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ABSTRACT

Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-
field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-
independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global
corona. Three-dimensional MHD codes have inadequate spatial resolution, and one-dimensional (1D) hydrodynamic
codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable repre-
sentation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so
zero-dimensional (0D) models are an acceptable alternative. We have developed a highly efficient model called
‘‘enthalpy-based thermal evolution of loops’’ (EBTEL), which accurately describes the evolution of the average
temperature, pressure, and density along a coronal strand. It improves significantly on earlier models of this type—in
accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the
time-dependent differential emission measure distribution, DEM(T ), at the transition region footpoints; and there are
options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far
more sophisticated 1D hydrodynamic simulations despite using 4 orders of magnitude less computing time. It promises
to be a powerful new tool for solar and stellar studies.

Subject headinggs: hydrodynamics — methods: numerical — stars: coronae — Sun: corona —
Sun: transition region

1. INTRODUCTION

An abundance of observational and theoretical evidence in-
dicates that much of the corona is highly dynamic and evolves in
response to heating that is strongly time-dependent. The evidence
further suggests that the cross-field spatial scale of the heating is
very small, so that unresolved structure is ubiquitous. In particular,
many if not all coronal loops are bundles of thin strands that are
heated impulsively and quasi-randomly by nanoflares. It is esti-
mated that a single loop contains several tens to several hundreds
of such strands. SeeKlimchuk (2006) for a detailed justification of
these ideas and references to relevant work.

Three-dimensional (3D) magnetohydrodynamic simulations
are extremely useful for studying the source of coronal heating
(instabilities of electric current sheets, reconnection, turbulence,
etc.), but they cannot adequately address the complexity that is
present in a single coronal loop, much less an entire active region.
Amore feasible approach is to treat themagnetic field as static and
to solve the 1D hydrodynamic (hydro) equations along many rep-
resentative flux strands using an assumed heating rate. The in-
dividual strands must be treated separately. It is not valid to
approximate a loop as amonolithic structure with uniform heating
corresponding to the average for the component strands. This
gives a completely different and incorrect result.

There is reason to believe that the diffuse corona that lies be-
tween distinct bright loops is also composed of elemental strands
(e.g., Aschwanden et al. 2007). If roughly 100 strands are pre-

sent in a single loop, then the numbers present in active regions
and the global Sun are truly staggering. While it is possible to
construct a limited number of model active regions with time-
dependent 1D simulations (Warren&Winebarger 2007), it is not
possible to investigate a wide range of values for the coronal
heating parameters that must be assumed, such as the dependence
onmagnetic field strength, loop length, etc. (Mandrini et al. 2000).
This is a major limitation, since we are still struggling to identify
the properties and physical origin of the heatingmechanism. Prog-
ress in the foreseeable future must therefore rely on simplified
solutions to the hydro equations that treat field-aligned averages
and aremuch less computationally intensive. These are sometimes
called ‘‘0D models’’ because there is only one value of temper-
ature, pressure, and density at any given time in the simulation.

0D models were developed previously by Fisher & Hawley
(1990) and Kopp & Poletto (1993), but the best known is that of
Cargill (1994). It has been used to study a variety of topics, in-
cluding coronal loops (Cargill &Klimchuk 1997, 2004; Klimchuk
& Cargill 2001; Parenti et al. 2006), flares (Reeves & Warren
2002; Patsourakos et al. 2002), posteruption arcades (Reeves &
Forbes 2005), and active stellar coronae (Cargill & Klimchuk
2006). We have learned a great deal with the Cargill model, and
our understanding has now advanced to the point where a more
accurate and flexible model is required. This article presents an
improved 0D model called ‘‘enthalpy-based thermal evolution of
loops’’ (EBTEL). As the name suggests, a key aspect of the
model is an explicit recognition of the important role that enthalpy
plays in the energy budget.

EBTEL improves on the Cargill model in several important
ways. First, whereas the Cargill model is limited to an instan-
taneous heat pulse, EBTEL accommodates any time-dependent
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heating profile and can include a low-level background heating if
desired. Second, EBTEL accounts for thermal conduction cool-
ing and radiation cooling at all times during the evolution. The
Cargill model assumes that only one or the other operates at any
given time. Third, EBTEL has options for heat flux saturation
and nonthermal electron beam heating. Finally, EBTEL is unique
among 0D models in that it provides the time-dependent differ-
ential emissionmeasure distribution of the transition region foot-
points. Emission from the transition region plays a critical role in
spatially unresolved observations, such as stellar observations
and observations of the solar spectral irradiance, which is impor-
tant for spaceweather (Lean 1997). Note that footpoint emission is
not limited to the cooler (<1 MK) plasma traditionally associated
with the transition region. It can also include hot emissions that
originate from the base of very hot loops. The so-called moss
seen in the ‘‘coronal’’ channels of the Transition Region and
Coronal Explorer (TRACE ) is an example (Berger et al. 1999;
Martens et al. 2000).

We describe the coronal and transition region parts of EBTEL
in xx 2 and 3. We then present example simulations and compare
themwith corresponding simulations from a 1Dmodel and, in one
case, the Cargill model.We concludewith a discussion of EBTEL
and the possible significance of the example simulations.

2. CORONAL MODEL

Both 0D and 1Dmodels of the corona are traditionally referred
to as ‘‘loop’’ models. However, as we have discussed, there is
good reason to believe that the looplike intensity features seen in
coronal images are actually composed ofmany individual strands.
EBTEL treats these individual strands, which are mini–flux tubes
in which the plasma is approximately uniform within the cross
section. Multiple-strand models can be combined to form a loop
bundle.

Under static equilibrium conditions, the coronal portion of a
strand is characterized by an exact balance between energy input
(coronal heating) and energy losses by radiation and thermal con-
duction (Rosner et al. 1978; Craig et al. 1978;Vesecky et al.1979).
Some of the coronal heating energy—less than half—is radiated
directly to space, and a heat flux carries the remainder to the
transition region, fromwhere it is more efficiently radiated. Tem-
poral variations in the heating rate produce a well-defined re-
sponse involving the transfer of mass between the chromosphere
and corona. Heating increases cause the coronal temperature to
rise and the downward heat flux to intensify. The transition region
is unable to radiate the extra energy, and heated plasma flows into
the strand in response to enhanced pressure gradients. This is the
well-known process of chromospheric evaporation. The inverse
process (condensation) occurs when the heating rate decreases.
As the coronal temperature declines, the reduced heat flux is in-
sufficient to power the transition region radiation. The plasma
cools, pressure gradients drop to subhydrostatic values, and ma-
terial drains from the strand.

