¼1

ð�2
Y�X þ 3�2

Y�XÞi;

(20)

must be nonvanishing. For n ¼ 1 the choice (18) [or
(Eq. (19))] which eliminates the mixed anomalies sets
also Eqs. (20) to a nonzero value. However, to cancel the
XXX and YYY anomalies one needs at least n ¼ 2 fermi-
ons to satisfy the conditions (17). These set the nondecou-
pling expressions (20) back to zero. The first nontrivial
solution of the system Eqs. (16) and (20) arises with three
pairs of chiral Dirac fermions (n ¼ 3) with an example of
quantum numbers given in Table I. Here, we use (18) and

(19) to cancel mixed anomalies for c 1. The other two
particles c 2 and c 3 are singlets under Uð1ÞY and Uð1ÞX,
respectively. Plug these into Eqs. (B32), (4), and (7), we
obtain the nonvanishing operators at the decoupling limit:

�
���
XYY ¼ �

���
YXX ¼ e3

3
2
"����ðk2 � k1Þ�; (21a)

�
���
XYX ¼ �

���
YXY ¼ � e3

3
2
"����ð2k2 þ k1Þ�; (21b)

�
���
XXX ¼ �

���
YYY ¼ 0: (21c)

Next is a model example with n ¼ 4 Dirac fermions
charged under the product of gauge groups Uð1ÞX 

Uð1ÞY . This toy model has been examined in Ref. [28].
Charge assignments are given in Table II. They are chosen
in such a way that triangular anomalies ½Uð1ÞX�3 and
½Uð1ÞY�3 are canceled separately. The cancellation of

mixed anomalies requires the extra condition q2 ¼
q1

ðe2
1
�e2

2
Þ

ðe2
3
�e2

4
Þ . Charges in Table II follow the general rules of

Eqs. (17). If we assume that all extra fermions have a
common mass m and are all very heavy, then in the low
energy limit we find the following expressions for the
effective vertices with different combinations of external
gauge bosons:

����
XXX ¼ ����

YYY ¼ 0; (22a)

�
���
XXY ¼ q1ðe21 � e22Þ

4
2
ð2k1 þ k2Þ�"����; (22b)

�
���
YXX ¼ q1ðe21 � e22Þ

4
2
ðk2 � k1Þ�"����; (22c)

�
���
XYY ¼ �

���
YXY ¼ 0: (22d)

These contributions arise from terms that are proportional
to I1 and I2-integrals when taking into account that this
model is anomaly-free. Such a situation should never occur
in the SM. The basic difference is that neither gauge
bosons X and Y is purely vectorlike for the entire fermionic
sector i.e., X and Y must be strictly massive. This is a
crucial difference that leads to the existence of remnants in
the low energy limit. On the contrary, the existence of the
photon in the SM leads to a term related to I1 or I2 which
always vanishes for an anomaly-free model.
We have also worked out the case with three different

gauge bosons. The corresponding 10 independent
anomaly-free, and, 18 independent nondecoupling condi-
tions, are quite involved and are presented separately in
Appendix E. Again the nondecoupling effects arise for

TABLE I. Charges of an anomaly-free model with nondecou-
pling remnants in three gauge boson vertices XXY and YYX.

c 1 c 2 c 3

Uð1ÞX � ¼ e, � ¼ �e � ¼ e, � ¼ e � ¼ 0, � ¼ 0
Uð1ÞY � ¼ �e, � ¼ �e � ¼ 0, � ¼ 0 � ¼ e, � ¼ e
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n 
 3. The new feature that appear in this category is the
fact that one can exploit nondecoupling effects where one
of the gauge bosons is massless. Such a minimal (n ¼ 3)
example comes into sight if we adopt the charge assign-
ments shown in Table III. Notice that all fermions have
�Y ¼ 0 i.e., the Y couples purely to a vector current. We
can easily check that the conditions (E1) for an anomaly-
free model are satisfied while at the same time some of the
expressions in (E2) are nonzero. The nonzero effective
vertices can be written in the form,

����
XXZ ¼ �����

ZZX ¼ e3

3
2
ð2k1 þ k2Þ�"����; (23a)

����
XZX ¼ �����

ZXZ ¼ � e3

3
2
ð2k2 þ k1Þ�"����; (23b)

����
ZXX ¼ �����

XZZ ¼ e3

3
2
ðk1 � k2Þ�"����; (23c)

����
YXZ ¼ ����

YZX ¼ e3

2
2
ðk1 þ k2Þ�"����; (23d)

����
XYZ ¼ �����

ZYX ¼ e3

2
2
k1�"

����; (23e)

�
���
XZY ¼ �

���
ZXY ¼ � e3

2
2
k2�"

����: (23f)

As an example, we observe that heavy fermion nondecou-
pling effects appear in Eqs. (23e) and (23f). If a model like
this with X ¼ Z0, Y ¼ �, Z ¼ Z can be embedded in the
SM, then it would in principle allow for decays like Z0 !
Z� that do not depend on the heavy fermion masses.

We should finally remark that in models considered in
Tables I, II, and III, gravitational anomalies cancel out
since it is always

P
f�

X
f ¼ 0 for a given axial vector

coupling between a vector boson X and a fermion f.

IV. APPLICATIONS

A. Standard model

Focusing first in the SM with neutral, Z or � triple gauge
boson vertices we need only to consider the interaction
Lagrangian with fermions. This reads as

L int ¼
X
f

��
fA�

��f�
��f þ

X
f

Z�
��f�

�ð�Z
f

þ �Z
f�5Þ�f; (24)

where the factors �V
f , �

V
f with V ¼ �, Z are

��
f ¼ eQf; ��

f ¼ 0;

�Z
f ¼ gZ

2
ðT3

fL
� 2s2wQfÞ; �Z

f ¼ �gZ
2
T3
fL
; (25)

and T3
fL

and Qf are the third component of weak isospin

and charge of the SM Dirac fermions f ¼ �, e, u, d,
respectively. Explicitly in the SM, the prefactors �V

f and

�Z
f take the form:

��
u ¼ 2

3
e; �Z

u ¼ gZ
2

�
1

2
� 4

3
s2w

�
; �Z

u ¼ �gZ
4
;

��
d ¼ � 1

3
e; �Z

d ¼ gZ
2

�
� 1

2
þ 2

3
s2w

�
; �Z

d ¼ gZ
4
;

��
e ¼ �e; �Z

e ¼ gZ
2

�
� 1

2
þ 2s2w

�
; �Z

e ¼ gZ
4

��
� ¼ 0; �Z

� ¼ gZ
4
; �Z

� ¼ �gZ
4
; (26)

where gZ ¼ e=sw is the weak boson gauge coupling and
sw, cw are the sinus and cosinus of the weak mixing angle.

1. V	ZZ
Our first application refers to the vertex V	ZZ with

V ¼ �, Z being off-shell. This interaction has been
searched for at LEP and Tevatron while is currently
under scrutiny at the LHC. At one-loop level the only
CP-conserving contribution arises from the triangle graph
in Fig. 1. Applying our general form of the 1PI vertex in
Eq. (2) and making use of the Bose symmetry � $ �,
k1 $ k2 as in Eq. (B39), we find

����
V	ZZðk1; k2;wÞ ¼

�

����ðk1 � k2Þ�

�
�A1 þ s

2
A3

�

þ A3q
�
���	k1�k2	

�
; (27)

where the polarization vectors 
	�ðk1Þ
	�ðk2Þ outside the

square brackets have been omitted, and also, we set A1 �
A1ðk1; k2Þ . . . etc. for simplicity. More specifically, A1 is
ambiguous: it depends on how the momentum is routing
the loop i.e., the parameter w. This arbitrariness (or regu-
larization scheme dependence if you wish) is further fixed
by exploiting the fact that the ZZZ on-shell boson vertex

TABLE III. Charges of an anomaly-free model with nonde-
coupling remnants in three gauge boson vertex XYZ.

c 1 c 2 c 3

Uð1ÞX � ¼ e, � ¼ e � ¼ e, � ¼ �e � ¼ 0, � ¼ 0
Uð1ÞY � ¼ e, � ¼ 0 � ¼ e, � ¼ 0 � ¼ e, � ¼ 0
Uð1ÞZ � ¼ e, � ¼ �e � ¼ 0, � ¼ 0 � ¼ e, � ¼ e

TABLE II. Charges of all fermions with respect to the gauge groups Uð1ÞX 
Uð1ÞY .
c 1 c 2 �1 �2

Uð1ÞX � ¼ e1, � ¼ 0 � ¼ e2, � ¼ 0 � ¼ e3þe4
2 , � ¼ e3�e4

2 � ¼ e3þe4
2 , � ¼ � e3�e4

2

Uð1ÞY � ¼ 0, � ¼ �q1 � ¼ 0, � ¼ q1 � ¼ q2, � ¼ 0 � ¼ �q2, � ¼ 0
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vanishes by Bose symmetry. The latter requires w ¼ 1=3.
On the other hand for the vertex �ZZ, conservation of the
vector current and Bose symmetry implies thatw ¼ z ¼ 0.

Having specified the arbitrary parameters w and z we
apply our general expressions for A1 and A3 found in Eqs.
(4a) and (8a), specifically to the vertices Z	ZZ and �	ZZ
and sum over all SM fermions. By ignoring (see below
however), the last term proportional to q� in Eq. (27), we
can easily find,

�
���
Z	ZZðk1; k2Þ ¼ 
����ðk1 � k2Þ�

X
f¼u;d;e;�

�
m2

ZðA3f � A4fÞ

þm2
f�

Z
f


2
I1f þ 1

6
2
ð�Z3

f þ 3�Z
f�

Z2
f Þ

�
� 
����ðk1 � k2Þ��Z	ZZðsÞ; (28)

�
���
�	ZZðk1; k2Þ ¼ 
����ðk1 � k2Þ�

X
f¼u;d;e;�

�
m2

ZðA3f � A4fÞ

þm2
f�

Z
f


2
I1f þ 1

2
2
��
f�

Z
f�

Z
f

�
� 
����ðk1 � k2Þ���	ZZðsÞ; (29)

where s ¼ ðk1 þ k2Þ2 and I1f is given by Eq. (5a). The last
term in Eqs. (28) and (29) is the anomaly contribution,
while the second term is a nondecoupling one in the limit
of heavy fermion mass, mf ! 1. Again we should notice

here that in this limit and for one fermion contribution, the
last two terms mutually cancel while the first term vanishes
as m2

Z=m
2
f. Therefore, the decoupling of heavy fermions in

V	ZZ vertex is operative even if those fermions have vastly
different, but always much greater than the EW scale,
masses among each other. In the SM,, for example, what
is left behind after the decoupling of the top quark is a
theory with an anomalous (sometimes called Chern-
Simons) term that is necessary to render the effective low
energy theory gauge invariant.

Especially for �	ZZ one can go one step further and
write the whole effective vertex in terms of one integral
only, namely

��	ZZðsÞ ¼ s

2

X
f¼u;d;e;�

A3fðsÞ: (30)

Now bringing back the last term on the r.h.s of Eq. (27)
we find a perfectly fine and gauge invariant form for
�	ZZ-vertex

�
���
�	ZZðsÞ ¼

X
f

sA3f

2

�

����ðk1 � k2Þ�

� 
����q�q�
s

ðk1 � k2Þ�
�
: (31)

This vertex must be proportional to s in order to cancel the
pole contribution arising at s ¼ q2 ¼ 0 [36]. This is a

generic statement for all �	VV vertices we address below.
One should recall that this expression has been derived
only after fixing the anomaly coefficients, w and z, by
symmetry requirements. We could have done the reverse:
to fix w, z from the requirement of no pole contribution in
Eq. (31). In a way, the anomaly and the nondecoupled
terms have been absorbed in the finite integral A3. It is
now evident from Eqs. (30) and (8) that ��	ZZðs ! 0Þ ¼ 0

for every fermion contribution, independently. Further-
more, as expected, for asymptotic values of s we also
observe, ��	ZZðs ! 1Þ ¼ 0, after summing over all SM

fermion contributions.
Within one generation of fermions, the SM is a chiral,

gauge, and, anomaly-free Quantum Field Theory (QFT).
As a result, contributions to �V	ZZ from (approximately)
massless generations, vanish identically (recall that form
factors A3;4 are proportional to the anomaly factors, [see

Eqs. (8a) and (8b)] and the second term vanishes in the
massless case). Therefore to a good approximation, forffiffiffi
s

p
* 2MZ, the only non-negligible contribution to �V	ZZ

arises from the third generation and is due to the large
mass difference between the top quark and all other
fermions. The top quark influences mainly the last two
terms in the square bracket of �Z	ZZ and ��	ZZ in

Eqs. (28) and (29). If we make the (numerically crude)
approximation of m2

Z � s < m2
t and exploit Eq. (D12c)

from the Appendix D we find (Nc ¼ 3 is the color
factor),

m2
t �

Z
t


2
I1t � � Nc

6
2
ð�Z3

t þ 3�Z
t �

Z2
t Þ

� Nc

120
2
ð�Z3

t þ 5�Z
t �

Z2
t Þ s

m2
t

: (32)

The first term is just the opposite of the top quark
anomaly contribution in �Z	ZZ and they both cancel out
in the limit of heavy top quark. One can prove easily this
statement for all SM vertices, �V	VV , V ¼ Z, � appearing
below in this article and we claim, following the argu-
ments of Sec. III, that this is a general theorem: a heavy
particle cancels its own anomaly contribution in a triple
gauge boson vertex and at the (nonperturbative) limit of
m ! 1 leaving no trace from itself behind. Of course in
the topless SM the last term in �Z	ZZ does not vanish
since the particle content (�, ��, b) is now anomalous. It
is also evident from Eq. (32) that the behavior of �Z	ZZðsÞ
at s � m2

t rises approximately linearly with s as s=m2
t .

