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We analyse the phenomenology of an exemplary exophobic Pati–Salam heterotic string vacuum, in which
no exotic fractionally charged states exist in the massless string spectrum. Our model also contains the
Higgs representations that are needed to break the gauge symmetry to that of the Standard Model and
to generate fermion masses at the electroweak scale. We show that the requirement of a leading mass
term for the heavy generation, which is not degenerate with the mass terms of the lighter generations,
places an additional strong constraint on the viability of the models. In many models a top quark Yukawa
may not exist at all, whereas in others two or more generations may obtain a mass term at leading
order. In our exemplary model a mass term at leading order exist only for one family. Additionally, we
demonstrate the existence of supersymmetric F - and D-flat directions that give heavy mass to all the
colour triplets beyond those of the Standard Model and leave one pair of electroweak Higgs doublets
light. Hence, below the Pati–Salam breaking scale, the matter states in our model that are charged under
the observable gauge symmetries, consist solely of those of the Minimal Supersymmetric Standard Model.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Standard Model of particle physics remains unscathed by contemporary experiments. Its augmentation with the right-handed
neutrinos, as envisioned by Pati and Salam nearly four decades ago [1], is mandated by solar and terrestrial neutrino observations. The
Pati–Salam model naturally leads to the embedding of the Standard Model in SO(10) representations. Most strikingly the matter embed-
ding in three 16 spinorial representations correlates the 54 gauge charges of the Standard Model states into the single number of spinorial
multiplets. The reduction in the number of experimental parameters from fifty four to one provides the most important clue for the
fundamental origins of the Standard Model. The remaining parameters, and in particular the flavour parameters, must find their origin
in a theory that unifies gauge theories with gravity. It is then of further appeal that heterotic-string theory accommodates the SO(10)

embedding of the Standard Model matter spectrum. Three generation heterotic-string models that preserve the SO(10) embedding of the
Standard Model states were constructed since the late eighties [2–7].

Absence of higher order Higgs representations in heterotic-string models that are based on level one Kac–Moody current algebras
necessitates that the SO(10) symmetry is broken directly at the string level by discrete Wilson lines. A well-known theorem due to
Schellekens [8] states that any such string model that preserves the canonical SO(10)-GUT embedding of the weak hypercharge, and in
which the non-Abelian GUT symmetries are broken by discrete Wilson lines, necessarily contain states that carry charges that do not
obey the original GUT quantisation rule [8].1 In terms of the Standard Model charges these exotic states carry fractional electric charge.
Electric charge conservation implies that the lightest of these states is stable, and their existence in nature is severely constrained by
experiments [10].

While the existence of fractionally charged states in string models that preserve the canonical SO(10) embedding of the Standard Model
states, and in which the SO(10) symmetry is broken by Wilson lines, is mandated by Schellekens theorem, they may appear only in vector-
like representations, rather than in chiral representations. Superpotential terms for the vector-like states can then generate an intermediate
or string scale mass to the exotic states, through the VEVs of Standard Model singlet fields [11,6]. However, as the generation of the VEVs
is obtained in an effective field theory analysis a more appealing solution is to find string models in which the exotic fractionally charged
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states are confined to the massive spectrum. Recently, we demonstrated the existence of Pati–Salam vacua in which exotic fractionally
charged states do not exist in the massless spectrum [12]. We dubbed such models as exophobic string vacua. We further showed that
there exist such exophobic Pati–Salam string models that contain three generations and the required Higgs states to produce realistic mass
spectrum. We demonstrated the existence of exophobic string vacua by utilising the free fermionic classification techniques. These methods
were developed in Ref. [13] for type II string N = 2 supersymmetric vacua. They were extended in Refs. [14,15] for the classification of
heterotic Z2 × Z2 free fermionic orbifolds, with unbroken SO(10) and E6 GUT symmetries, and in Ref. [12] heterotic-string vacua in which
the SO(10) symmetry is broken to the Pati–Salam subgroup.

The classification method used in Refs. [13–15,12] utilises symmetric boundary conditions for the set of internal world-sheet fermions
that correspond to the six-dimensional compactified lattice. The symmetric boundary conditions correspond to Z2 shifts in the compacti-
fied six-dimensional torus and enable the scan of large sets of vacua. Such symmetric assignments in Pati–Salam heterotic string models
lead to the projection of the untwisted Higgs bi-doublets and preservation of the corresponding colour triplets [16]. In quasi-realistic free
fermionic models untwisted Higgs doublets couple to twisted matter states. The leading coupling is identified with the top quark mass
term in the superpotential [17]. Hence, this coupling is not present in the exophobic Pati–Salam models of Ref. [12]. The question arises
whether a top quark mass term exists in these string vacua. A viable top quark Yukawa term is one of the first criteria that a realistic
string vacuum should admit.