The basic idea behind EBTEL is to equate an enthalpy flux
of evaporating or condensing plasma with any excess or defi-
cit in the heat flux relative to the transition region radiation loss
rate. An excess heat flux drives evaporative upflows, while a
deficient heat flux is compensated for by condensation down-
flows. The key assumption of the model is that the radiative
losses from the transition region and corona maintain a fixed
ratio at all times. This ratio is the same one that applies during
static equilibrium conditions. We defer justification of this as-
sumption until later and now derive the equations that define the
model.

We begin with the 1D time-dependent equation for energy
conservation:

@E

@t
¼ � @

@s
Evð Þ � @

@s
Pvð Þ� @F

@s
þ Q� n2�(T )þ �gkv; ð1Þ

where

E ¼ 3

2
P þ 1

2
�v2 ð2Þ

is the combined thermal and kinetic energy density; s is the spatial
coordinate along the magnetic field; n, T, P, and v are the electron
number density, temperature, total pressure, and bulk velocity, re-
spectively; F is the heat flux;Q is the volumetric heating rate; gk
is the component of gravity along the magnetic field; and �(T ) is
the optically thin radiative loss function, for whichwe use a piece-
wise continuous form based on the atomic physics calculations of
J. Raymond (1994, private communication) and twice the coronal
elemental abundances of Meyer (1985):

�(T )¼

1:09 ; 10�31T 2 for T � 104:97;

8:87 ; 10�17T �1 for 104:97 < T � 105:67;

1:90 ; 10�22 for 105:67 < T � 106:18;

3:53 ; 10�13T �3=2 for 106:18 < T � 106:55

3:46 ; 10�25T 1=3 for 106:55 < T � 106:90;

5:49 ; 10�16T �1 for 106:90 < T � 107:63;

1:96 ; 10�27T 1=2 for 107:63 < T :

8>>>>>>>>>>><
>>>>>>>>>>>:

; ð3Þ

The highest temperature range of the loss function is dominated
by thermal bremsstrahlung (Cox & Tucker 1969). Equation (1)
assumes a constant cross-sectional area, which is appropriate for
distinct coronal loops and their constituent strands (Klimchuk
2000; Watko & Klimchuk 2000; López Fuentes et al. 2006), but
probably not for the diffuse corona. We also assume that the loop
is symmetric, so only one-half need be considered. We define s
to increase from footpoint to apex. The downward heat flux is
therefore a negative quantity. To simplify the discussion, we do
not at this time include the energy and particle fluxes of a pos-
sible nonthermal electron beam. These will be added later.
If the flow is subsonic (v < Cs ¼ 1:5 ; 104T 1/2 ¼ 2:6 ;

107 cm s�1 at T ¼ 3 MK) and the loop is shorter than a grav-
itational scale height (zapex < Hg ¼ 5:0 ; 103T ¼ 1:5 ; 1010 cm
at T ¼ 3MK), then the kinetic energy and gravity terms in equa-
tion (1) can be neglected, leaving

3

2
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@

@s
Pvð Þ � @F

@s
þ Q� n2�(T ): ð4Þ

We now define the base of the corona, designated by the sub-
script 0, to be the location where thermal conduction changes
from being a cooling term above to a heating term below. This
occurs at the top of a thin transition region, close to the chromo-
spheric footpoint. Integrating equation (4) over the coronal por-
tion of the strand and noting that the velocity and heat flux both
vanish at the apex due to symmetry, we obtain

3

2
L
@P̄

@t
� 5

2
P0v0 þ F0 þ LQ̄�Rc: ð5Þ

The overbars indicate spatial averages along the coronal section,
which has length L from the coronal base to apex. The first two
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terms on the right-hand side of equation (5) are the enthalpy flux
and heat flux at the coronal base, andRc is the radiative cooling
rate per unit cross-sectional area in the corona (ergs cm�2 s�1).
Since temperature, pressure, and density typically vary by less
than a factor of 2 along the coronal section, the averages are quite
characteristic of the entire section.We sometimes refer to them as
simply the coronal values.

If we instead integrate equation (4) over the transition region,
spanning from the top of the chromosphere to the base of the
corona, we obtain a similar result:

3

2
l
@P̄ tr

@t
� � 5

2
P0v0 � F0 þ lQ̄ tr �R tr; ð6Þ

except that the spatial averages are now along the transition region,
which has thickness l and radiative cooling rate Rtr. In deriving
this result, we used the fact that the heat flux and enthalpy flux are
both ignorable at the top of the chromosphere.During evaporation,
a very small heat flux does in fact reach the top of the chromo-
sphere, but most of the heat flux is dissipated throughout the tran-
sition region, heating each layer to the next higher temperature.
No heat flux reaches the chromosphere during condensation.

Concerning the enthalpy flux at the top of the chromosphere,
we note that conservation of mass requires that the electron flux
be nearly constant through the transition region during both evap-
oration and condensation:

J ¼ nv � J0: ð7Þ

Together with the ideal gas law,

P ¼ 2knT ; ð8Þ

where k is Boltzmann’s constant and we have assumed a fully
ionized hydrogen plasma, equation (7) implies that the enthalpy
flux is proportional to temperature. The enthalpy flux is therefore
much smaller at the top of the chromosphere than at the base of
the corona and can be safely ignored in equation (6).

Because the transition region is so thin, we can neglect the terms
involving l in equation (6) and are left with

5

2
P0v0 � �F0 �R tr: ð9Þ

When jF0j > R tr, there is an excess heat flux that drives a po-
sitive enthalpy flux (evaporation). When jF0j < R tr, there is a
negative enthalpy flux (condensation) that combines with the heat
flux to power the radiation. Static equilibrium corresponds to an
exact balance jF0j ¼ R tr .