This is also verified from our numerical results shown in
Fig. 3(a). Similar conclusions one can derive for ��	ZZ
and Fig. 3(b) but this is rather obvious now because of
Eq. (30).
Furthermore, it is also instructive to study the behav-

ior of the vertices �V	ZZðsÞ in the asymptotic region,
s � m2

t > m2
Z. By exploiting Eq. (D13) and keeping

only terms of order m2
f=s we arrive at the following

expression,
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�Z	ZZðs � m2
t Þ � Nc

m2
t

s

8<
:2�

Z3
t


2

�
2� ln

s

m2
t

� i


�

þ �Z3
t þ �Z2

t �Z
t


2

�
1

2
ln2

s

m2
t

� 
2

2
þ i
 ln

s

m2
t

�9=
;; (33)

in which both real and imaginary parts vanish at
asymptotic values of s as they should following uni-
tarity arguments. The effect of a ‘‘heavy’’ particle
(here the top quark) is to just delay the ‘‘falling
off’’ of j�Z	ZZðsÞj [see Fig. 3(a).] as s ! 1. Finally,
it is also obvious that the real and imaginary part of
�Z	ZZ are of the same order of magnitude, a situation
which remains true everywhere after the threshold
energy, s * 4m2

t .

Translating our numerical results for the SM to the
notation of Ref. [36]5 that is usually followed by the
theoretical and experimental literature, we find for mt ¼
173 GeV and LEP energies, that

fZ5 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ 1:8
 10�4; (34)

f�5 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ 2:1
 10�4; (35)

where we have neglected small imaginary part contribu-
tions from light quark and lepton mass thresholds. These
results agree with those quoted in Ref. [42]. Unfortunately,
they are too small to have been reached by LEP [54].
Just above the top quark threshold energies s 
 4m2

t , the
vertex develops a significant absorptive part. This is ap-
parent from our analytical expressions in Appendix D for

(a) (b)

(c) (d)

(e)

FIG. 3 (color online). The dependence of j�V	VVðsÞj with
ffiffiffi
s

p
for different gauge bosons combinations, V ¼ �; Z: (a) Z	ZZ,

(b) �	ZZ, (c) Z	�Z, (d) �	�Z, (e) Z	��. The solid curve corresponds to the SM, the dashed curve corresponds to the SM þ 4th
fermion generation model. Masses for light quarks and leptons are neglected while mt ¼ 173 GeV. Fourth generation quarks and
lepton masses are taken as in (66).

5We multiply �V	ZZðsÞ in Eqs. (28) and (29) with em2
Z=ðs�

m2
VÞ.
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integrals A3...6 and I1;2 and the discussion above. For
ffiffiffi
s

p ¼
500 GeV we find:

fZ5 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð0:4� 0:5iÞ 
 10�4; (36)

f�5 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð�0:3þ 0:3iÞ 
 10�4: (37)

Note again that the imaginary part of the amplitude is of
the same order of magnitude as the real part.

2. V	�Z
Another nontrivial class among trilinear neutral gauge

boson vertices that have been and being searched for at
colliders is the amplitude V	�Z. In the notation of Fig. 1,
we assign V	

�ðqÞ, ��ðk1Þ and Z�ðk2Þ to the 1PI effective

vertex �
���
V	�Z of Eq. (2) with V ¼ Z, �. When the photon

and the Z-gauge boson are both on-shell we find:

����
V	�Zðk1; k2Þ ¼ 
����k1�

�
A2 þ sþm2

Z

2
A3

�
þ 
���	q�q�k2	ðA3 þ A6Þ
þ 
���	q�k1�k2	A3: (38)

We have seen however in Eq. (8d) that A3 ¼ �A6 and
therefore, the second term in Eq. (38) vanishes at one-
loop. Furthermore, the last term when coupled to a light
quark or lepton vector current, is proportional to the mass
of the incoming fermions and for current collider architec-
tures this contribution is negligible.6 Hence, only the first
term remains with potentially visible effects. When all
external particles are on-shell, Bose symmetry and gauge
invariance require the vertex V�Z to vanish. Bose symme-
try relations among form factors and gauge invariance fix
the arbitrary parameters w and z to be:

Z�Z: w ¼ 1; z ¼ 0; (39)

��Z: w ¼ 1; z ¼ 1: (40)

By substituting the form in A2 from the general expres-
sion of (4b) we obtain:

�
���
Z	�Zðk1; k2Þ ¼ 
����k1�

X
f¼u;d;e;�

�
m2

ZðA3f þ A5fÞ

�m2
f�

Z
f


2
I2f þ 1

2
2
�Z
f�

�
f�

Z
f

�
� 
����k1��Z	�ZðsÞ; (41)

�
���
�	�Zðk1; k2Þ ¼ 
����k1�

X
f¼u;d;e;�

�
m2

ZðA3f þ A5fÞ

�m2
f�

Z
f


2
I2f þ 1

2
2
��
f�

�
f�

Z
f

�
� 
����k1���	�ZðsÞ: (42)

One should notice that the square bracket of �Z	�Z is

approximately equal to ��	ZZ since in this case A5 ’
�A4 and I1 ’ �I2.
It is amusing to see how greatly the �	�Z-vertex is

simplified. Placing back the last term of Eq. (38) in order
to restore gauge invariance, we find,

����
�	�ZðsÞ ¼

X
f

sA3f 

�

����k1� � 
����q�k2�k1�

s

�
:

(43)

The s-factor outside the vertex is expected because it must
cancel the pole behavior of the second term in the square
bracket. Once again, the ‘‘physical’’ choice of w, z in the
anomalous terms played a crucial role in Eq. (43) like in
the case of �	ZZ vertex. Regarding decoupling effects,
Eq. (43) is self explained: for every particle contribution,
a synergy between anomalous and nondecoupling terms
results in a well defined integral sA3f that vanishes asymp-

totically due to the anomaly-free condition. If however, the
energy

ffiffiffi
s

p
is between two particle masses which combined

render the model anomaly-free then there should be non-
decoupling effects in this regime. One the other hand,
adding to the SM, anomaly-free and heavy chiral fermions,
there should be no-nondecoupling effects remaining in the
low energy regime where

ffiffiffi
s

p
& 2mt.

One can go one step further also in the case of Z	�Z of
Eq. (41). In fact, we can eliminate I2f and the anomaly

factors from Eq. (41) leaving only the finite integrals A3

and A5, as

�Z	�ZðsÞ ¼ 1

2

X
f

½ðsþm2
ZÞA3f þm2

ZA5f�: (44)

After using few integral tricks, like, for example, the ones
of Eq. (B44), it is easy to show that �Z	�ZðsÞ behaves like
ðs�m2

ZÞA3f near the Z-pole. In general, �V	�Z / P
fðs�

m2
VÞA3f near the pole, is clearly verified when performing

the full numerical evaluation of the integrals as in Figs. 3
(c) and 3(d).
One can easily see from further working out Eqs. (41)

and (42) that due to the fact that the SM is an anomaly-free
QFT, the whole contribution arises to a very good approxi-
mation from particles of the third generation. Numerically,
in the conventions of Ref. [36] [see also footnote 4], we
find for LEP energies

hZ3 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ 2:1
 10�4; (45)
6This term however is important for gauge invariance to be

preserved, as in Eq. (31) before.
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h�3 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ 7:2
 10�4; (46)

up to tiny small imaginary parts. These results are in
agreement with those presented in Ref. [42]. As we have
noticed above, it is also confirmed numerically that jf�5 j ’
jh�3 j. SM predictions of Eqs. (47) and (48) are in the best

case [for h�3 ] 2 orders of magnitude below the published

LEP bounds [54].
For comparison, at higher energies the SM predicts:

hZ3 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð0:3� 0:6iÞ 
 10�4; (47)

h�3 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð0:9� 1:8iÞ 
 10�4: (48)

Full numerical results for j�V	�ZðsÞj are represented by

solid lines in Figs. 3(c) and 3(d). We observe that in the
neighborhood of the top threshold, j��	�ZðsÞj is 1 order of

magnitude bigger than j�Z	�ZðsÞj, but still in the region

10�3. They are both however far below the current
Tevatron and LHC sensitivity [55,56]. For example, both
ATLAS [57] and CMS [58] experiments at LHC currently
report bounds on trilinear, V	�Z, gauge boson vertices

jhZ;�3 j that in the best case are not less than 5%. These

experiments present bounds w.r.t the scale � in which the
new physics enters. Following the projecting sensitivity
calculated in Ref. [40], and setting ��mt for the SM,
LHC sensitivity for V	Z� with

ffiffiffi
s

p ¼ 14 TeV will not be
better than �10�2 and this makes its observation ex-
tremely difficult within SM, even for ��Z-vertex.

3. V	��
We now turn our discussion to the last SM neutral triple

gauge boson vertex, the V	��. Of course, thanks to Furry’s
theorem only the case V ¼ Z is valid (for V ¼ � all three
currents are vectorlike, i.e., �i ¼ 0). However, even in
Z	�� there are no nondecoupling effects since there is
no would be Goldstone boson associated with the unbroken
Uð1Þem, i.e., the final particles are massless. Nevertheless
one can write a simple Z	�� 1PI vertex. We obtain:

����
Z	��ðk1; k2Þ ¼ 
���	q�k1�k2	½A3� þ

�Z
f ð��

f Þ2
4
2


 
����½ðw� 1Þk2 þ ðzþ 1Þk1��: (49)

Landau [59] and Yang [60] say that the on-shell amblitute,

�ðqÞ����

Z	��ðk1; k2Þ must vanish due to selection rules on

space inversion and angular momentum conservation. This
fixes the arbitrary parameters w ¼ �z ¼ 1 for every fer-
mion contribution f. One obtains the same values forw and
z from Uð1Þem gauge invariance, i.e., satisfaction of Ward
Identities. Although it is necessary to preserve gauge in-
variance, this remaining contribution is negligible for light
s-channel incoming particles e.g., eþe� ! ��, but never-
theless it may be important for heavy external particles
like, for example, dark matter particles or heavy neutrinos

annihilating into photons (see related work in
Refs. [61,62]).
Defining �Z	��ðsÞ � P

fm
2
ZA3fðsÞ and summing over

the SM particles, we find numerically,

�Z	��ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ 2:9
 10�4; (50)

�Z	��ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð3:2� 5:6iÞ 
 10�5: (51)

For various values of s, the function j�Z	��ðsÞj is plotted in
Fig. 3(e). Notably, at very small s this quantity behaves like
1=s and in contrary to the previous Z	VV vertices does not
vanish at s ¼ m2

Z. For general values of s, and k21 ¼ k22 ¼
0, �Z	��ðsÞ is easily written as

�Z	��ðsÞ ¼
X
f

�Z
f ð��

f Þ2
2
2

m2
Z

s
�fJð�fÞ; (52)

where �f � 4m2
f=m

2
Z and the function Jð�fÞ is appended in

Eq. (D2). For energies (s) below the top quark threshold,
�Z	��ðsÞ, approximately takes the form,

�Z	��ðsÞ �
X
f

m2
ZA3fðm2

Z < s < m2
t Þ

� �Nc

�Z
t �

�2
t


2

�
m2

Z

2s
þ

�
m2

Z

m2
t

��
1

24
þ 1

180

s

m2
t

��
;

(53)

a behavior which shows decoupling of a heavy top-quark
mass. This follows our general statement just below Eq.
(32): since the anomalous term in Eq. (49) vanishes due to
the physical choice of w and z, there is no nondecoupled
remnant to cancel it. In the asymptotic region we find

�Z	��ðs � m2
Z; m

2
t Þ � Nc

�Z
t �

�2
t

2
2

�
m2

Zm
2
t

s2

�



�
ln2

s

m2
t

� 
2 þ 2i
 ln
s

m2
t

�
: (54)

Therefore, �Z	��ðsÞ behaves asymptotically as 1=s2, while

all other neutral vertices behave like 1=s. This fast drop
with s is also verified by comparing the solid lines between
Figs. 3(a)–3(e).

