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We show that the mass muxang term between Higgs doublets in a phenomenologlcal N = 1 supergravlty theory is naturally of 
the same order of magnitude as the supersymmetry breaking gaugmo mass term. 

The presence of global supersymmetry (SUSY) broken at low energies of O(100) GeV is an aid to assaults on 
the naturalness and hierarchy problems in GUTs. SUSY stabilizes [ 1 ] the masses of the doublets of Higgs scalars 
responsible for gauge symmetry breaking, which must be comparable with the scale of global SUSY breaking. Also, 
in some models the scales of weak symmetry breaking [2,3] and global SUSY [3] are determined dynamically to 
be ,~ rap. Phenomenologically realistic models also require [4] mixing between the two light Higgs doublets H1H2, 
which is specified by an additional mass parameter/a in the superpotential. This mass parameter gt must also be 
O(mw), and therefore poses its own special version of the naturalness problem. Is gt naturally of O(mw)? and can 
gt be determined dynamically along with the scales of SUSY and weak symmetry breaking? The appropriate theo- 
retical framework for constructing phenomenological supersymmetric theories is N = 1 supergravity, used to pro- 
vide an effective low-energy theory with global SUSY broken by terms such as scalar and gaugino masses m0, 
ml/2,1. These are of the order of the gravitino mass m3/2 in minimal supergravity theories, but could be quite 
different in non-minimal theories, such as the no-scale models [3,6] in which mw, m 0 and ml/2 are determined 
dynamically. N = 1 supergravity theories are specified [7] by a Kahler potential G which is a real function of the 
chiral fields ~b, and characterizes their kinetic terms and superpotential interactions g(q~), and a chiral function 
fa#(~) which transforms as the symmetric product of two adjoint representations of the gauge group and gives 
kinetic terms to the gauge superfields W~: 

S = fd4x Re fduo[f~a (~)W~Wa +g(~)] + fdax d40 O(~b+e 2V, ~b), G = - 3  ln(-½¢) + ln[gl 2 . (1) 

We do not [8] interpret such a theory as fundamental, but extract from it an effective theory believed to describe 
physics at energies < rnp. To be natural, this theory should contain all possible terms consistent with desired sym- 
metries, with coefficients at least as large as would be generated by radiative corrections. Srednicki and Theisen [9] 
have recently made an interesting calculation to check this philosophy, showing that one-loop corrections to the 

*I For  reviews, see ref. [5]. 
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effective potential in minimal N = 1 supergravity do not generate corrections to the scalar and fermion masses 
which are larger than 0(m3/2). Their result is true if the Higgs fields H 1 and H 2 only enter linearly into the super- 
potential, as in the "missing partner" mechanism [10]. This is a rather dramatic result because in this case there is 
no way of creating radiatively a/a term by integrating out the GUT fields [ 1 1 ]. Such radiative creations are in any 
case absent in no-scale GUT models [12]. So we face another troublesome hierarchy problem, which we now 
proceed to solve. 

Here we analyze the naturalness of small H1H 2 mixing: the superpotential parameter/a = O(mw) in the effective 
lagrangian philosophy. It is clear that small p is natural as far as radiative corrections in the low-energy renormaliz- 
able field theory are concerned, but what is the order of magnitude of radiative corrections due to non-renormaliz- 
able terms in the lagrangian? We allow the maximum ,2 reasonable H1H 2 mixing term in the gauge kinetic function 

far  (¢) = f 'fiu3 = 6a3 (fO +f lH1H2 ) + .. . .  (2) 

where f l / fO = O(1), and show that the quadratically divergent loops generated by (2) contribute to the superpo- 
tential mixing an amount 

8# = O(ml/2) , (3) 

if the loop cut-off A = O(mp), where ml/2 is the gaugino mass. Thus not only is p = O(mw) technically natural, 
but p is dynamically determined to be of this order in no-scale models [3,6] where the scale of global symmetry 
breaking is fixed by radiative corrections. 

It is well known [7] that non-trivial chiral functions fa a such as in eq. (2) can generate inter alia gaugino masses: 

J~Xk ~ ~eG/2Gi(G-1)] afd*~ af;*a 

i k -1 l afTa a2f3'a Refa~l a f ~  af# a ~ _i j -~ a + ~ ~-4Gq(G )k +4 , . . . . .  (XLXL)(kL;kL) + h.c. (4) a~ t a~ ~ a¢/ a~ i aCJ / ' 

where we follow the notation of Cremmer et al.: 

G i -- OG/a~ i , G{ -- a2G/a¢ i a¢~;, (o-l"Jr'ili,Jk : ~ /  , etc.  (5)  

We take fu~ to be real and diagonal in the ground state, as in eq. (2), and to get the correct normalization of the 
gauge kinetic terms we rescale the gauge fields according to 

^ a _  o~ I/2 ~ka I/2 a Ap-Apf~  , =fd X . (6) 

Simultaneously, we must redefine the gauge couplings by 

g2 = g2 f(~ . (7) 