Combining equations (5) and (9), we obtain the following
equation for the evolution of the coronal pressure:

dP̄

dt
� 2

3
Q̄� 1

L
Rc þR trð Þ

� �
: ð10Þ

We note that the same equation is obtained if we keep the terms
involving l in equation (6) and interpret P̄ and Q̄ as the spatial
averages along the entire strand, including both the transition
region and coronal sections, with L then being the total length.
Equation (10) reflects the energetics of the combined corona-
transition region system. Energy enters the system only through
coronal heating, and energy leaves the system only through ra-
diation. Thermal conduction and flows transport energy between
the corona and transition region, but they do not add or remove
energy from the system.

It has been suggested that most ‘‘coronal’’ heating occurs in
the transition region, in which case lQ̄ tr 3LQ̄ and equation (9)
is not a good approximation. We do not believe this is a likely
possibility, however. For one thing, the transition region is very
thin. For another, it moves up and down a significant distance
in response to changes in the spatially integrated heating rate
within the strand (Klimchuk 2006). One might expect the po-
sitional dependence of the heating to be more closely related to
the magnetic field than to the variable location of the transition
region plasma. It is nonetheless possible to use EBTEL to study
direct heating of the transition region. Its effect is very similar to
that of a nonthermal electron beam, which is discussed in xx 2.1
and 4.5. A minor difference is that an electron beam will slightly
decrease the coronal mass.

We have defined the transition region to be the section of the
strand where the heat flux is an energy source term. By this def-
inition, its thickness is roughly 10% of the strand half-length
(l /L � 0:1). This is not exceptionally small. However, most of
the coronal heat flux is deposited within the extreme lower part
of transition region, which is also where most of the radiation is
emitted. We could therefore redefine the transition region to be
much thinner, and our model would be substantially unchanged.
As an example, consider an equilibrium strand with an apex tem-
perature of 2 MK and half-length L ¼ 7:5 ; 109 cm; 80% of the
heat flux is deposited over a distance of only l /L ¼ 0:013, and
50% of the heat flux is deposited over an even shorter distance of
l /L ¼ 0:00069.

We wish to express the basic pressure equation, equation (10),
in terms of the time-dependent variables P̄, T̄ , and n̄. We
therefore approximate the radiative loss rate from the corona as

Rc � n̄2�(T̄ )L: ð11Þ

This would be exact if the coronal density and temperature were
perfectly uniform instead of approximately so.

Next, we assume that the radiative loss rates of the transition
region and corona maintain a fixed ratio at all times:

c1 ¼
R tr

Rc

: ð12Þ

Since we want the model to apply during slow evolution as well
as fast, c1 should be equal to the static equilibrium value. One
difficulty is thatRtr /Rc is different for different equilibrium con-
ditions. In particular, it depends on the apex temperature of the
strand, Ta. Table 1 listsRtr /Rc determined from exact equilibrium
solutions in a semicircular strand of half-length L ¼ 2:5 ; 109 cm.
Six apex temperatures ranging from 0.8 to 10.4 MK correspond
to six different spatially uniform heating rates. Except for the
lowest temperature case,Rtr /Rc increases monotonically with Ta
from1.8 to 20.7. In one implementation of EBTEL, we let c1 vary
according to a third-order polynomial fit to these data. However,
after some experimentation, we found that a constant value c1 ¼
4:0 provides the best overall agreement with 1D simulations,
especially in cases of impulsive heating. Table 2 listsRtr /Rc for
a longer equilibrium strand with L ¼ 7:5 ; 109 cm. The ratio is
reasonably close to 4 for apex temperatures ranging from 1 to
4 MK. All of the results presented in this paper use a constant
value c1 ¼ 4:0.

We do not yet have a compelling physical argument for why
Rtr /Rc should be constant even when the strand is far from
equilibrium. Fortunately, this does not appear to be an important
assumption, at least not for the simulations presented in this paper.
It is certainly not important during times of strong evaporation,
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when the evolution is essentially a balance between the down-
ward heat flux and upward enthalpy flux, and radiation plays no
significant role. The radiative losses are only 10�3 of the heat
flux during the strong evaporation phase of the nanoflare simula-
tion of x 4.1 (example 1). Radiation is very important during times
of strong condensation, on the other hand. The assumption that
Rtr /Rc equals the equilibrium value could then cause problems.
It turns out that condensation is fairly mild in all of our example
simulations in the sense that the radiative losses never greatly
exceed the heat flux. They are at most a factor of 3.6 larger in
example 1.

We have considered a wide variety of heating scenarios, some
discussed in x 4 and others not reported in this paper. The fact
that EBTEL is able to reproduce exact 1D solutions as well as it
does gives us considerable confidence in the approximations of
the model, including the assumption that R tr /Rc ¼ 4:0.

With equations (11) and (12), we can now express equation (10)
for the evolution of coronal pressure in terms of the fundamental
variables P̄, T̄ , and n̄.

We next move on to an equation for the coronal density. The
total mass contained in the coronal section of the strand changes
as material evaporates and condenses. Specifically, the time de-
rivative of the electron column density n̄L (electrons per unit cross-
sectional area) is equal to the flux of electrons through the coronal
base:

@

@t
( n̄L) ¼ J0: ð13Þ

This can be derived trivially by integrating the 1D equation of
mass conservation from the base of the corona to the apex. Com-
bining equations (7), (8), and (9), we can write the electron flux as

J0 ¼ � 1

5kT0

F0 þR trð Þ: ð14Þ

Substituting into equation (13), we get

dn̄

dt
¼ � c2

5c3kLT̄
F0 þR trð Þ; ð15Þ

where we have introduced c2 for the ratio between the average
coronal temperature and apex temperature,

c2 ¼
T̄

Ta

; ð16Þ

and c3 for the ratio between coronal base temperature and apex
temperature,

c3 ¼
T0

Ta

: ð17Þ

Tables 1 and 2 list the values of these two ratios for the exact
equilibrium solutions in the short and long strands, respectively.
T̄ /Ta is very close to 0.87 in all cases, while T0 /Ta varies over a
fairly narrow range, from 0.22 to 0.61. In the implementation of
EBTELwith variable c1, we also let c3 vary based on a polynomial
fit to the data in Table 1. As already indicated, constant values give
better overall agreement with the 1D simulations; c3 ¼ 0:5 seems
to work best and is the value used in the examples presented here.
Note that c2 ¼ 0:87 is not far from 7/9, which corresponds to a
constant heat flux solution.
Using equations (11) and (12), we can expressRtr in terms of

our fundamental variables n̄ and T̄ , but we still need an expres-
sion for F0. The classical expression for the heat flux is