4. V	W�Wþ

Just for completeness, we study the chiral CP-invariant
part of the ð�; ZÞ	WW vertex. For on-shell W’s and in
momentum space this corresponds to operators of the form,

fV5 

����ðk1 � k2Þ�: (55)

There are of course CP-invariant, nonchiral operators gen-
erated from our fermion triangle graph that have the form
[36,37],
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fV1 ðk1 � k2Þ�g�� � fV2
m2

W

ðk1 � k2Þ�q�q�

þ fV3 ðq�g�� � q�g��Þ: (56)

In the SM, note that both f1 and f3, exist at tree level. We
are interested here only on chiral, one-loop (triangle) in-
duced operators (55).

The numerical calculation of the ð�	; Z	ÞW�Wþ effec-
tive vertices are somehow more complicated than the neu-
tral ones. There are two masses and two different neutral
vertices involved, making the triangle diagram looking
differently than its crossed counterpart (see Fig. 4). We
follow the same steps as we did for the neutral vertices and
present our results (and technical details) in Appendix C.
The chiral CP-invariant part of the effective vertex, ����,
is the same as in Eq. (2). The finite form factors A3...6 need
to be slightly modified by the mass difference of the two
fermions involved; analogously for A1;2. Our main conclu-

sion for a general vertex that contains external charged
gauge bosons is given by Eqs. (C2) and (C3).

The relevant couplings �W
ff0 , and �W

ff0 can be read from

the charged current part of the SM Lagrangian,

L � gZðWþ
� J

�þ
W þW�

� J
��
W Þ; (57)

with the J�W-currents being

J�þ
W ¼ ðJ��

W Þy ¼ 1

2
ffiffiffi
2

p ½ ����ð1� �5Þeþ �u��ð1� �5Þd�:
(58)

Hence �W
ff0 ¼ ��W

ff0 ¼ gZ
2
ffiffi
2

p for the pairs ðff0Þ ¼ ð�; eÞ,
(u, d), respectively. For simplicity, we ignore quark
and lepton mixing effects, but these can easily be
included.
We therefore set �j;k ¼ ��j;k ¼ gZ

2
ffiffi
2

p in Eqs. (C2) and

(C3). The neutral gauge boson-fermion couplings, �V
f , �

V
f ,

are taken from Eq. (26). Assuming CP-conservation, the
1PI effective action �

���
V	WW with V ¼ �, Z looks exactly

the same as in Eq. (27) with the only difference being the
form factors A1;3 must be replaced by those given in

Eq. (C2) [and the paragraph below (C2)]. Therefore we
write,7

�
���

V	W�Wþðk1 þ k2Þ � 
����ðk1 � k2Þ��V	W�WþðsÞ; (59)

where

�V	W�WþðsÞ ¼ X
doublets

�
m2

WðA3 � A4Þ

þ g2Z�
V
fd

16
2
I1 þ

g2Z�
V
fd

16
2
I2

þ g2Z
32
2

ð�V
fd
� �V

fd
Þðw� 1Þ

þ ðfu $ fdÞ
�
: (60)

In this formula we abbreviate A3;4 � A3;4ðm2
fu
; m2

fd
Þ and

I1;2 � I1;2ðm2
fu
; m2

fd
Þ, with

I1 ¼
Z 1

0
dx

Z 1�x

0
dy

�ðxþ yÞ�m2 þm2
fu

xðx� 1Þm2
W þ yðy� 1Þm2

W � xyðs� 2m2
WÞ � ðxþ yÞ�m2 þm2

fu

(61a)

I2 ¼
Z 1

0
dx

Z 1�x

0
dy

2xm2
fd
þ ðxþ yÞ�m2 �m2

fu

xðx� 1Þm2
W þ yðy� 1Þm2

W � xyðs� 2m2
WÞ � ðxþ yÞ�m2 þm2

fu

(61b)

where �m2 � m2
fu
�m2

fd
. In the limit of heavy masses,

m2 ¼ m2
fu

¼ m2
fd

� s, m2
W , we obtain,

lim
m2!1

I1 ¼ 1

2
; lim

m2!1
I2 ¼ � 1

6
: (62)

Lets examine the �	W�Wþ case first. We must set
��

fu;d
¼ 0. In this case gauge invariance [see Eq. (C4)]

implies w ¼ z and CP-invariance w ¼ �z, and therefore
w ¼ z ¼ 0. Having fixed the anomalous term the result
for this vertex turns out to be simply,

��	W�WþðsÞ ¼ 1

2
s

X
doublets

½A3ðm2
fu
; m2

fd
Þ þ ðfu $ fdÞ�;

(63)

where A3 is a form factor defined in the Appendix C. We
should note here that ��	W�Wþðs ¼ 0Þ ¼ 0 as it should be
[36,37], i.e., there is no pole at q2 ¼ 0. This is a special

FIG. 4. SM fermion contributions to ðZ; �ÞWW one-loop vertex.

7Our notation for �V	W�WþðsÞ is related to the standard form
factor of Ref. [36], as �V	W�WþðsÞ ¼ �gVWWfV5 ðsÞ.
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case where the anomaly term conspires with I1-term such
that the final result contains no nondecoupling terms. In
order for gauge invariance to be nonanomalous, the last
terms in the WIs system (C4), must vanish. This implies a
relation among fermion charges,X

f¼e;�;d;u

��
f ¼ Qe þQ� þ 3Qd þ 3Qu ¼ 0; (64)

which is exactly the charge conservation condition. Then,
in the asymptotic limit, s � m2

W , m
2
fu;d

, the amplitude for
��	W�Wþðs ! 1Þ vanishes, thanks to Eq. (64). This is
obvious from the numerical outcome in Fig. 5. It also
shows an enhanced threshold behavior around

ffiffiffi
s

p � 2mt

(solid line). Quantitatively, this can be seen from Eq. (63)
by expanding A3 around the threshold. Compared to
��	ZZðsÞ, there is an additional contribution due to the
large mass difference �m2 ¼ m2

t �m2
b � m2

t , in the
numerical factor that multiplies s=m2

t . Our evaluation of
integrals contains one numerical integration and follows
the procedure of Appendix B in Ref. [5]. Our analytic
formulae in Appendix D, at the limit of mW ¼ 0, are in
full agreement with these results. Few representative val-
ues are,

��	WWð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ ð6:8� 6:4iÞ 
 10�4;

��	WWð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð�1:5þ 15iÞ 
 10�4:

Comparing with �	ZZ vertex we see here that the mass
splitting generates a sizeable absorptive part that domi-
nates the vertex after

ffiffiffi
s

p
* 2mW .

We now turn to the Z	W�Wþ vertex. This time we have
only CP-symmetry at our disposal which sets only the
constraint w ¼ �z. At the broken limit there is no other
symmetry remaining in order to fix the parameter w alone.
However, in the exact SUð2Þ-limit, where [q0, sw ! 0,
�f ¼ ��f], this vertex should be exactly the same as

the Z	ZZ-vertex. There, the arbitrary parameters are fixed
by Bose symmetry to bew ¼ �z ¼ 1=3. For this choice of
w and at the heavy mass limit,m2 ¼ m2

fu
¼ m2

fd
� s,m2

W ,

the vertex is proportional to �f þ �f / s2w, for every

fermion contribution, which in turn is proportional to
SUð2Þ-breaking effects. Another, equally good, choice
would be w ¼ 0, for example. The physical requirement
here is the decoupling of a particle from the �Z	WW-vertex.
In conclusion, the Z	WW vertex is undetermined: there

is only CP-symmetry, that is not enough to fix two arbi-
trary parameters. However, for the anomaly-free SM this
arbitrariness is irrelevant since it is cancelled when the
whole fermion contribution is taken into account. We shall
meet this situation again in the Z0VV-vertex below.
Our numerical evaluation of the SM j�Z	WWðsÞj is shown

in Fig. 6. This time, the top quark threshold destructively
adds to the vertex. As in previous cases, we present few
representative values,

�Z	WWð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ �ð8:5þ 7:6iÞ 
 10�4;

�Z	WWð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ �ð3:8þ 3:5iÞ 
 10�4;

that show similar order of magnitude values for the real
part as in the Z	ZZ vertex but an enhanced absorptive part.

FIG. 6 (color online). The effective vertex j�Z	WWðsÞj in the
minimal SM (solid line) and in SM with an extra fourth fermion
generation (SM4), (dashed line).

FIG. 5 (color online). The effective vertex j��	WWðsÞj in the
minimal SM (solid line) and in SM with an extra fourth fermion
generation (SM4), (dashed line).
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The latter is due to custodial symmetry breaking effects
i.e., the large mass difference between the top and the
bottom quarks. Although there is an intense experimental
ongoing analyses at LEP [63], Tevatron [64] and LHC
[57,58] for the first three CP-invariant nonchiral operators,
fVi¼1...3 of Eq. (56), we are not aware of a similar experi-

mental search on the chiral fV5 of Eq. (55).

B. Models with a sequential fourth fermion generation

In our first departure from the SM we assume a fourth
generation matter of quarks and leptons. Apart from the
fact that the 4th generation neutrino has to weight more
than 45 GeV, a certain tuning to avoid EW constraints is
needed. More specifically, one extra doublet of degenerate
leptons contributes a piece of approximately 1=6
 � 0:05
into the S-parameter [65] while the current fit [66] to the
EW data gives,

S ¼ 0:04� 0:10: (65)

Therefore, a 4th, mass degenerate, fermion generation will
contribute a 4=6
 � 0:2 piece to S-parameter which is
incompatible with the fit. A certain mass difference or
else a certain weak isospin violation is needed which is
parameterized by the T parameter [65]. A consistent pa-
rameter space with EW precision data and published direct
searches is

m�4 ¼ 400 GeV; me4 ¼ 660 GeV;

mt4 ¼ 358 GeV; mb4 ¼ 372 GeV:
(66)

This mass spectrum corresponds to Tevatron experiments
allowed region, where the analyses from CDF [67] have
excluded t4 and b4 quarks to have masses smaller than the
values quoted above.8 The leptons mass spectrum is chosen
such that it does not contribute significantly to the oblique
parameters, e.g., for these values of lepton masses one has
�Sl ’ 0 [66].

Because of the fact that the charges are the same as in the
SM, the anomalies are canceled in each generation. It is
important to notice here that if all the extra fermions were
very heavy and had the same mass, no effect would be left
back and the decoupling would work perfectly. The reason
is, first of all, that the sum over all extra fermions of
expressions that contain the finite integrals A3, A4 or A5

vanishes because the integrand factors out a term
P

fcf,

where cf is the pre-anomaly factor of each fermion. But

this sum is equal to zero for an anomaly-free generation.
On the other hand, terms proportional to I1 or I2 in Eq. (4),
in the limit of large fermion mass, are canceled exactly by
the anomalous term for special values of w and z parame-
ters that are fixed by the Bose symmetry in each case. But
this constraint is not necessary, e.g., if an anomaly-free
generation of very heavy mass degenerate chiral fermions
is added to the SM, it has no effects at low energies, no
matter what the values ofw and z are. This is guaranteed by
the fact that the extra generation is anomaly-free.
The numerical analysis for the three gauge bosons ver-

tices is the same as previously. Using the approximate
integral expressions from Appendix D, we draw plots
for the amplitudes j�V	VVðsÞj and j�V	WWðsÞj versus

ffiffiffi
s

p
in different combinations of the external gauge bosons
V ¼ �, Z. These plots are collected in Figs. 3, 5, and 6,
respectively [dashed line].
The extra generation has a significant contribution to

�’s, in the region near twice the threshold of each extra
fermion, where the amplitude rises until those values
(shown as peaks in every combination of external gauge
bosons) and drops fast as 1=s (apart from V	�� which
drops as 1=s2). We see that for small values of energy the
two curves (the curve that corresponds to the SM case and
the curve that corresponds both to the SM and the 4th
generation) have the same form. In this energetic region
(

ffiffiffi
s

p
& 600 GeV) the dominant feature is the first peak that

corresponds to the threshold energy for the creation of the
top quark (

ffiffiffi
s

p � 350 GeV � 2mt). In addition, the contri-
bution from the extra fermionic generation is negligible,
because all the extra fermions are heavy compared to the
energy, i.e., (2mf >

ffiffiffi
s

p
). These extra fermions have more

or less similar masses. As before with the top-quark mass,
there is a cancellation between the anomaly contributions
and the I1;2 parts of the amplitude for each fermion sepa-

rately. As a result, the total contribution from the fourth
generation is negligible as we can see from Fig. 3.
The situation is different when

ffiffiffi
s

p
runs over the mass

spectrum of the extra fermionic generation. Firstly for
(

ffiffiffi
s

p
* 600 GeV) we see different peaks that correspond

to the threshold energy for the creation of the extra fermi-
ons (

ffiffiffi
s

p � 2mi). When (2mi <
ffiffiffi
s

p
< 2mj), there is a non-

zero contribution to the total amplitude. In this case,
fermions whose masses are very heavy compared to

ffiffiffi
s

p
,

exhibit the same behavior as previously i.e., the anomalous
term cancels out against the finite contribution.
Reading our results from Fig. 3, the best case for ob-

serving triple gauge boson vertex is �	�Z where h�3 ð
ffiffiffi
s

p ¼
500 GeVÞ � 10�4. This is by 2 orders of magnitude below
the expected LHC sensitivity (with �� 1 TeV) [40].