An alternative to the twisted–twisted–untwisted coupling that is used in the quasi-realistic free fermionic models is a twisted–twisted–
twisted coupling. The existence of a viable coupling is model dependent. The three states appearing in the trilevel term must arise from
the three distinct twisted sectors. Hence, for example, if all the vectorial and spinorial twisted states would arise from a single sector, the
vacuum would not be viable. In this Letter we examine this question in the exophobic string vacuum of Ref. [12]. We show in one concrete
model that the required coupling does exist. Additionally, we calculate the entire cubic level superpotential and show the existence of flat
directions that leave a light pair of electroweak Higgs doublets and give heavy mass to all vector-like colour triplets. Hence, below the
Pati–Salam breaking scale the spectrum of our model coincides with that of the Minimal Supersymmetric Standard Model (MSSM).

2. Exophobic Pati–Salam heterotic-string model

Our exophobic Pati–Salam heterotic-string model is constructed in the free fermionic formulation [18]. In this formulation a string
model is specified in terms of a set of boundary condition basis vectors vi , i = 1, . . . , N

vi = {
αi( f1),αi( f2),αi( f3), . . .

}
,

for the 64 world-sheet real fermions [18], and the one-loop generalised GGSO projection coefficients, c
[ vi

v j

]
. The basis vectors span a

space Ξ which consists of 2N sectors that give rise to the string spectrum. Each sector, η ∈ Ξ , is given by

η =
∑

Ni vi, Ni = 0,1 (2.1)

The spectrum is truncated by a generalised GSO projection whose action on a string state |S〉 is

eiπ vi ·F S |S〉 = δS c

[
S
vi

]
|S〉, (2.2)

where F S is the fermion number operator and δS = ±1 is the space–time spin statistics index. The world-sheet free fermions in the light-
cone gauge in the usual notation are: ψμ , χ i , yi , ωi , i = 1, . . . ,6 (left-movers) and ȳi , ω̄i , i = 1, . . . ,6, ψ A , A = 1, . . . ,5, η̄B , B = 1,2,3,
φ̄α , α = 1, . . . ,8 (right-movers). The exophobic Pati–Salam model is generated by a set of thirteen basis vectors B = {v1, v2, . . . , v13},
where

v1 = 1 = {
ψμ,χ1,...,6, y1,...,6,ω1,...,6

∣∣ ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},
v2 = S = {

ψμ,χ1,...,6},
v2+i = ei = {

yi,ωi
∣∣ ȳi, ω̄i}, i = 1, . . . ,6,

v9 = b1 = {
χ34,χ56, y34, y56

∣∣ ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v10 = b2 = {

χ12,χ56, y12, y56
∣∣ ȳ12, ȳ56, η̄2, ψ̄1,...,5},

v11 = z1 = {
φ̄1,...,4},

v12 = z2 = {
φ̄5,...,8},

v13 = α = {
ψ̄4,5, φ̄1,2}. (2.3)

The first two basis vectors generate a model with N = 4 space–time supersymmetry and SO(44) gauge group in four dimensions. The next
six basis vectors correspond to freely acting shifts on the internal six-dimensional compactified torus and reduce the gauge symmetry to
SO(32). The basis vectors z1 and z2 are freely acting as well, and reduce the gauge symmetry arising from the Neveu–Schwarz (NS) sector
to SO(16) × SO(8) × SO(8). Additional space–times vector bosons may arise from the sectors [14,15,12]

G =
{

z1, z2, α, α + z1,

x, z1 + z2, α + z2, α + z1 + z2, α + x, α + x + z1

}
(2.4)

and enhance the four-dimensional gauge group. In (2.4) we defined the vector combination
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Table 1
Untwisted matter spectrum and SU(4) × SU(2)L × SU(2)R × U (1)3 quantum numbers.

Sector Field SU(4) × SU(2)L × SU(2)R U (1)1 U (1)2 U (1)3

S D1 (6,1,1) +1 0 0
D2 (6,1,1) 0 +1 0
D3 (6,1,1) 0 0 +1
D̄1 (6,1,1) −1 0 0
D̄2 (6,1,1) 0 −1 0
D̄3 (6,1,1) 0 0 −1
Φ12 (1,1,1) +1 +1 0
Φ−