Fc ¼ ��0T
5=2 @T

@s
; ð18Þ

where �0 ¼ 1:0 ; 10�6 in cgs units. Noting that

T 5=2 @T

@s
¼ 2

7

@

@s
T 7=2

� �
; ð19Þ

we can approximate the heat flux at the base as

Fc � � 2

7
�0

T 7=2
a

L
; ð20Þ

where Ta ¼ T̄ /c2. The precise value of the coefficient depends
on the details of the temperature profile; 2/7 corresponds to a
constant heat flux, while 4/7 corresponds to a constant heat flux
divergence.
The classical heat flux is, however, unphysically large during

times of exceptionally high temperature and/or exceptionally
low density, such as during the earliest phase of an impulsive
heating event. Under these conditions, the heat flux saturates at
approximately

Fs � ��
3

2

k 3=2

m
1=2
e

n̄T̄ 3=2; ð21Þ

whereme is the electron mass and � is a flux limiter constant that
we set to 1/6 (Luciani et al. 1983; Karpen & DeVore 1987). We
consider two possibilities in our simulations. First, we set F0 ¼
Fc at all times, regardless of the temperature and density. Second,
we use the form

F0 ¼ � FcFs

F 2
c þ F 2

s

� �1=2 ; ð22Þ

which reduces to Fc when jFcjTjFsj and to Fs when jFcj3
jFsj. We can now express equation (15) for the coronal density
evolution in terms of the fundamental variables.

TABLE 1

One-dimensional Equilibrium Parameters (Short Strand)

Ta
(MK) Rtr /Rc T̄ /Ta T0 /Ta

0.80................................ 2.5 0.88 0.57

1.83................................ 1.8 0.89 0.61

3.77................................ 6.7 0.87 0.46

4.60................................ 9.5 0.87 0.40

7.08................................ 17.1 0.86 0.28

10.40.............................. 20.7 0.86 0.22

TABLE 2

One-dimensional Equilibrium Parameters (Long Strand)

Ta
(MK) Rtr /Rc T̄ /Ta T0 /Ta

1.00............................. 4.7 0.90 0.59

1.94............................. 2.9 0.90 0.63

3.95............................. 4.3 0.90 0.61
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The last governing equation, for the coronal temperature evo-
lution, follows straightforwardly from the ideal gas law:

dT̄

dt
� T̄

1

P̄

dP̄

dt
� 1

n̄

dn̄

dt

� �
: ð23Þ

Note that this is not exact because the ideal gas law is not exact
when average values of P, T, and n are used.

In summary, the coronal part of EBTEL is defined by the evo-
lutionary equations (10), (15), and (23); the assumption given by
equation (12); the approximations givenby equations (11) and (20)
or (22); and the parameters c1 ¼ 4:0, c2 ¼ 0:87, and c3 ¼ 0:5.
Note that c2 and c3 always appear together, as a ratio in equa-
tion (15), so there are really only two parameters in the model.

The plasma velocity at the base the corona can be obtained
straightforwardly from the electron flux, equation (14), according
to

v0 ¼
c3

c2

2kT̄J0

P̄
: ð24Þ

Using T in place of T̄ gives the velocity at that temperature in the
transition region.

2.1. Nonthermal Electron Beam

The mechanism that directly heats the coronal plasma may
also produce energetic particles. It is thought, for example, that a
sizable fraction of the total energy of a flare goes into nonthermal
electrons (Saint-Hilaire & Benz 2002; Emslie et al. 2005). We
therefore have incorporated a nonthermal electron beam into
EBTEL.We assume that the electrons originate from the existing
strand plasma and stream freely along the magnetic field to the
coronal base. We further assume that all of the beam energy goes
into the enthalpy of evaporating plasma and that any chromo-
spheric radiation that may be produced is negligible. Because we
do not consider the details of the energy deposition (i.e., how it
depends on columndepth), our calculation of the differential emis-
sion measure of the transition region (x 3) is not reliable when
nonthermal electrons are included.

The effect of the electron beam on the coronal energy budget
is straightforward. The corona gains energy from the enthalpy of
the evaporated plasma, but it loses energy because electrons must
be removed from the thermal pool to supply the seed particles for
the beam. In general, the gain far exceeds the loss because the
mean energy of the accelerated electrons, E, is much greater than
their thermal energy, (3/2)kT̄ .

If F and J are the energy flux and particle flux of the beam,
respectively, so that

F ¼ EJ ; ð25Þ

then we must modify our equations by subtracting F from the
right side of equation (9), adding (3/2)kT̄J to the right side of
equation (5), and adding J to the right side of equation (13). Note
thatF andJ are both negative quantities. The evolutionary equa-
tions for pressure and density are then, respectively,

dP̄

dt
� 2

3
Q̄� 1

L
Rc þR trð Þ � F

L
1� 3

2

kT̄

E

� �� �
; ð26Þ

dn̄

dt
¼ � c2

5c3kLT̄
F0 þR trð Þ þ F

EL 1� c2

5c3

E
kT̄

� �
: ð27Þ

We have avoided the tricky issue of electron return currents.
Quasi neutrality of the plasma requires either that protons are
accelerated with the electrons, which is thought to be unlikely, or
that an electron return current replenishes the electrons lost to the
beam. With a return current, the unity term inside the last set of
parentheses disappears from equation (27), and the temperature
in the kT̄ /E term of equation (26) must be replaced by the tem-
perature difference between the strand plasma and the replenish-
ing electrons. Note that both of these terms are negligible as long
as E3 kT̄ , even without a return current.