C. Minimal Z0 models

Grand Unified Theories (GUTs) with rank larger than 4
could break to the SM gauge group times additional

8Currently, the sequential 4th generation is under siege from
LHC [68]. If there exist new heavy SM type quarks, they will
contribute a factor of up to N2

c ¼ 9 into the Higgs production
cross section for the (triangle) process gg ! H. The current
cross section sensitivity at the LHC is within a few of the SM
prediction and therefore it sets an indirect bound over the whole
exclusion Higgs area, up to 550–600 GeV. Other direct bounds
from the LHC on 4th generation top and bottom quarks involve
assumptions about their mass difference to be smaller than the
W-mass. These caveats are discussed in some detail with com-
plete references in Ref. [69].
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Uð1Þ’s: SUð3Þ 
 SUð2Þ 
Uð1Þ 
Uð1Þ0n. This symmetry
is broken down to Uð1Þem and therefore there is a possi-
bility of additional forces mediated by the Z0 gauge bosons
associated with the broken Uð1Þ0 symmetries (for a review
see Ref. [70]).

We shall concentrate here on minimal models with one
additional neutral gauge boson, the Z0. Minimal here
means models that contain no-additional i.e., no exotic,
matter particles apart from the SM ones and right-handed
neutrinos. The latter play a crucial role in cancelling
anomalies due to the additional Uð1Þ0 and in producing
viably small neutrino masses. These models were devised
first in Ref. [71] and later elaborated in Refs. [72,73].
Following the notation of [72] we can describe these
models with three additional parameters: the mass of the
new gauge boson, MZ0 , and the couplings gY and gBL. The
latter enter into the current which couples to the unmixed
Z0
0 gauge boson as

J
�
Z0
0
¼ X

f¼fL;fR

½gYYf þ gBLðB� LÞf� �f��f: (67)

From this, it is easy to construct Lint in Eq. (24) with

�Z
f ¼ cos�0�Z0

f � sin�0�Z0
0

f ; (68a)

�Z0
f ¼ sin�0�Z0

f þ cos�0�Z0
0

f ; (68b)

�Z
f ¼ cos�0�Z0

f � sin�0�Z0
0

f ; (68c)

�Z0
f ¼ sin�0�Z0

f þ cos�0�Z0
0

f ; (68d)

where �0 is the mixing angle between Z and Z0 gauge
bosons given by,

tan�0 ¼ �gY
gZ

M2
Z0

M2
Z0 �M2

Z0

; (69)

with M2
Z0

¼ g2Zv
2=4 the ‘‘SM’’ Z-boson mass. Also in

Eq. (68) we obtain for �
Z0
0

f , �
Z0
0

f ,

�
Z0
0

u ¼ 1

2

�
5

6
gY þ 2

3
gBL

�
; �

Z0
0

u ¼ gY
4
;

�
Z0
0

d ¼ 1

2

�
� 1

6
gY þ 2

3
gBL

�
; �

Z0
0

d ¼ � gY
4
;

�
Z0
0

e ¼ 1

2

�
� 3

2
gY � 2gBL

�
; �

Z0
0

e ¼ �gY
4
;

�
Z0
0

� ¼ 1

2

�
� 1

2
gY � 2gBL

�
; �

Z0
0

� ¼ gY
4
;

(70)

while the corresponding expressions for �
Z0

f , �
Z0

f are

given by Eq. (26). This parameterization through gY
and gBL helps us to very easily incorporate several
models that have been studied in the literature: ZB�L

when the Uð1ÞB�L charges of the SM fermions are propor-
tional to ðB� LÞ quantum numbers, Z� a GUT inspired

SOð10Þ ! SUð5Þ 
Uð1Þ� model and finally, Z3R where

the corresponding Uð1Þ3R charges are proportional to
T3R generator of the global SUð2ÞR symmetry. We sum-
marize the couplings of these models in the following
table:

ZB�L Z� Z3R

gY 0 � 2ffiffiffiffi
10

p gZ0 �gZ0

gBL

ffiffi
3
8

q
gZ0 5

2
ffiffiffiffi
10

p gZ0 1
2gZ0

Here, we wish to calculate the effective vertices �Z0	�Z
and �Z0	ZZ for those models. Recalling Eqs. (38) and (27)
with i ¼ Z0, j ¼ � or Z and k ¼ Z respectively, we
obtain

�
���
Z0	�ZðsÞ � 
����k1�

X
f¼u;d;e;�

�
m2

ZðA3f þ A5fÞ �
m2

f�
Z
f


2
I2f

þ ðzþ 1Þ
4
2

ð�Z0
f �

Z
f þ �Z

f�
Z0
f Þ��

f

�
� 
����k1��Z0	�ZðsÞ; (71)

����
Z0	ZZðsÞ ¼ 
����ðk1 � k2Þ�

X
f¼u;d;e;�

�
m2

ZðA3f � A4fÞ

þm2
f�

Z
f


2
I1f � ðw� 1Þ

4
2
½ð�Z

f Þ2�Z0
f

þ ð�Z
f Þ2�Z0

f þ 2�Z0
f �

Z
f�

Z
f �
�

� 
����ðk1 � k2Þ��Z0	ZZðsÞ; (72)

with �f, and �f given in Eqs. (68) and (70). Again the

last terms on the r.h.s of Eqs. (71) and (72) arrive from the
chiral anomaly of individual fermion contributions. These
anomalous terms cancel out when we sum over all SM
fermions (here we also need the right-handed neutrino).
This also removes the arbitrariness due to the unknown
parameters w, z. Contrary to the SM vertices, we cannot
use here any physical arguments in order to remove
completely both w and z parameters. We only have
Uð1Þem gauge invariance for Z0	�Z and Bose symmetry
for Z0	ZZ while in the SM we have two neutral gauge
bosons and two symmetries.
But lets for the moment keep the anomalous terms.

Obviously they are multiplied by arbitrary parameters
(zþ 1) (for Z0	�Z) and (w� 1) (for Z0	ZZ). Focusing on
the Z0

B�L model, where the mixing angle �0 vanishes, we
observe that for any single heavy fermion contribution the
2nd and the 3rd term on the r.h.s of Eqs. (71) and (72)
mutually cancel and what remains back is the effective
theory with the low mass fermion contributions but to-
gether with their anomalous terms included. The latter do
not depend on particle masses. The choices for the arbi-
trary parameters are w ¼ z ¼ 1 for Z0�Z and w ¼ z ¼ 0
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for Z0ZZ. The last condition can be interpreted as follows:
for the amplitude ZZ ! ZZ to hold for asymptotic values
of energies, Eq. (10) requires w ¼ z but Bose symmetry
requires w ¼ �z. This conclusion does not stand firm in
the case of mixing between Z and Z0 i.e., in models Z�, Z3R

of the table above, and the contribution of a heavy mass
particle is undetermined. Of course anomalies do cancel
when all model fermions are added.

In Fig. 7 we display numerical results for the absolute
value of the scalar part of the 1PI effective vertices Z0	�Z
and Z0	ZZ in Eqs. (71) and (72) for MZ0 ¼ 1 TeV and
gZ0 ¼ �em. Figures 7(a) and 7(b) refer to ZB�L model,
Figs. 7(c) and 7(d) to Z� models and, finally, Figs. 7(e)

and 7(f) to Z3R models. For the values of MZ0 and gZ0

chosen, fits to electroweak observables and direct searches
are satisfied. We also present results when adding a se-
quential 4th generation of fermions with the same masses
(and the reasoning) as we did for the SM case of
section IVA. We observe that there is an enhancement of
the vertices by a factor of 2 for ZB�L, and a factor of 10–15

for Z�. Numerically, we can define analogous quantities

hZ
0

3 and fZ
0

5 by simply replacing Z with Z0 in the definition

given by footnote 5. As an example, for the B� L model
we obtain,

hZ
0

3 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ �2:7
 10�5;

hZ
0

3 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð�2:7þ 5:3iÞ 
 10�4;

fZ
0

5 ð
ffiffiffi
s

p ¼ 200 GeVÞ ¼ �7:2
 10�6;

fZ
0

5 ð
ffiffiffi
s

p ¼ 500 GeVÞ ¼ ð�7:7þ 18iÞ 
 10�5:

(73)

Numerical results for the vertices presented above and in
Fig. 7 are based on various analytical approximations for
form factors described in Appendix D.
Now that Z0 can be heavy it is interesting to study its

decay width into Z� and ZZ modes. Based on (1) and on
Eqs. (71) and (72) the decay widths of the Z0 can be read
from

(a) (b)

(c) (d)

(e) (f)

FIG. 7 (color online). a,b) j �Z0VVðsÞ j versus
ffiffiffi
s

p
for different gauge bosons combinations as they are given by Eqs. (71) and (72).

The solid curve corresponds to the SM spectrum with an extra Uð1ÞB�L, while the dashed curve corresponds to the same but with a 4th
sequential fermion generation added as in Fig. 3. We take MZ0 ¼ 1 TeV and gZ0 ¼ �em. c,d) The same as (a,b) but with Uð1Þ�. (e,
f ) The same as (a,b) but with Uð1Þ3R.
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�ðZ0 ! �ZÞ ¼ 1

48


�������� X
f¼u;d;e;�

�
m2

ZðA3f þA5fÞ �
m2

f�
Z
f


2
I2f

þ ðzþ 1Þ
4
2

ð�Z0
f �

Z
f þ�Z

f�
Z0
f Þ��

f

���������2


m3
Z0

m2
Z

�
1� m2

Z

m2
Z0

�
3
�
1þ m2

Z

m2
Z0

�
; (74)

�ðZ0 ! ZZÞ ¼ 1

96


�������� X
f¼u;d;e;�

�
m2

ZðA3f �A4fÞ

þm2
f�

Z
f


2
I1f �ðw� 1Þ

4
2
½ð�Z

f Þ2�Z0
f þð�Z

f Þ2�Z0
f

þ 2�Z0
f �

Z
f�

Z
f �
���������2m3

Z0

m2
Z

�
1� 4m2

Z

m2
Z0

�
5=2

; (75)

�ðZ0 !WþW�Þ¼�emmZ0sin2�0

48tan2�w

�
1�4

m2
W

m2
Z0

�
3=2



�
1þ20

m2
W

m2
Z0
þ12

m4
W

m4
Z0

��
m2

W

m2
Z0

��2
; (76)

�ðZ0 ! �ffÞ ¼ NcmZ0

12


�
ð�Z02

f þ �Z02
f Þ

� 3m2
f

m2
Z0
ð�Z02

f � �Z02
f Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

f

m2
Z0

vuut ; (77)

where Nc is the color factor (3 for quarks and 1 for leptons)
and the tree level decay width for Z0 ! WW has been
taken from Ref. [74] and is dominant over the loop-induced
ones. For gZ0 ¼ �em,MZ0 ¼ 1 TeV and SM spectrum with
three generations we obtain for the B� L (�) [3R] models:

BrðZ0 ! ��Þ ¼ 37:7ð42:3Þ½12:5�%;

BrðZ0 ! ‘‘Þ ¼ 37:7ð12:5Þ½12:6�%;

BrðZ0 ! qqÞ ¼ 24:5ð45:1Þ½74:8�%;

BrðZ0 ! WWÞ ¼ 0:03ð3:2Þ½8:1� 
 10�5;

BrðZ0 ! Z�Þ ¼ 5:8ð�10�3Þ½8:7� 
 10�6;

BrðZ0 ! ZZÞ ¼ 3:0ð2:5Þ½0:9� 
 10�7:

(78)

These results are pretty much the same for bigger MZ0

values. As we see, the branching fraction for Z0 ! �Z is
in the region of 10�5–10�6 while for Z0 ! ZZ in the region
�10�7. These are very challenging numbers even for
LHC@14 TeV.