In terms of the rescaled gaugino fields, eq. (5) becomes 

a# 

k -1  1 + ~(f~,fa)  -1/2 ( - 4 G i I ( G ) i  Of're 
V 

+4 - -  

where we have defined 

• 

c)~#(X) -- ~ ( f a f # ) - l / 2  eG/2 Oi(O-1 ) /  a~); 

,2 We use natural units: M - - m p / x / ~  = 1. 

a2f'ra Re f ~ l  Of~ af/~a ] (8) 

(9) 
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We are interested in no-scale models [3] based on an SU(n, 1)/SU(n) X U(1) Kahler manifold [10] for which 

G = - 3  ln(z + z* - ~btq~) + .... (10) 

In this case, the Kahler metric 

G{ = eG/35{ + O(H2), (11) 

and eq. (10) becomes 

/?~x~, ~ c ~ [ ~ X ~ - ~ e - G / 3  2 aH 1 aH----~ -+-oH2 ~OH~ (f~f~f~fs)-ll2(~t~X~)(['YX~)* 

aft8 +h.c., (12) + 

plus terms which are higher order in the scalar fields H 1 and H 2. In terms of the parameters f~,  f l  introduced in 
eq. (2), we gmally obtain 

_ _ 1 

Z?i; ~%3[o~X~-~ge-G13(IHl12+lH212)~fO - -  (X~X~)(),TX'r)*+ ~-(H1LH2L)(X~X~) f~ + h . c . f ~  , (13) 

plus irrelevant higher order terms. 
Suppose we now close the gaugino loops spanned by eq. (13). Each one will be quadratically divergent, but we 

should cut them all off in the same way: 

A d4p l__ 1 ~mp t2 
f (2~.)4 p2 -- ~ ~X/~- I = ~" (14) 

Then we get the Higgs/higgsino mass terms 

./~HIH2 ~ - - ~ 2 e - a / 3  If2Q~ao~(f2)-ll2(lH112 + In2l 2) -~f lQJ~o~c~(f2)- l (HiH2)+ h.c.. (15) 

Rescaling [10] the Higgs field according to eq. (11), we write 

(-Ii =-- eG/6Hi , Hi -- eG/6~Ii , 

and thus, through (2), 

[2= ~G/3rl 
- - ~  JOt 

which transforms eq. (15) to 

./~H1H2 ~--/,t2(1I~112 + 1121212) - - / 2 ( ~ 1 H  2 + h . c . ) ,  

where 

) ,o I1 . 

(16a) 

(16b) 

(17) 

(18) 

We note two important features of this result: (i) it is supersymmetric as would come from a superpotential term 

g(~b)D/all1 H2,  (19) 

and (ii) assuming fo ,  ]al = O(1),/a has the same order of magnitude as the gaugino mass m 1/2 in SU(n, 1)]SU(n) 
X U(1) models [10,6]. 

Although derived using component language, the fact that the result (17) looks globally supersymmetric sug- 
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gests that its derivation could be couched in supergraph language. Gauge superfield loops will always generate a D- 
term: symbolically 

M= f d a x  f d 4 x ' f  020 f d20 dPa(x'O)dP2(x'O) - ' ' 0 ' M 2 A(O,O;x,x)A(O,O;x,x) f  ¢(x,O), (20) 

where A is the gauge superfield propagator and we retain for future reference factors of 1/M. We can rewrite (20) as 

8I = f d4x f d20 %(x, 0)%(x, O)u(x, 0), (21) 

where 

d4x ' f d20 ,,2(0, O;x,x )f *(x, 0). (22) u ( x ,  0 . ) - o _ _ h 7  - , 0 , 

A non-zero limit for/a(x, 0) when 0 ~ 0 would enable the expression (21) to mimic an F-term. Such a non-zero 
limit is impossible in a renormalizable SUSY field theory with only logarithmic divergences and no mass factors. 
o: 1/M in the denominators of the couplings. However, with non-renormalizable couplings, power-counting enables 
us to obtain a cut-off dependent 0 ~ 0 limit of/a(x, 0) = A2/M 2, and hence generate an effective F-term for the 
low-energy phenomenological lagrangian. We also note that loop diagrams based on the last term in eq. (4) can 
easily provide a supersymmetry-breaking Higgs boson mixing term 

m 2 = ~ ~ f - 1  (fl)2m~(X)m(H) (23) 
O~ 

in the effective low-energy potential, which is very valuable phenomenologically [13]. It corresponds to a non- 
zero value of B in the conventional notation [5]. 

From this analysis, we see that the natural order of magnitude of a I-liggs mixing term in the low-energy super- 
potential suggested by radiatwe correctmns due to non-renormalizable interactions is/~ = O(ml/2) = O(mw). More- 
over, if we play the game of using renormalizable radiative corrections in the low-energy sector of a no-scale model 
to generate ml/2 and hence m w dynamically, it is consistent to keep [2,6,10] 

la/ml/2 = O(1), (24) 

f'Lxed during the calculation of the minimum of the potential. Phenomenology [14] indeed requires this behaviour. 
From this point of view, the introduction of Higgs mixing with a magnitude O(rnw) presents none of the technical 
or conceptual problems normally associated with the introduction of a new small mass parameter. 
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