2.2. Differential Emission Measure

Most observed plasmas are multithermal, even within a single
observational pixel. An important quantity is therefore the dif-
ferential emission measure, DEM(T ), which describes how the
plasma is distributed in temperature. Spatial variations in the co-
ronal temperature tend to be greatest across the magnetic field. In
a multistranded loop bundle, for example, the different strands
will have different temperatures if the heating is steady but un-
equal or if it is impulsive but out of phase. There is also some
temperature variation along the field.We here consider the differ-
ential emission measure of a single stand of unit cross-sectional
area,

DEM(T ) ¼ n2
@T

@s

� ��1

: ð28Þ

The transition region is treated carefully in x 3. For the corona,
we make the crude approximation that the total emission mea-
sure, 2Ln̄2, is distributed uniformly over the temperature interval
0:74Ta � T � Ta. The average temperature T̄ falls exactly in the
middle of this interval. Note that our approximation is not crit-
ical, because the DEM(T ) of a coronal observation is determined
primarily by the distribution of different strands, rather than by
the variation along each strand.

3. TRANSITION REGION MODEL

The situation is very different in the transition region, where
the temperature and density vary dramatically over a short dis-
tance along the magnetic field. Emission from the transition re-
gion is a critically important component in many observations,
such as spatially unresolved observations of stars or measure-
ments of the full Sun spectral irradiance. Even high-resolution
observations on the solar disk tend to have lines of sight that pass
through both coronal and transition region plasmas. We do not
attempt to model the detailed spatial structure of the transition
region, but instead deal directly with the differential emissionmea-
sure. We have developed two separate approaches. The one we
now discuss is the easiest to implement and has been used for all
of the examples shown in the paper. The second approach, pre-
sented in the Appendix, has the advantage of being physically
more revealing. It treats the limiting cases of strong evaporation,
strong condensation, and static equilibrium, and provides sim-
ple analytical expressions for DEM(T ) in each case. The two
approaches produce similar results. Neither is valid when non-
thermal particles are important.

We begin with the steady state version of the energy equation,
equation (4), in the absence of local heating,

5

2

@

@s
Pvð Þþ @F

@s
þ n2�(T ) � 0; ð29Þ

which should be approximately correct in the transition region.
We next assume that the heat flux term can be approximated by
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��0T
3/2(@T/@s)2. This is strictly valid when the scale lengths of

the temperature and heat flux are the same. Rewriting the en-
thalpy term using the ideal gas law and constant mass flux and
assuming that pressure is the same in the corona and transition
region, the energy equation becomes

�0T
3=2 @T

@s

� �2
�5k J0

@T

@s
� P̄

2kT

� �2
�(T ) � 0: ð30Þ

This is quadratic in @T/@s and can be solved trivially. DEM(T )
then follows directly from equation (28).

We have computed the radiative loss rate from the transition
region by integrating the product DEM(T )�(T ) over the tran-
sition region temperature interval and find that it is similar to
the value obtained from R tr ¼ c1Rc . The only exception is
during times of strong evaporation, when the c1 assumption is
unimportant.

4. RESULTS

4.1. Example 1

Wehave coded EBTEL in the Interactive Data Language (IDL)
and now examine several simulations that were run on a desktop
computer. The first example considers an impulsive energy release
in a static equilibrium strand of half-length L ¼ 7:5 ; 109 cm.
An average coronal temperature of 0.52 MK in the initial equi-
librium is produced by a heating rate of 10�6 ergs cm�3 s�1. We
obtain the equilibrium by guessing at the values of T̄ , n̄, and P̄
using scaling law theory (Rosner et al. 1978; Craig et al. 1978)
and letting the strand evolve while holding the heating rate con-
stant. T̄ changes very little during the relaxation, while n̄ and P̄
decrease by about a factor of 2.

We impose a nanoflare energy release on top of the steady
background heating. It has a triangular profile with a total du-
ration of 500 s and a peak value of 1:5 ; 10�3 ergs cm�3 s�1,
1500 times stronger than the background. Nonthermal electron
beams are excluded from all but the last of our examples. The
solid curves in Figure 1 show how T̄, n̄, and P̄ respond to the
event. The generic behavior is well documented (Cargill 1994;
Klimchuk 2006). Temperature and pressure rise abruptly as the
nanoflare energy is converted into thermal energy at a roughly
constant density. An intense heat flux drives strong evaporation
and the strand begins to fill with plasma. The temperature then
declines as the nanoflare shuts off, but evaporation continues,
and the peak density is not reached until well after the nanoflare
has ended. Radiation becomes progressively more important as
the temperature falls and density rises. It eventually takes over
from thermal conduction as the dominant cooling mechanism.
The strand then enters a long phase of draining and condensation.

We have run an exactly corresponding simulation with our
sophisticated 1D hydro code called the Adaptively Refined
Godunov Solver (ARGOS). As described in Antiochos et al.
(1999), the code uses an evolving numerical mesh to resolve
steep gradients wherever they may occur. We use the same radia-
tive loss function used in EBTEL. For the 1D simulation, wemake
the additional assumptions, not required of EBTEL, that the strand
is semicircular, lies in a vertical plane, and is heated in a spatially
uniform manner. We earlier defined the boundary between the
corona and transition region to be the location where the diver-
gence of the heat flux changes sign. This is not practical in the 1D
simulation due to the more complicated temperature structure
associated with waves and even shocks that are excited by the
impulsive energy release.We therefore compute coronal averages
by averaging over the upper 80% of the strand. These averages

are indicated by dashed lines in Figure 1. The small wiggles are
due to the aforementioned waves.
There is good agreement between the EBTEL and 1D results.

This is highly encouraging, given that EBTEL requires approx-
imately 4 orders of magnitude less computing time. This run took
only about 10 s. The biggest differences are in the density and
pressure, where the EBTEL values are about 20% too high for
the first 2000 s. The way that the 1D averages are computed is a
contributing factor, since density and pressure are highest in the
lower part of the strand leg that is excluded from the averages.
Another contributing factor is that EBTEL assumes that all plasma
energy is thermal (3/2P). In fact, some of the energy is kinetic, so
the pressure is artificially inflated.
Figure 2 shows the differential emission measure distribution

for the full strand averaged over the first 104 s of the simulation.
Both the corona and transition region are included. One reason
for averaging over time is to simulate the observation of a multi-
stranded loop. If the strands are heated randomly, then the time
average of a single strand is equivalent to an instantaneous snap-
shot of an unresolved bundle. As long as the strands get reheated
after they cool, then at all times there exists one strand in the
bundle for each small time interval from the full simulation. As
in Figure 1, EBTEL is represented by the solid curve, and the 1D
model is represented by the dashed curve. The agreement is once
again very encouraging, especially considering thatDEM(T ) spans
more than 3 orders of magnitude. The EBTEL values are too high
by factors of 2–3 at the higher temperatures. This is partly because
of the enhanced densities discussed above and partly because

Fig. 1.—Evolution of the coronal-averaged temperature, electron density, and
pressure for a loop strand heated impulsively by a 500 s nanoflare (example 1).
The solid curves are for the EBTEL simulation, and the dashed curves are for the
1D simulation. Classical heat flux is assumed at all times.
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temperature decreases more gradually below 3MK in the EBTEL
simulation (see Fig. 1). The slower cooling rate could be because
our assumption of a constant c1 ¼ 4:0 is not quite correct. We are
currently investigating this issue.