In coordinate space representation, the vertices (71) and
(72) arise on-shell from the following operators

O Z0�Z � "����Z0
�Z�F��; (79)

O Z0ZZ � "����Z0
�Z�@�Z�; (80)

which are both P-odd but CP-invariant. Although not
present in the SM and in the Z0-models under consideration
there may be P-even but CP-violating operators of the
form OZ0ZZ � Z0�ð@�Z�ÞZ� induced by a triple scalar

loop instead. The latter would interfere with (80) and
there is a proposal in Ref. [75] on how their effects can
be separated at the LHC. However, within minimal
Z0-models considered here this looks very difficult due to
tiny BrðZ0 ! VVÞ of Eq. (78).

V. CONCLUSIONS

We construct an effective 1PI vertex for triple gauge
bosons for every renormalized theory making explicit
mentioning to the chiral anomalies and their synergy
with heavy fermion decoupling phenomena. Our method
for calculating the vertex is based on Ref. [38]. It is quite
general and can be divided in four steps:
(1) Write down the most general, Lorentz (and/or pos-

sibly other symmetry) invariant effective vertex
���� [like Eq. (2)] with unknown form factors.

(2) Isolate the -potentially- infinite form factors and
calculate only the finite parts.

(3) Derive Ward Identities arising from the underlying
spontaneously broken gauge symmetries at the
quantum level. Apply them to ���� and calculate
the ambiguous form factors, thus forcing them to be
finite.

(4) If the vertex is still undetermined i.e., if arbitrary
parameters still remain, try to fix them by physical
requirements. If nevertheless arbitrariness persists,
then the model needs completion, perhaps with new
particles or new dynamics.

This method, explained in detail in Appendix B and in
Sec. II, does not require dimensional regularization or
other integral regularization technics. It may require, how-
ever, ‘‘shifting momenta’’ technics like Eq. (B11). The
above steps can be augmented with additional relations.
Instead of WIs, one could use other identities like, for
example, those arising from perturbative unitarity sum
rules or the Goldstone boson equivalence theorem e.g.,
Eq. (11).
All the above steps are realized when calculating triple

gauge boson vertices in spontaneously broken gauge theo-
ries, like, for example, the SM or its extensions like mini-
mal Z0-models. The anomalous terms are arbitrary and can
only be fixed by physics. Only then can we discuss non-
decoupling effects in the broken limit. We observe that for
V	VV, V ¼ �, Z and for �	WW vertices, there are two
arbitrary parameters that are completely determined by
two physical symmetries: Uð1Þem and Bose symmetry or
CP-invariance. We find that at the limit of heavy fermion
masses, nondecoupled terms cancel exactly those that arise
from anomalies. For example, in the SM, decoupling of the
top quark will leave behind anomalous-terms of light

ATHANASIOS DEDES AND KRISTAQ SUXHO PHYSICAL REVIEW D 85, 095024 (2012)

095024-18



quarks and leptons plus finite parts. On the other hand
vertices like Z	WW, Z0	VV are in general undetermined
because there are no enough symmetries to fix the arbitrary
parameters. Of course for anomaly-free models this
arbitrariness is removed when adding up all fermion
contributions.

We made a numerical analysis for SM and minimal
Z0-model vertices. To this end, we made an effort to
calculate finite integrals in terms of standard functions
that are easy to handle. For example in Appendix D, we
solved analytically the integrals for V	�V-vertices. We
then proceeded to SM predictions for the triple gauge
boson vertices. Unfortunately, it turns out that within the
SM these are rather small to be discovered even at the LHC
with

ffiffiffi
s

p ¼ 14 TeV. Similar results are obtained in the SM
extended by a sequential fourth fermion generation. The
difference w.r.t the SM, is that j�V	VVðsÞj is ‘‘delayed’’ to
vanish for large

ffiffiffi
s

p
due to the heavy, 4th generation thresh-

olds (see Figs. 3). In the best case, the SMþ 4th generation
predicts a maximum of a few 
10�3 for j��	�Zj [see

dashed lines in Figs. 3].
We have performed a numerical analysis, shown in

Fig. 7, for minimal Z0-models with Uð1ÞB�L symmetry,
SOð10Þ-like and Uð1Þ3R also extended with a 4th fermion
generation. For a conservative choice ofMZ0 ¼ 1 TeV and
gZ ¼ �em, we find j�Z0ZZj and j�Z0�Zj in the regime below

a few 
10�5. We also briefly discussed Z0-decays to Z�
and ZZ. Adopting the parameters space above, their
branching ratio come out to be in the neighborhood of
�10�5 and �10�7, respectively.

In Sec. III B and Appendix E, we calculated nondecou-
pling effects that arise instantaneously with vanishing
anomalies. We constructed several toy models with two
or three external gauge bosons and a number of fermions
where this situation could take place. In principle, these
models can be used as a basis towards realistic extensions
of the SM.

Our main result, the effective triple gauge boson vertex
obtained in section II can be used in various ways: i) in
models with anomalous spectrum, ii) in realistic anomaly
driven models of Sec. III B, iii) in MSSM and its exten-
sions, iv) in dark matter or neutrino—nucleon scattering
processes with a photon in the final state. We will pursue
some of these issues in a forthcoming article.
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APPENDIX A: A SET-UP TOY MODEL
FOR CALCULATIONS

Consider a gauge theory of a complex scalar field �
charged under a localUð1Þwith charge Y� (in units of e), a
vector spin-1 abelian gauge boson A� and a pair of Dirac

fermions EL and eR with Uð1Þ-charges YL and YR respec-
tively. This gauge theory is described by the Lagrangian,9

L ¼ Lgð�; A�Þ þLfðEL; eR; A�Þ þLYðEL; eR;�Þ;
(A1)

where the gauge boson-scalar interactions are

L gð�; A�Þ ¼ � 1

4
F��F

�� � 1

2
ðGÞ2 þ jD��j2 � Vð�Þ;

(A2)

while the chiral fermion and the Yukawa interaction parts
of the Lagrangian in Eq. (A1) are stored in

L fðEL; eR; A�Þ ¼ �ELði 6DÞEL þ �eRði 6DÞeR; (A3)

L YðEL; eR;�Þ ¼ ��eð �EL�eR þ �eR�
	ELÞ; (A4)

and D�� ¼ @��þ ieY�A��, D�EL ¼ @�EL þ
ieYLA�EL, and D�eR ¼ @�eR þ ieYRA�eR. Lg is invari-

ant under the local, Uð1Þ gauge-transformation

�ðxÞ ! eieY��ðxÞ�ðxÞ; A�ðxÞ ! A�ðxÞ � @��ðxÞ;
(A5)

ELðxÞ ! eieYL�ðxÞELðxÞ; eRðxÞ ! eieYR�ðxÞeRðxÞ;
(A6)

iff Y� ¼ YL � YR. It is convenient to combine the left and
right-handed fermions into a single Dirac four-component
spinor � ¼ ðEL; eRÞT . Then the interaction Lagrangian
relevant to our study for triangle graphs reads:

Lint ¼ ��e
���PR�� �e

���	PL�

� eA�
����ð�þ ��5Þ�; (A7)

where

� ¼ YL þ YR

2
; � ¼ YR � YL

2
: (A8)

Under gauge transformations the 4-component field �
transforms as

�ðxÞ ! eieð�þ��5Þ�ðxÞ�ðxÞ; (A9a)

��ðxÞ ! ��ðxÞe�ieð����5Þ�ðxÞ; (A9b)

which together with Eq. (A6) leave L invariant if
Y� ¼ �2�.

9Throughout we follow the notation and conventions of
Ref. [76].
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We choose a renormalizable and gauge invariant poten-
tial Vð�Þ such that the field � acquires a nonvanishing

vacuum expectation value, h�i ¼ v=
ffiffiffi
2

p
, which breaks the

local Uð1Þ symmetry spontaneously. We expand Eq. (A1)
around the minimum, � ¼ 1ffiffi

2
p ðvþ hþ i’Þ and choose a

gauge-fixing function in Eq. (A2),

G ¼ 1ffiffiffi
�

p ð@�A� � �ev’Þ; (A10)

which eliminates the Goldstone boson—gauge boson mix-
ing term. The mass of the vector boson A� and of the

unphysical Goldstone boson ’ in this R�-gauge become

mA ¼ evY�; m2
’ ¼ �m2

A: (A11)

The ghost part ofL is not relevant to our discussion for the
one-loop triangle graphs and is not presented. In terms of

� and ��, Lf þLY becomes

Lfð�; A�Þ þLYð�; h; ’Þ ¼ ��i6@�� eA�
����


 ð�þ ��5Þ��m ���

� ~� ��h�� i ~� ���5’�;

(A12)

where m ¼ v ~� and ~� ¼ �effiffi
2

p .

This model, albeit very simple, captures the most im-
portant nondecoupling heavy fermion effects in the tri-
linear gauge boson vertices in the SM and its extensions.
In the context of chiral anomalies it has been exploited in
Ref. [15]. With a light language deform it imitates the
Standard Model with the difference that its WI’s for the
currents corresponding to the gauge symmetry in Eq. (A6)
are anomalous as we shall see below.

APPENDIX B: CALCULATION OF THE THREE
POINT GAUGE BOSON VERTEX

In this Appendix we explicitly evaluate the three exter-
nal gauge boson, fermionic one-loop amplitude of Fig. 1.
The loop function is calculated directly in four dimensions
using standard methods studied in Refs. [7,38,77–79].
Here, we review this calculation in detail for the toy model
of Appendix A. At the end we generalize our results to the
case of three different external (massive or massless) gauge
bosons.
By naive power counting we observe that the two dia-

grams in Fig. 1 are linearly divergent. This means that their
quantum amplitudes depend on the routing of the internal
momenta circulating in the loop. In each of the two dia-
grams we shift the internal momenta with arbitrary four
vectors a� and b�, respectively. By reading Feynman rules
from Eq. (A7), the graphs in Fig. 1 become

����ðk1; k2;a;bÞ ¼ ð�1Þe3 Tr
�Z d4p

ð2
Þ4


��ð�þ��5Þð6p� 6k2 þ aþmÞ��ð�þ��5Þð6pþ aþmÞ��ð�þ��5Þð6pþ 6k1 þ aþmÞ
½ðp� k2 þ aÞ2 �m2�½ðpþ aÞ2 �m2�½ðpþ k1 þ aÞ2 �m2�

þ
Z d4p

ð2
Þ4
��ð�þ��5Þð6p� 6k1 þ 6bþmÞ��ð�þ��5Þð6pþ 6bþmÞ��ð�þ��5Þð6pþ 6k2 þ 6bþmÞ

½ðp� k1 þ bÞ2 �m2�½ðpþ bÞ2 �m2�½ðpþ k2 þ bÞ2 �m2�
�
;

(B1)

wherem is the fermion mass and (� 1) is a fermionic loop
factor. The integral in the second line is the same as the first
with only the difference that the upper two external legs in
Fig. 1 are interchanged, i.e., f�; �g $ f�; �g and k1 $ k2.
Dimensional regularization is a scheme not well suited in
calculating (B1) due to the problems in defining �5 and

���� in d > 4 spacetime dimensions. We here follow a
method for calculating (B1) first presented by Rosenberg in
Ref. [38] and later used by Adler in his classic paper on
chiral anomaly [7]. Basically, this method relies on the fact
that the ambiguous part of the integral is stored in two form
factors in ���� expansion, A2 and A1, that multiply the
external momenta k1 and k2, respectively. We then exploit
physical arguments like, for example, conservation of
charge, in order to determine the form factors A1, A2—
all others, A3 . . .A6 are finite and can be calculated directly
in 4-dimensions.