TheDEM(T ) plotted here and defined in equation (28) indicates
the amount of plasma, n2�s, that is present in temperature in-
terval �T. It has units of cm�5 K�1. Some authors instead use

DEMln(T ) ¼ n2 @ ln T

@s

� ��1

; ð31Þ

which indicates the amount of plasma present in the logarith-
mic temperature interval� ln T and has units of cm�5. The two
definitions differ by a factor T: DEMln(T ) ¼ TDEM(T ). Fig-
ure 3 shows DEMln(T ). Still other authors define the differ-
ential emission measure in terms of the base 10 logarithm:
DEMlog(T ) ¼ ln 10ð ÞTDEM(T ).

Figure 4 separates the contributions to DEM(T ) from the
coronal (dashed curve) and transition region (dot-dashed curve)
sections of the EBTEL simulation and the coronal section of the
1D simulation (dotted curve). The transition region contribution
of course dominates at low temperatures, but it is also significant
at higher temperatures, which are normally associated with the
corona. The transition region and coronal contributions are equal
at T ¼ 1:0 MK, which is approximately 1/4 the temperature of
the hottest significant emission measure. Although it is difficult
to observe the transition region in isolation from the corona,
since lines of sight that reach the transition region must pass
through the corona, it is easy to observe the corona in isolation
from the transition region simply by looking above the limb.
The agreement between the coronal DEM(T ) curves from the
EBTEL and 1D simulations is reasonably good, except below
0.5MK, where the EBTEL values are unreliable (since the DEM
is rather arbitrarily cut off at 0.74Ta; x 2.2). We discuss the agree-
ment with actual observations in x 5.

The results presented above assume a classical heat flux at all
times. We have repeated the simulations with a heat flux that is
allowed to saturate according to equation (22). The results differ
only early in the nanoflare energy release, when saturation limits
the thermal conduction cooling and the average coronal temper-
ature rises to maxima of 4.7 and 7.6 MK in the EBTEL and 1D
simulations, respectively (peak apex temperatures are of course

higher). The densities are very low at this time, however, so the
time-averaged DEM(T ) is minimally affected. The curves are
nearly indistinguishable from those in Figure 2, the only differ-
ence being that the high-temperature tail is extended by about
0.02 in the logarithm. We note that very hot emission, although
generally very faint, provides the best diagnostics of nanoflare
properties (Patsourakos&Klimchuk 2006). Care should be taken
to include heat flux saturationwhen studying the hottest emission.

4.2. Example 2

We next consider a much more impulsive nanoflare. It has the
same total energy as the first example (5:625 ; 109 ergs cm�2),
but the duration is 10 times shorter (50 s) and the amplitude is
10 times larger. This scenario provides a much better comparison
with the Cargill model, in which all of the energy is deposited
instantaneously. Figure 5 shows the evolution of T̄ , n̄, and P̄
as given by EBTEL (solid curve), the 1D model (dashed curve),
and the Cargill model (dotted curve). Only classical heat flux re-
sults are presented, since the Cargill model does not include sat-
uration effects. EBTEL again reproduces the 1D results quite well,
although the densities and pressures are about 50% too high dur-
ing the first half-hour.

Fig. 2.—Differential emissionmeasure distribution for the whole strand (unit
cross section) averaged over the first 104 s of the 500 s nanoflare simulation (ex-
ample 1). The solid curve is for the EBTEL simulation, and the dashed curve is
for the 1D simulation.

Fig. 3.—DEMln(T ) ¼ TDEM(T ) corresponding to the differential emission
measure distributions in Fig. 2.

Fig. 4.—Coronal (dashed curve) and transition region (dot-dashed curve)
contributions to the total differential emission measure distribution (solid curve)
from the EBTEL simulation of the 500 s nanoflare (example 1), and coronal con-
tribution from the 1D simulation (dotted curve).
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The EBTEL and Cargill results differ in several important
respects. T̄ reaches a maximum of 8.1 MK in the EBTELmodel,
similar to 7.7 MK in the 1D model, whereas the Cargill model
peaks at only 4.0 MK. The Cargill model predicts substantially
higher densities and pressures throughout most of the simulation.
The primary reason is the assumption that radiation is ignorable
during the first phase of cooling (ending at 1700 s). Since radiation
is the only mechanism by which energy can leave the system, the
thermal energy density and therefore the pressure are constant.
Another reason for the excess pressures in both the Cargill and
EBTELmodels is the neglect of kinetic energy. All of the plasma
energy is assumed to be thermal. This is reasonable only when
the Mach number is small. The Mach number is generally less
than 0.15 after 500 s in the 1D simulation, but there are locations
in the strandwhere it approaches 3 shortly after the nanoflare ends.

A final difference in the Cargill model is the prediction of a
catastrophic cooling late in the evolution, at approximately 8000 s.
This is not present in either the EBTEL or 1D simulations and is a
consequence of the fact that no background heating is possible in
the Cargill model. The radiative loss function, �(T ), is such that
a thermal instability causes the temperature decline to accelerate
in theCargillmodel until a preset limit is reached (usually 0.1MK).
In the EBTEL and 1D models, the temperature asymptotically
approaches the static equilibriumvalue corresponding to the back-
ground heating rate. We note that the 0D model of Fisher &
Hawley (1990) predicts a catastrophic cooling even in the presence
of background heating, but this appears to be a spurious result, at
least in some cases.