Our next step is to write down the WIs. This can be done
in many ways, probably the most insightful is the use of
functional methods (see for instance Chapter 9.6 in the
textbook of Ref. [76]). One finds the classical WIs of
Eq. (3), but not the last term on the r.h.s. We show below
how to calculate this last term. We need first to calculate
the divergence of the 1PI vertex: q��

��� ¼ ðk1 þ
k2Þ�����. It is useful to employ the following algebraic

identity:

6qð�þ ��5Þ ¼ �ð�� ��5Þð6p� 6k2 þa�mÞ þ 2��5m

þ ð6pþ 6k1 þa�mÞð�þ ��5Þ; (B2)

in the first integral of (B1) and a similar identity with
a ! b and k1 ! k2 in the second one. These identities
split q��

��� into two parts,
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q��
���ðk1; k2;a; bÞ ¼ � 2m�ei

~�
���ðk1; k2;a; bÞ þ���ðk1; k2; a; bÞ; (B3)

a part that is proportional to the fermion mass m and a part which contains divergent two-point functions that would had
been zero if shifting of the momenta variable was allowed. The latter integrals will be responsible for the failure of the axial
vector WI’s. Explicitly ��� and ��� in Eq. (B3) read,

���ðk1; k2; a; bÞ ¼ �ie2 ~�Tr

�Z d4p

ð2
Þ4
�5ð6p� 6k2 þ aþmÞ��ð�þ ��5Þð6pþ aþmÞ��ð�þ ��5Þð6pþ 6k1 þ aþmÞ

½ðp� k2 þ aÞ2 �m2�½ðpþ aÞ2 �m2�½ðpþ k1 þ aÞ2 �m2�
þ

Z d4p

ð2
Þ4
�5ð6p� 6k1 þ 6bþmÞ��ð�þ ��5Þð6pþ 6bþmÞ��ð�þ ��5Þð6pþ 6k2 þ 6bþmÞ

½ðp� k1 þ bÞ2 �m2�½ðpþ bÞ2 �m2�½ðpþ k2 þ bÞ2 �m2�
�

¼ �ie2m ~�

2
2
"����k1�k2�I0ðk1; k2; mÞ; (B4)

where

I0ðk1; k2; mÞ ¼
Z 1

0
dx

Z 1�x

0
dy

ð�2 � �2Þ þ 2ðxþ yÞ�2

xðx� 1Þk22 þ yðy� 1Þk21 � 2xyk1 � k2 þm2
: (B5)

Obviously, the integral in ��� in Eq. (B4) is obtained from ���� in Eq. (B1) with the replacement ��ð�þ ��5Þ ! �5, that
is a replacement of a vector-axial vector coupling with a pseudoscalar. This validates the PCAC relation in Eq. (B3). Note
that ��� is finite and independent on the arbitrary vectors a� and b�: ���ðk1; k2; a; bÞ ¼ ���ðk1; k2Þ.

The divergent part ��� in the WI of Eq. (B3) contains, among others, the anomalous term. It is written explicitly as,

���ðk1; k2; a; bÞ ¼ ð�e3ÞTr
Z d4p

ð2
Þ4
�
�ð�� ��5Þð�� ��5Þ��ð6pþ aþmÞ��ð�þ ��5Þð6pþ 6k1 þ aþmÞ

½ðpþ aÞ2 �m2�½ðpþ k1 þ aÞ2 �m2�
þ ð6p� 6k2 þ aþmÞ��ð�þ ��5Þð6pþ aþmÞ��ð�þ ��5Þð�þ ��5Þ

½ðpþ aÞ2 �m2�½ðp� k2 þ aÞ2 �m2�
� ð�� ��5Þð�� ��5Þ��ð6pþ 6bþmÞ��ð�þ ��5Þð6pþ 6k2 þ 6bþmÞ

½ðpþ bÞ2 �m2�½ðpþ k2 þ bÞ2 �m2�
þ ð6p� 6k1 þ 6bþmÞ��ð�þ ��5Þð6pþ 6bþmÞ��ð�þ ��5Þð�þ ��5Þ

½ðpþ bÞ2 �m2�½ðp� k1 þ bÞ2 �m2�
�
: (B6)

This is an integral that is divided into two parts: a chiral expression i.e., the one that contains �5 and a nonchiral expression
that does not contain �5. Since the anomalous term is originated from the chiral part we start from there. Hence,

���
chiralðk1; k2; a; bÞ ¼ ð�3 þ 3�2�Þe3 Tr

Z d4p

ð2
Þ4
� ð6pþ 6k1 þ aÞ��ð6pþ aÞ���5

½ðpþ k1 þ aÞ2 �m2�½ðpþ aÞ2 �m2�
� ð6pþ aÞ��ð6p� 6k2 þ aÞ���5

½ðpþ aÞ2 �m2�½ðp� k2 þ aÞ2 �m2� þ
ð6pþ 6k2 þ 6bÞ��ð6pþ 6bÞ���5

½ðpþ k2 þ bÞ2 �m2�½ðpþ bÞ2 �m2�
� ð6pþ 6bÞ��ð6p� 6k1 þ 6bÞ���5

½ðpþ bÞ2 �m2�½ðp� k1 þ bÞ2 �m2�
�
: (B7)

Grouping together the first and the fourth as well as the third and the second terms in the integrand of Eq. (B7), we arrive at,

���
chiralðk1; k2;a; bÞ ¼ ð�3 þ 3�2�Þe3

Z d4p

ð2
Þ4
�
Trð���������5Þ

� ðpþ k1 þ aÞ�ðpþ aÞ�
½ðpþ k1 þ aÞ2 �m2�½ðpþ aÞ2 �m2�

� ðpþ bÞ�ðp� k1 þ bÞ�
½ðpþ bÞ2 �m2�½ðp� k1 þ bÞ2 �m2�

�
þ Trð���������5Þ



� ðpþ k2 þ bÞ�ðpþ bÞ�
½ðpþ k2 þ bÞ2 �m2�½ðpþ bÞ2 �m2� �

ðpþ aÞ�ðp� k2 þ aÞ�
½ðpþ aÞ2 �m2�½ðp� k2 þ aÞ2 �m2�

��
: (B8)

Following the steps described in Ref. [78], we first define a function and an integral,
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f��ðp; c; dÞ ¼ ðpþ cÞ�ðpþ dÞ�
½ðpþ cÞ2 �m2�½ðpþ dÞ2 �m2� ; (B9)

and

I��ðk; c; dÞ ¼
Z d4p

ð2
Þ4 ½f��ðpþ k; c; dÞ � f��ðp; c; dÞ�;
(B10)

where c, d are arbitrary four vectors. By exploiting the
following ‘‘momentum shift’’ integral relation (see the
lecture by R. Jackiw in Ref. [77] and Refs. [48,49,79])

Z d4p

ð2
Þ4 ½fðpþaÞ�fðpÞ� ¼ i

ð2
Þ4
�
2
2a� lim

p!1p
�p2foðpÞ

þ
2a�a� lim
p!1p

�p2@feðpÞ
@p�

�
;

(B11)

where only the first term on the r.h.s is relevant to linearly
divergent diagrams, and,

foðpÞ ¼ 1

2
½fðpÞ � fð�pÞ�;

feðpÞ ¼ 1

2
½fðpÞ þ fð�pÞ�;

(B12)

are the odd and even parts of fðpÞ respectively, we
obtain,10

I��ðk; c; dÞ ¼ i

96
2
½2k�c� þ 2k�d� � k�d� � k�c�

� g��k � ðkþ cþ dÞ þ k�k��: (B13)

Now we have all the necessary machinery to calculate���

in Eq. (B8) by applying to it Eqs. (B11) and (B13). For the
nonchiral part of ��� the choice b ¼ �a results in
�

��
non-chiral ¼ 0 as we expect, since there should be no

nonchiral anomalies. With this assignment for vector b
we finally obtain for the chiral part:

���
chiralðk1; k2; a;�aÞ ¼ e3ð�3 þ 3�2�Þ

4
2
"����a�ðk1 þ k2Þ�:

(B14)

Plugging in Eqs. (B4) and (B14) into Eq. (B3), the WI
associated to the leg—�—becomes:

q��
���ðk1; k2; a;�aÞ ¼ � 2me�i

~�
���ðk1; k2Þ

þ e3ð�3 þ 3�2�Þ
4
2


 "����a�ðk1 þ k2Þ�: (B15)

Along the same lines we can build in the WIs for the other
vertices. For example, the WI referring to the conservation
of current in vertex—�—(see Fig. 1) reads:

�k1�~�
���ðk1; k2; a;�aÞ ¼ � 2m�ei

~�
~���ðk1; k2Þ

� e3ð�3 þ 3�2�Þ
4
2


 "����ða� k2Þ�k1�: (B16)

Vertices ~����ðk1; k2; a; bÞ and ~���ðk1; k2Þ are obtained
from ����ðk1; k2;a; bÞ and ���ðk1; k2Þ in Eqs. (B1) and
(B4), respectively, after the following replacements

� ! �; � ! �; � ! �; a ! a� k2;

b ! bþ k2; k1 ! k2; k2 ! �k1 � k2;

q ¼ k1 þ k2 ! k2 � k1 � k2 ¼ �k1 ) q ! �k1: (B17)

It is straightforward to see from Eq. (B17) that the non-
chiral part of �k1�~�

���ðk1; k2; a; bÞ vanishes again for the
choice b ¼ �a. Similarly the WI for the current conser-
vation in the—�—vertex,

�k2��̂
���ðk1; k2; a;�aÞ ¼ � 2m�ei

~�
�̂��ðk1; k2Þ

� e3ð�3 þ 3�2�Þ
4
2


 "����ðaþ k1Þ�k2�: (B18)

As previously, �̂���ðk1; k2;a; bÞ and �̂��ðk1; k2Þ can be
obtained from Eqs. (B1) and (B4) by making the following
replacements:

� ! �; � ! �; � ! �; a ! aþ k1;

b ! b� k1; k1 ! �k2 � k1; k2 ! k1;

q ¼ k1 þ k2 ! �k2 � k1 þ k1 ) q ! �k2: (B19)

These replacements leave invariant the choice b ¼ �a so
that finally, the nonchiral part of �k2��̂

���ðk1; k2;a;�aÞ
vanishes identically everywhere. Furthermore, by direct
calculation the vertices ~��� and �̂�� are found to be,

~� ��ðk1; k2Þ ¼ ie2m ~�

2
2
"����k1�k2�I1ðk1; k2; mÞ; (B20)

and

�̂ ��ðk1; k2Þ ¼ ie2m ~�

2
2
"����k1�k2�I2ðk1; k2; mÞ; (B21)

respectively, where the corresponding integrals I1;2 are
written explicitly as,

10There is a typographical error in the corresponding expres-
sion of a classic textbook written by S. Weinberg in Ref. [78].
We thank Steve Martin and Howie Haber for communication
related to this point.
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I1ðk1;k2;mÞ¼
Z 1

0
dx

Z 1�x

0
dy

�ð�2þ�2Þþ2x�2

xðx�1Þk22þyðy�1Þk21�2xyk1 �k2þm2
; (B22)

and

I2ðk1;k2;mÞ¼
Z 1

0
dx

Z 1�x

0
dy

ð�2þ�2Þ�2y�2

xðx�1Þk22þyðy�1Þk21�2xyk1 �k2þm2
: (B23)

The three-point vertex obeys the following equality,

���� ¼ ~���� ¼ �̂���; (B24)

as the property of trace to remain invariant under cyclic permutations. It is instructive to write the arbitrary vector a�,
appearing in the WIs, as a linear combination of the two independent momenta k1 and k2,

a� ¼ zk
�
1 þ wk

�
2 ; (B25)

with z, w arbitrary real numbers. Then the WIs in Eqs. (B15), (B16), and (B18) can be written explicitly in terms of the
three integrals I0, I1, and I2 and the real numbers w and z as,

q��
���ðk1;k2;w;zÞ¼�e3�m2


2
"����k1�k2�I0ðk1;k2;mÞþe3ð�3þ3�2�Þ

4
2
"����k1�k2�ðw�zÞ: (B26)

�k1�~�
���ðk1; k2;wÞ ¼ � e3�m2


2
"����k1�k2�I1ðk1; k2;mÞ þ e3ð�3 þ 3�2�Þ

4
2

 "����ðw� 1Þk1�k2�; (B27)

�k2��̂
���ðk1;k2;zÞ¼�e3�m2


2
"����k1�k2�I2ðk1;k2;mÞþe3ð�3þ3�2�Þ

4
2
"����ðzþ1Þk1�k2�: (B28)

Obviously, even if we choose w ¼ 1 and z ¼ �1 so that the second and third anomalous terms vanish it cannot be done so
for the first one. The second term on the r.h.s of Eq. (B26), remains. It is quite interesting to note that in the limit where k21,
k22, k1 � k2 � m ! 1, there is a choice for w ¼ �z ¼ 1=3 such that the right hand side of Eqs. (B26)–(B28) vanishes
identically. For this choice the fermions get decoupled completely.