4.3. Example 3

As a third example, we consider a qualitatively different heat-
ing scenario. The strand begins in static equilibrium with a uni-
form heating rate of 2 ; 10�4 ergs cm�3 s�1. The heating rate is
slowly reduced by a factor of 100 over a period of 50,000 s, as
shown in the bottom panel of Figure 6. It is maintained at the
reduced level for 5000 s, then suddenly increased to the original
level over 100 s. It is maintained at that level for 3900 s, then
suddenly decreased again over 100 s. It remains at the reduced
level for the remainder of the simulation.
The top two panels of Figure 6 show the evolution of tem-

perature and density for EBTEL (solid curves) and the 1Dmodel
(dashed curves). The 0D solution tracks the 1D solution verywell.
Temperature is systematically high, but the detailed shapes of
both the temperature and density profiles are faithfully reproduced.
This shows that our assumption c1 ¼ 4 is reasonable for situations
other than impulsive heating.

4.4. Example 4

The final two examples are modifications of example 1. The
500 s nanoflare is 10 times more intense in example 4. Figure 7
shows the time-averaged DEM(T ) curves for the whole strand
(solid curve), corona (dashed curve), and transition region (dot-
dashed curve). Note that the coronal curve is strongly peaked
near 3 MK, as observed in active regions, to which we return
shortly.

Fig. 5.—Evolution the coronal-averaged temperature, electron density, and
pressure for a loop heated impulsively by a 50 s nanoflare (example 2). Solid curves
are for the EBTEL simulation, dashed curves are for the 1D simulation, and dotted
curves are for the Cargill simulation. Classical heat flux is assumed at all times.

Fig. 6.—Evolution the coronal-averaged temperature and electron density for
the time-dependent coronal heating rate shown in the bottom panel (example 3).
Solid curves are for the EBTEL simulation, and dashed curves are for the 1D sim-
ulation. Classical heat flux is assumed at all times.

KLIMCHUK, PATSOURAKOS, & CARGILL1358 Vol. 682



4.5. Example 5

Example 5 differs from example 1 only in the form of the
nanoflare energy release. Half of the nanoflare energy is assumed
to go into direct plasma heating, and the other half is assumed to
go into nonthermal electrons with a mean energy of 50 keV. Fig-
ure 8 shows the coronal DEM(T ) curve (solid curve) together
with the corresponding curve from example 1 (dashed curve). The
curves are nearly identical except that plasma hotter than 3 MK is
missing from example 5. The reason for this difference is as fol-
lows. The amount of evaporated material is determined largely by
the total energy that is released, regardless of its form. Tempera-
ture, on the other hand, depends strongly on the formof the energy
release. With direct plasma heating, the coronal temperature rises
until either the nanoflare ends or the downward heat flux balances
the nanoflare heating rate. In contrast, nonthermal electrons have
no direct effect on the coronal temperature. Note that direct heating
of the transition region, discussed after equation (10), has an effect
on the coronal evolution similar to a nonthermal electron beam.

4.6. Additional Tests

We have tested EBTEL against two other 1D hydro codes and
found good agreement in both cases. F. Reale kindly simulated
example 1 using the Palermo-Harvard code (Peres et al. 1982),
and K. Reeves kindly simulated a looptop flare with a peak tem-
perature of 29MKusing theNRLFTMcode (Mariska et al. 1982).
It is interesting that the plasma evolution is similar even though
the Palermo andNRLFTMcodes use different radiation loss func-
tions than do EBTEL and ARGOS. This shows that the precise
form of the loss function is not important whenever the heating is
impulsive.

5. DISCUSSION

As evidenced by these examples, our simple 0D model is an
excellent proxy for more sophisticated and far more computa-
tionally intensive 1D hydro simulations. It improves substantially
on the 0Dmodels of Cargill (1994), Fisher &Hawley (1990), and
Kopp& Poletto (1993). The Cargill model assumes that heating is
instantaneous and that cooling occurs either by thermal conduc-
tion or by radiation, but not by both at the same time. The Fisher-
Hawley model (1) predicts abrupt evolutionary changes as the
strand evolves between three distinct regimes, (2) does not account
for the evaporation that continues well beyond the end of an im-
pulsive heating event, and (3) cannot return to the preevent state

due to unphysical catastrophic cooling. The Kopp-Poletto model
shares some similarities with EBTEL, but it treats the flows in a
fundamentally different way. Like EBTEL, it equates the enthalpy
carried by evaporative upflows with an excess heat flux, but the
excess is determined relative to the preevent state, rather than
to the time-varying radiative losses from the transition region.
Condensation downflows in the model are given by a density-
dependent fraction of the free-fall velocity. In actuality, gravity
plays no direct role in condensation, since the downflows are driven
by pressure gradient deficits relative to hydrostatic equilibrium,
in the same way that evaporative upflows are driven by pressure
gradient excesses. Gravity sets the value of the hydrostatic gra-
dient, but it is only the deficit or excess relative to this value that
is important for the flows. Inclined strands experience essentially
the same condensation and evaporation as do upright strands of
the same length. Finally, EBTEL has advantages over all three
of the other models in that it provides the DEM(T ) of the tran-
sition region and treats nonthermal electron beams and heat flux
saturation.

One obvious application of EBTEL is for investigating the
idea that the basic structural elements of the corona are very thin,
spatially unresolved magnetic strands that are heated impulsively.
Loops may be bundles of such strands, as reviewed in Klimchuk
(2006), and the diffuse corona may be similarly structured. Dif-
ferential emission measure distributions are one important test of
this idea. Observed DEM(T ) curves from active regions and the
quiet Sun tend to be peaked near 106.5 and 106.1 K, respectively,
and to have a slope (temperature power-law index) �0.5 cool-
ward of the peak (Raymond&Doyle 1981; Dere&Mason 1993;
Brosius et al. 1996). This is consistent with the coronal DEM(T )
curves of examples 1 and 4 (Figs. 4 and 7). The full loop curves
are discrepant, on the other hand, due to the strong contribution
from the transition region. The cited observations were made on
the disk and should in principle include the transition region com-
ponent. However, it is possible that absorption from chromospheric
material such as spicules significantly attenuates the intensities
of transition region lines used to construct the DEM(T ) curves
(e.g., Daw et al. 2005; de Pontieu et al. 1999; Doschek& Feldman
1982; Schmahl & Orrall 1979). We are currently investigating the
magnitude of this effect.