Our goal is still to calculate the three gauge boson vertex ����ðk1; k2;a;�aÞ. The idea is to first write down the most
general, Lorentz invariant vertex, as11

����ðk1; k2;a;�aÞ ¼ ½A1ðk1; k2; a;�aÞ"����k2� þ A2ðk1; k2; a;�aÞ"����k1� þ A3ðk1; k2Þ"���	k�2k1�k2	

þ A4ðk1; k2Þ"���	k�1k1�k2	 þ A5ðk1; k2Þ"���	k�2k1�k2	 þ A6ðk1; k2Þ"���	k�1k1�k2	�: (B32)

The form factors A1 and A2 are dimensionless and, by naive power counting, at most linearly divergent while all the rest,
A3 . . .A6 possess dimension of m�2 and are finite. The latter can be calculated directly in four dimensions from Eq. (B1).
We find explicitly:

A3ðk1; k2Þ ¼ �A6ðk1; k2Þ ¼ � e3ð�3 þ 3�2�Þ

2

Z 1

0
dx

Z 1�x

0
dy

xy

�
; (B33)

A4ðk1; k2Þ ¼ e3ð�3 þ 3�2�Þ

2

Z 1

0
dx

Z 1�x

0
dy

yðy� 1Þ
�

; (B34)

11There are two more terms allowed in the expansion,

A7ðk1; k2Þ"���	k�2 k1�k2	 þ A8ðk1; k2Þ"���	k�1 k1�k2	: (B29)

However, by exploiting the following, very useful, identities

k�1 "
���	k1�k2	 ¼ �"���	k�1k1�k2	 þ "���	k�1k1�k2	 þ "����½ðk1 � k2Þk1� � k21k2��; (B30)

k
�
2 "

���	k1�k2	 ¼ �"���	k�2k1�k2	 þ "���	k
�
2k1�k2	 � "����½ðk1 � k2Þk2� � k22k1��; (B31)

we arrive at the six form factors given in Eq. (B32).
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A5ðk1; k2Þ ¼ � e3ð�3 þ 3�2�Þ

2

Z 1

0
dx

Z 1�x

0
dy

xðx� 1Þ
�

;

(B35)

where the integrand denominator is common for all
A3 . . .A6 and reads:

� � xðx� 1Þk22 þ yðy� 1Þk21 � 2xyk1 � k2 þm2: (B36)

To estimate the two divergent integrals, A1 and A2, we
apply the Ward Identities for the vertices � and �, i.e.,
Eqs. (B27) and (B28) in the expansion (B32) and obtain,

A1ðk1; k2;wÞ ¼ ðk1 � k2ÞA3ðk1; k2Þ þ k21A4ðk1; k2Þ

�m2e3�


2
I1ðk1; k2; mÞ

þ e3ð�3 þ 3�2�Þ
4
2

ðw� 1Þ; (B37)

and,

A2ðk1; k2; zÞ ¼ ðk1 � k2ÞA6ðk1; k2Þ þ k22A5ðk1; k2Þ

�m2e3�


2
I2ðk1; k2; mÞ

þ e3ð�3 þ 3�2�Þ
4
2

ðzþ 1Þ: (B38)

Eqs. (B22), (B23), and (B33)–(B38) complete the evalu-
ation of the vertex ����ðk1; k2; w; zÞ in Eq. (B32). In
Appendix D we present analytical expressions of the in-
tegrals A3...6 and I0;1;2 in various limits.

Even if the form factors Ai¼1...6 had not been calculated
explicitly there is much to say about their structure by
exploiting possible Bose symmetries. Hence, referring to
the notation of Fig. 1, Bose symmetry among j and k legs
implies,

A1ðk1; k2Þ ¼ �A2ðk2; k1Þ; (B39a)

A3ðk1; k2Þ ¼ �A6ðk2; k1Þ; (B39b)

A4ðk1; k2Þ ¼ �A5ðk2; k1Þ; (B39c)

while in i and j legs,

A1ðk1; k2Þ ¼ �A1ð�q; k2Þ þ A2ð�q; k2Þ
� ðk1 � k2Þ½ðA3ð�q; k2Þ � A4ð�q; k2Þ�
þ k21A4ð�q; k2Þ; (B40a)

A2ðk1; k2Þ ¼ A2ð�q; k2Þ þ k22½A3ð�q; k2Þ
� A4ð�q; k2Þ� � ðk1 � k2ÞA4ð�q; k2Þ; (B40b)

A3ðk1; k2Þ ¼ A4ð�q; k2Þ � A3ð�q; k2Þ; (B40c)

A4ðk1; k2Þ ¼ A4ð�q; k2Þ; (B40d)

A5ðk1; k2Þ ¼ A5ð�q; k2Þ � A6ð�q; k2Þ
þ A3ð�q; k2Þ � A4ð�q; k2Þ; (B40e)

A6ðk1; k2Þ ¼ �A4ð�q; k2Þ � A6ð�q; k2Þ; (B40f)

and, finally, in i and k legs we find,

A1ðk1; k2Þ ¼ A1ðk1; � qÞ � k21½ðA5ðk1;�qÞ
� A6ðk1;�qÞ� � ðk1 � k2ÞA5ðk1;�qÞ; (B41a)

A2ðk1; k2Þ ¼ A1ðk1;�qÞ � A2ðk1;�qÞ
þ ðk1 � k2Þ½A5ðk1;�qÞ � A6ðk1;�qÞ�
þ k22A5ðk1;�qÞ; (B41b)

A3ðk1; k2Þ ¼ �A3ðk1;�qÞ � A5ðk1;�qÞ; (B41c)

A4ðk1; k2Þ ¼ A4ðk1;�qÞ � A3ðk1;�qÞ
� A5ðk1;�qÞ þ A6ðk1;�qÞ; (B41d)

A5ðk1; k2Þ ¼ A5ðk1;�qÞ; (B41e)

A6ðk1; k2Þ ¼ A5ðk1;�qÞ � A6ðk1;�qÞ: (B41f)

The above relations have been repeatedly used in Sec. IV
when determining the anomaly parameters w and z. The
reader should notice that in addition to relations due to
Bose symmetry, there are few more relations originated
solely from fermionic triangle:

A3ðk1; k2Þ ¼ A3ðk2; k1Þ; A6ðk1; k2Þ ¼ A6ðk2; k1Þ:
(B42)

We can now exploit Bose symmetry to set constraints on
the arbitrary parameters w and z. For example, if the gauge
bosons associated with legs j and k in Fig. 1 are identical
then Eq. (B39) impose the following relation,

wþ z ¼ 0; (B43)

among the undefined (momentum route dependent) pa-
rameters. One last remark is that we can rediscover Bose
symmetries by using one of the following equivalent rep-
resentations (i.e., they leave the double integral measure
invariant) of the integrals A3 . . .A6 by noting that

�ðk1; k2Þ !x$y
�ðk2; k1Þ; (B44)

�ðk1; k2Þ !y!1�x�y

x!x
�ðk1;�qÞ; (B45)

�ðk1; k2Þ !y!y

x!1�x�y
�ð�q; k2Þ; (B46)

where �ðk1; k2Þ is a function defined in Eq. (B36).
As a generalization of Eqs. (B15), (B16), and (B18) we

can proceed to the situation where there are three, in
general different, external gauge bosons with different
couplings to fermions. As in (B1), we write the general
three point vertex in Fig. 1 as:
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����ðk1; k2; a; bÞ ¼ ~����ðk1; k2; a; bÞ ¼ �̂���ðk1; k2;a; bÞ ¼ �e3
Z d4p

ð2
Þ4


 Tr

�
��ð�i þ �i�

5Þð6p� 6k2 þ aþmÞ��ð�j þ �j�
5Þð6pþ aþmÞ��ð�k þ �k�

5Þð6pþ 6k1 þ aþmÞ
½ðp� k2 þ aÞ2 �m2�½ðpþ aÞ2 �m2�½ðpþ k1 þ aÞ2 �m2�

þ ��ð�i þ �i�
5Þð6p� 6k1 þ 6bþmÞ��ð�k þ �k�

5Þð6pþ 6bþmÞ��ð�j þ �j�
5Þð6pþ 6k2 þ 6bþmÞ

½ðp� k1 þ bÞ2 �m2�½ðpþ bÞ2 �m2�½ðpþ k2 þ bÞ2 �m2�
�
;

(B47)

and the corresponding two point vertex functions as:

���ðk1; k2Þ ¼ �ie2m ~�

2
2
"����k1�k2�

Z 1

0
dx

Z 1�x

0
dy

ð�j�k � �j�kÞ þ 2�j�kðxþ yÞ
�

;

~���ðk1; k2Þ ¼ ie2m ~�

2
2
"����k1�k2�

Z 1

0
dx

Z 1�x

0
dy

�ð�i�k þ �i�kÞ þ 2x�i�k

�
;

�̂��ðk1; k2Þ ¼ ie2m ~�

2
2
"����k1�k2�

Z 1

0
dx

Z 1�x

0
dy

ð�i�j þ �i�jÞ � 2y�i�j

�
;

(B48)

where as before � � �ðk1; k2Þ is given by Eq. (B38). The
complete ����ðk1; k2; w; zÞ in this general case is presented
in section II.

APPENDIX C: CHARGED GAUGE
BOSON VERTEX

The calculation for V	W�Wþ, V ¼ �, Z is slightly
more complicated than the one for neutral triple gauge
boson vertices for two reasons: first, the appearance in
the loop of two, in general, different fermion masses and
second, the appearance of different Vf �f vertex for each
particle contribution (see Fig. 8). Although the first com-
plication leads to only technical difficulties the latter one is
more serious: it does not allow for an obvious exploitation
of the master 4D ‘‘momentum shift’’ Eq. (B11).

Our method for calculating this vertex follows exactly
the same steps as described in detail in Appendix B and in
Sec. II. The chiral part of the V	WW vertex is still given by
Eq. (2). The finite form factors A3 . . .A6 for the first
diagram in Fig. 8 are exactly the half of the corresponding
ones in (8) but with the replacement of �ðk1; k2Þ into
�ðk1; k2;m2

fu
; m2

fd
Þ � xðx� 1Þk22 þ yðy� 1Þk21

� 2xyk1 � k2 � ðxþ yÞ�m2

þm2
fu
; (C1)

with the mass squared difference being�m2 � m2
fu
�m2

fd
.

fu and fd here denote each of the fermion pair (u, �) and
(d, e) for leptons and quarks, respectively. Obviously, the
contribution of the crossed diagram i.e., the second dia-
gram in Fig. 8, requires the replacement, fu $ fd. Our
calculation here is quite general and is not confined only in
to V	WW vertex. For example, it could be used for the
vertex VWLWR in an SUð2ÞL 
 SUð2ÞR 
Uð1Þ gauge
model.

As before, the ‘‘infinite’’ form factors, A1;2 are fixed by

the Ward Identities. The calculation of the first diagram of
Fig. 8 results in,

A1ðk1; k2Þ ¼ ðk1 � k2ÞA3 þ k21A4 �
�jðmfu �mfdÞ

4
2


 I11ðm2
fu
; m2

fd
Þ � �jðmfu þmfdÞ

4
2


 I12ðm2
fu
; m2

fd
Þ þ c

8
2
ðw� 1Þ; (C2a)

A2ðk1; k2Þ ¼ ðk1 � k2ÞA6 þ k22A5 þ
�kðmfu �mfdÞ

4
2


 I21ðm2
fu
; m2

fd
Þ � �kðmfu þmfdÞ

4
2


 I22ðm2
fu
; m2

fd
Þ þ c

8
2
ðzþ 1Þ; (C2b)

where c � ð�i�j þ �i�jÞ�k þ ð�i�j þ �j�iÞ�k is the

usual anomaly factor. Again, the result depends upon two
arbitrary four vectors, a� and b�, that parameterize the
momentum routing in the loop. For chiral gauge anomalies
to cancel after summing over all fermions, the arbitrary

q

k k1 2

i

j k

+

q

2k
k1

j k

=

i

u

d d
d

u u

FIG. 8. The one-loop effective triple gauge boson vertex,
�
���

VW�Wþ , V ¼ �, Z. As in Fig. 1, indices fi; j; kg denote distinct
external gauge bosons in general.
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vectors a� and b� need to be set at a� ¼ �b�. As before,
we write a� as a linear combination of independent four
vectors as a� ¼ zk

�
1 þ wk

�
2 , with z, w arbitrary real pa-

rameters. This includes �, Z, W-self energy corrections.
The latter depend on their own routing momenta arbitrary
vectors that can be taken as such in order to eliminate their
anomalous contributions. One then expects that this
relation renders the nonchiral part independent of a� as
it does for the neutral vertices VVV, for V ¼ �, Z [see

Appendix B]. However, for VWW-vertices there are addi-
tional contributions to the nonchiral part of ���� from Z, �,
W-self energy corrections that depend on routing momen-
tum arbitrary vectors. When all these corrections are added
one expects the result to be independent on these arbitrary
vectors.
Then the ‘‘nondecoupling’’ integrals, Iij � Iijðm2

fu
; m2

fd
Þ

with i, j ¼ 1, 2, appearing in Eq. (C2) are given by

I11 ¼
Z 1

0
dx

Z 1�x

0
dy

ð�i�k þ �k�iÞmfdyþ ð�i�k þ �k�iÞmfuðxþ y� 1Þ þ ð�i�k � �k�iÞmfdx

�ðk1; k2;m2
fu
; m2

fd
Þ ; (C3a)

I12 ¼
Z 1

0
dx

Z 1�x

0
dy

�ð�i�k þ �i�kÞmfdyþ ð�i�k þ �i�kÞmfuðxþ y� 1Þ � ð�i�k � �i�kÞmfdx

�ðk1; k2;m2
fu
; m2

fd
Þ ; (C3b)

I21 ¼
Z 1

0
dx

Z 1�x

0
dy

ð�i�j � �j�iÞmfdyþ ð�i�j þ �j�iÞmfuðxþ y� 1Þ þ ð�i�j þ �j�iÞmfdx

�ðk1; k2;m2
fu
; m2

fd
Þ ; (C3c)

I22 ¼
Z 1

0
dx

Z 1�x

0
dy

ð�i�j � �i�jÞmfdy� ð�i�j þ �i�jÞmfuðxþ y� 1Þ þ ð�i�j þ �i�jÞmfdx

�ðk1; k2;m2
fu
; m2

fd
Þ ; (C3d)

where �i � �fd , �i � �fd; . . . etc, follow the first diagram of Fig. 8. The corresponding expressions for the crossed
diagram are easily obtained from those in Eqs. (C2) and (C3) with the replacement fu $ fd. Note that CP-invariance is
maintained since A1ðk1; k2Þ ¼ �A2ðk2; k1Þ.

For reasons we explained at the beginning of this Appendix, finding the anomalous terms i.e., the last terms in Eq. (C2),
is not a straightforward task. The trick here is to add a Lorentz invariant but vanishing integral that generates exactly the
anomaly integrals by momentum shift. It is then straightforward to use the 4-D expression (B11).

To complete our analysis for the chiral fermionic triangle with general external charged and neutral gauge bosons, we
append here the relevant WI’s analogous to those presented in Eq. (3) for neutral external gauge bosons:

q��
���ðk1; k2Þ ¼ � �i

2
2
mfd


����k1�k2�I01ðm2
fu
; m2

fd
Þ þ c

8
2

����k1�k2�ðw� zÞ; (C4a)

�k1��
���ðk1; k2Þ ¼ � �j

4
2
ðmfu �mfdÞ
����k1�k2�I11ðm2

fu
; m2

fd
Þ � �j

4
2
ðmfu þmfdÞ
����k1�k2�I12ðm2

fu
; m2

fd
Þ

þ c

8
2

����k1�k2�ðw� 1Þ; (C4b)

�k2��
���ðk1; k2Þ ¼ �k

4
2
ðmfu �mfdÞ
����k1�k2�I21ðm2

fu
; m2

fd
Þ � �k

4
2
ðmfu þmfdÞ
����k1�k2�I22ðm2

fu
; m2

fd
Þ

þ c

8
2

����k1�k2�ðzþ 1Þ: (C4c)

Again, the corresponding expressions for the crossed diagram in Fig. 8 are obtained from Eq. (C4) after the replacement
fu $ fd. The integral I01 � I01ðm2

fu
; m2

fd
Þ is given by

I01 ¼
Z 1

0
dx

Z 1�x

0
dy

ð�j�k þ �j�kÞmfdy� ð�j�k � �j�kÞmfuðxþ y� 1Þ þ ð�j�k þ �j�kÞmfdx

�ðk1; k2;m2
fu
; m2

fd
Þ : (C5)

As a check, note that in the limit of equal massesm2
fu

¼ m2
fd
all the above integral expressions reduce to the corresponding

ones in Eqs. (4), (5), and (8) for the neural gauge boson vertex.

APPENDIX D: SOME USEFUL ANALYTICAL INTEGRAL EXPRESSIONS

In this Appendix we present analytical expressions for integrals related to A3...6, and, I1;2 in the limit where k21, k
2
2 ! 0 as

well as their approximate expressions in various limits. We make an effort to write the latter in terms of standard functions
i.e., not dilogarithms, which are easy to handle both symbolically and numerically. We start out with integrals related to
Eq. (8),
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~A 3ð�Þ ¼
Z 1

0
dx

Z 1�x

0
dy

xy

xy� �=4
¼ 1

2
½1þ �Jð�Þ�; (D1)

where � � 4m2

s , m is the loop fermion mass, and s ¼ ðk1 þ k2Þ2, while,

Jð�Þ ¼ �arctan2
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
�
; � 
 1; (D2a)

¼ 1

4

�
ln

�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
� i


�
2
; � � 1: (D2b)

This integral has also been calculated in Ref. [62] and we find agreement. In the same limit the integral related to A4 and A5

is:

~A 4ð�Þ ¼ ~A5ð�Þ ¼
Z 1

0
dx

Z 1�x

0
dy

xðx� 1Þ
xy� �=4

¼
Z 1

0
dx

Z 1�x

0
dy

yðy� 1Þ
xy� �=4

; (D3)

with its exact answer written like

~A 4ð�Þ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

�� 1
p

�
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 1; (D4)

¼ 1þ
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p
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p
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�
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�
; � � 1: (D5)

Integrals that are related to I1 and I2 of Eq. (5) are:

~I 1ð�Þ ¼
Z 1

0
dx

Z 1�x

0
dy

1

xy� �=4
(D6)

¼ �2arctan2
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
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p
�
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; � � 1; (D8)

and

~I 0
1ð�Þ ¼

Z 1

0
dx

Z 1�x

0
dy

x

xy� �=4
¼

Z 1

0
dx

Z 1�x

0
dy
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xy� �=4
(D9)
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 1 (D10)

¼ �2� ffiffiffiffiffiffiffiffiffiffiffiffi
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p �
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1� ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
� i


�
; � � 1: (D11)

These integrals are related to standard ones, A3 . . .A6, I1;2, and in the limit where m2
Z � s < m2, become

A3ðs;m2Þ¼�A6ðs;m2Þ¼c

s
~A3

�
4m2

s

�
¼� c

m2

�
1

24
þ 1

180

s

m2
þOðs2=m4Þ

�
; (D12a)

A4ðs;m2Þ¼�A5ðs;m2Þ¼�c

s
~A4

�
4m2

s

�
¼� c

m2

�
1
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þ 1

120

s

m2
þOðs2=m4Þ

�
; (D12b)

I1ðs;m2Þ¼�i�kþ�i�k

s
~I1

�
4m2

s

�
�2�i�k

s
~I01
�
4m2

s

�
¼� 1

m2

�
�i�kþ3�i�k

6
þ�i�kþ5�i�k

120

s

m2
þOðs2=m4Þ

�
; (D12c)

I2ðs;m2Þ¼��i�jþ�i�j

s
~I1

�
4m2

s

�
þ2�i�j

s
~I01
�
4m2

s

�
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m2

�
�i�jþ3�i�j

6
þ�i�jþ5�i�j

120

s

m2
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�
; (D12d)
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where c ¼ e3½ð�i�jþ�i�jÞ�kþð�i�jþ�i�jÞ�k�

2 is the anomaly factor. These expressions are in agreement with the corresponding

ones presented in Ref. [5]. In the high energy limit m2 � s, we obtain,

A3ðs;m2Þ ¼ �A6ðs;m2Þ ’ c

�
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2s
þ m2
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2
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; (D13a)
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Only the real parts of these expressions have been presented in Ref. [5] and we find agreement.12 Other useful identities
among A’s that have been used in our numerical code for calculating the V	ZZ-vertex are,

ðA3 � A4Þðk1 ¼ mZ; k2 ¼ mZ; s;m ¼ 0Þ ¼ � 1

4m2
Z

þ s

2m2
Z

A3ðk1 ¼ mZ; k2 ¼ mZ; s;m ¼ 0Þ; (D14)

and for the V	�Z-vertex,

A3ðk1 ¼ 0; k2 ¼ mZ; s;m ¼ 0Þ ¼ 1

2ðs�m2
ZÞ

� m2
Z

2ðs�m2
ZÞ2

ln

�
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�
; (D15)

A5ðk1 ¼ 0; k2 ¼ mZ; s;m ¼ 0Þ ¼ � 1

2ðs�m2
ZÞ

ln

�
s

m2
Z

�
: (D16)

Finally, we derive full analytical expressions in the case k21 ¼ 0, where one of the external gauge bosons is massless e.g.,
the V	�Z-vertex. To this end it is useful to define an auxiliary function,

F ðmZ; s;mÞ �
Z 1

0
dx

Z 1�x

0
dy ln½xðx� 1Þm2

Z � xyðs�m2
ZÞ þm2�; (D17)

out of which we read A3 . . .A6, I1;2 by simply taking appropriate derivatives w.r.t s, k22 ¼ m2
Z or m2. Depending on the

region of parameters s, m2, m2
Z we have found the function F to be,
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12For notational matter, our integrals are related to those in Ref. [5] like A3 ¼ �c6, A4 ¼ 1
2 ðc4 � c3 � 2c6Þ, where for example

A3 � A3ðk21 ¼ k22 ¼ m2
W; s; m

2
fu
; m2

fd
Þ; . . . etc.
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In Eq. (D21), the plus sign corresponds to s < m2
Z while the minus sign to s > m2

Z. As an example the full analytical
expressions for A3 and A5 can be obtained by taking appropriate derivatives of function F like, A3 ¼ c @F

@s and A5 ¼
�c

	
@F
@s þ @F

@m2
Z



, where, as above, c is a factor related to the couplings in the corresponding vertex. As a cross check, taking

the limit m ! 0 in Eq. (D21) we arrive at,

FðmZ; s; 0Þ ¼ � 3

2
� 1

2ðm2
Z � sÞ ½s lnðsÞ �m2

Z lnðm2
ZÞ� þ

i


2
; (D22)

and differentiating w.r.t s and m2
Z we reproduce the expressions Eqs. (D15) and (D16).

APPENDIX E: CONDITIONS FOR NONDECOUPLING EFFECTS IN X, Y, Z MODEL

In this appendix we present necessary conditions for anomaly cancellation and nondecoupling heavy fermion effects in a
model with three different Uð1Þ’s corresponding to three distinct massive or massless gauge bosons X, Y, and Z. For this
model to be anomaly-free, the following conditions among couplings [see Eq. (1)]:
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Xn
i¼1

ð�3
X þ 3�2

X�XÞi ¼
Xn
i¼1

ð�3
Y þ 3�2

Y�YÞi ¼
Xn
i¼1

ð�3
Z þ 3�2

Z�ZÞi ¼ 0;

Xn
i¼1

ð�2
X�Y þ 2�X�Y�X þ �2

X�YÞi ¼
Xn
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X�Z þ 2�X�Z�X þ �2
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i¼1
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Z�X þ 2�X�Z�Z þ �2

Z�XÞi ¼
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i¼1

ð�2
Z�Y þ 2�Z�Y�Z þ �2

Z�YÞi ¼ 0;

Xn
i¼1

ð�X�Y�Z þ �X�Z�Y þ �X�Y�Z þ �Z�Y�XÞi ¼ 0; (E1)

must hold. Nondecoupling effects in XYZ-vertex are activated if, in addition to the requirements in Eq. (E1), at least one of
the following expressions is nonzero:
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ð�2
X�Y þ 3�X�Y�XÞi;
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i¼1

ð�2
X�Y þ 3�2
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