One of the great mysteries of coronal physics that has come to
light in the last few years is the discovery that warm (�1 MK)
coronal loops are much denser than expected for quasi-static

Fig. 7.—Total (solid curve), coronal (dashed curve), and transition region
(dot-dashed curve) differential emission measure distributions for an EBTEL sim-
ulation of a nanoflare that is 10 times larger than that of example 1.

Fig. 8.—Coronal differential emission measure distribution for example 1
(dashed curve) and for a corresponding simulation in which half of the nanoflare
energy takes the form of a nonthermal electron beam (solid curve).
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equilibrium and live for much longer than a cooling time. The
loops are therefore neither steadily heated nor cooling as mono-
lithic structures. It has been shown that the observed densities
and timescales can be explained by bundles of nanoflare heated
strands, as long as nanoflares do not all occur at the same time
(see Klimchuk 2006 and references cited therein). Neighboring
strands will therefore have different temperatures, and loops are
predicted to have multithermal cross sections. In particular, emis-
sion should be produced at temperatures higher than 3 MK. Hot
loops are sometimes observed at the locations of warm loops, but
not always. Example 5 suggests that nonthermal electron beams
are a possible explanation for the lack of hot emission. Aswe have
discussed, beams can produce excess densities through evapora-
tion without the need for high temperatures. We have just begun
to explore this possibility. For now, we note that the coronal
DEM(T ) curve of example 5 (Fig. 8) bears a close resemblance
to the observed curves reported by Schmelz et al. (2001) for a
loop seen above the limb.

In conclusion, EBTEL is a powerful new tool that can be ap-
plied to a variety of problems in which large numbers of evolv-
ing strands must be computed. For example, it is now feasible to
construct multiple models of nanoflare-heated active regions or
entire stars and therefore to examine a wide array of nanoflare
parameters (magnitude, lifetime, occurrence rate, dependence on
field strength and strand length, etc.). By determining which
parameters best reproduce the observations, we can place impor-
tant constraints on the heating and thereby gain insight into the

physical mechanism (e.g., Mandrini et al. 2000; Schrijver et al.
2004;Warren&Winebarger 2006). EBTEL is currently being used
to study the emission characteristics of coronal arcades (S. K.
Patsourakos & J. A. Klimchuk 2007, in preparation), to explain
the light curves of solar flares (C. Raftery et al. 2007, in prepa-
ration), to model coronal loops as self-organized critical systems
(López Fuentes &Klimchuk 2005; Klimchuk et al. 2006), and to
simulate potential observations from future missions (Patsourakos
& Klimchuk 2007).
Interested users are invited to contact us for a copy of our IDL

code.

Note added in manuscript.—Further investigations indi-
cate that c3 ¼ 0:7 gives better agreement between EBTEL and
the 1D model in the late radiation-dominated cooling phase. A
full analysis of the physics of this regime is underway and will
be reported in due course.

This work was supported by NASA and the Office of Naval
Research. We are pleased to thank Spiro Antiochos for helpful
discussions, Pascal Démoulin and the anonymous referee for
comments that helped improve the manuscript, and Fabio Reale
and Kathy Reeves for providing comparison 1D simulations.
The authors benefited from participation on the International
Space Science Institute team on the role of spectroscopic and
imaging data in understanding coronal heating (Team Parenti).

APPENDIX

TRANSITION REGION DEM(T ): ALTERNATE DERIVATION

An alternate approach to deriving the differential emission measure distribution of the transition region is to consider three limiting
cases—strong evaporation, strong condensation, and static equilibrium—and to combine the results into a single form with smooth
transitions.

A1. STRONG EVAPORATION

During strong evaporation, the heat flux from the corona far exceeds the radiative losses from the transition region, jF0j3R tr , and
the energy equation reduces to an approximate balance between thermal conduction heating and enthalpy cooling:

@

@s
�0T

5=2 @T

@s

� �
� 5

2

@

@s
(Pv): ðA1Þ

We here use the classical form for the heat flux because saturation is not expected with the relatively low temperatures and high den-
sities of the transition region. Integrating equation (A1), we obtain

@T

@s
� 5k

�0

J0T
3=2; ðA2Þ

where we have used the ideal gas law and equation (7) for the constant electron flux. Substituting into equation (28) and noting that
pressure is approximately constant throughout the transition region and corona, we have the final expression

DEMev(T ) � 1

20

�0

k 3

P̄2

J0T 1=2
: ðA3Þ

A2. STRONG CONDENSATION

During strong condensation, the heat flux from the corona is much less than the radiative losses from the transition region, jF0jT
R tr , and the energy balance is then between enthalpy heating and radiation cooling:

n2�(T ) � � 5

2

@

@s
(Pv): ðA4Þ
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The constant electron flux allows us to write

@

@s
(Pv) ¼ 2k J0

@T

@s
; ðA5Þ

so

@T

@s
� � n2�(T )

5kJ0
; ðA6Þ

DEMcon(T ) � � 5k J0

�(T )
: ðA7Þ

A3. STATIC EQUILIBRIUM

Last, in static equilibrium, the heat flux from the corona very nearly balances the radiative losses from the transition region, jF0j �
R tr . The inequality is broken only by direct plasma heating, which is likely to be very small in comparison to thermal conduction
heating. Nonthermal electrons are a possible exception. Barring this possibility,

n2�(T ) � @

@s
�0T

5=2 @T

@s

� �
; ðA8Þ

� 2

7
�0

T 7=2

H 2
T

; ðA9Þ

where

HT ¼ T

@T=@s
ðA10Þ

is the temperature scale height. This gives

@T

@s
� 7

2�0

� �1=2
n�(T )1=2

T 3=4
; ðA11Þ

DEMse(T ) � �0

14

� �1=2 P̄

k�(T )1=2T 1=4
: ðA12Þ

We can combine these three limiting cases into a single expression that applies at all times:

DEM(T ) ¼ F0DEMev �
F0R tr

F0 þR tr

DEMse þR trDEMcon

� �

; F0 �
F0R tr

F0 þR tr

þR tr

� ��1

: ðA13Þ

This expression reduces to the desired forms in the relevant limits. We have confirmed that the temperature dependencies in equa-
tions (A3), (A7), and (A12) are present in the differential emission measure distributions from 1D simulations.
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