12 (1,1,1) +1 −1 0
Φ̄12 (1,1,1) −1 −1 0
Φ̄−

12 (1,1,1) −1 +1 0
Φ13 (1,1,1) +1 0 +1
Φ−

13 (1,1,1) +1 0 −1
Φ̄13 (1,1,1) −1 0 −1
Φ̄−

13 (1,1,1) −1 0 +1
Φi , i = 1, . . . ,6 (1,1,1) 0 0 0
Φ23 (1,1,1) 0 +1 +1
Φ−

23 (1,1,1) 0 +1 −1
Φ̄23 (1,1,1) 0 −1 −1
Φ̄−

23 (1,1,1) 0 −1 +1

x = 1 + S +
6∑

i=1

ei + z1 + z2,

which may enhance the observable SO(16) gauge symmetry to E8. For suitable choices of the GGSO projection coefficients all the space–
time vector bosons arising from the sectors in Eq. (2.4) are projected out. The basis vectors b1 and b2 correspond to the Z2 × Z2 twists of
a Z2 × Z2 orbifold. Each Z2 twist reduces the number of supersymmetry generators from N = 4 to N = 2. In combination b1 and b2 break
N = 4 to N = 1 space–time supersymmetry, and reduce the NS gauge symmetry to SO(10) × U (1)3 × SO(8) × SO(8).

In the quasi-realistic heterotic string models the gauge symmetries are realised as level one Kac–Moody algebras. The massless spec-
trum of such models does not contain scalar Higgs multiplets in the adjoint representation that can be used to break the non-Abelian
SO(10) GUT symmetry. Consequently, the GUT gauge group must be broken at the string level, by a boundary condition basis vector in
the free fermionic formalism, or a discrete Wilson line in the orbifold formalism. The basis vector α reduces the SO(10) symmetry to the
Pati–Salam subgroup. The gauge group in our model is therefore:

observable: SO(6) × SO(4) × U (1)3,

hidden: SO(4)2 × SO(8).

The matter states in our model are embedded in SU(4) × SU(2)L × SU(2)R representations as follows:

F L(4,2,1) → q

(
3,2,−1

6

)
+ �

(
1,2,

1

2

)
,

F̄ R(4̄,1,2) → uc
(

3̄,1,
2

3

)
+ dc

(
3̄,1,−1

3

)
+ ec(1,1,−1) + νc(1,1,0),

h(1,2,2) → hd
(

1,2,
1

2

)
+ hu

(
1,2,−1

2

)
,

D(6,1,1) → d3

(
3,1,

1

3

)
+ d̄3

(
3̄,1,−1

3

)
,

where F L and F̄ R contain a single Standard Model generation; hd and hu are electroweak Higgs doublets; and D contains vector-like colour
triplets. The decomposition of the Pati–Salam breaking Higgs fields in terms of the Standard Model group factors is:

H̄(4̄,1,2) → uc
H

(
3̄,1,

2

3

)
+ dc

H

(
3̄,1,−1

3

)
+ νc

H (1,1,0) + ec
H (1,1,−1),

H(4,1,2) → uH

(
3,1,−2

3

)
+ dH

(
3,1,

1

3

)
+ νH (1,1,0) + eH (1,1,1).

The electric charge in the Pati–Salam models is given by:

Q em = 1√
6

T15 + 1

2
I3L + 1

2
I3R (2.5)

where T15 is the diagonal generator of SU(4) and I3L , I3R are the diagonal generators of SU(2)L , SU(2)R , respectively.
The second ingredient that is needed to define the string vacuum are the GGSO projection coefficients that appear in the one-loop

partition function, c
[ vi ]

, spanning a 13 × 13 matrix. Only the elements with i > j are independent, and the others are fixed by modular

v j
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Table 2
Twisted matter spectrum (observable sector) and SU(4) × SU(2)L × SU(2)R × U (1)3 quantum numbers.

Sector Field SU(4) × SU(2)L × SU(2)R U (1)1 U (1)2 U (1)3

S + b2 + e1 + e6 F1L (4,2,1) 0 −1/2 0
S + b2 + e6 F̄1R (4̄,1,2) 0 −1/2 0
S + b3 + e1 + e2 + e3 F2L (4,2,1) 0 0 −1/2
S + b1 + e4 + e5 F̄2R (4̄,1,2) 1/2 0 0
S + b1 + e3 + e4 + e5 + e6 F1R (4,1,2) −1/2 0 0
S + b3 + e1 + e2 + e4 F̄3R (4̄,1,2) 0 0 1/2
S + b3 + e2 + e4 F3L (4,2,1) 0 0 1/2
S + b3 + e2 + e3 F̄4R (4̄,1,2) 0 0 −1/2

S + b2 + x + e2 + e5 h1 (1,2,2) −1/2 0 −1/2
S + b1 + x + e3 + e5 h2 (1,2,2) 1/2 0 1/2
S + b1 + x + e3 + e5 + e6 h3 (1,2,2) 0 1/2 1/2

S + b3 + x + e2 ζ1 (1,1,1) 1/2 −1/2 0
ζ̄1 (1,1,1) −1/2 1/2 0

S + b3 + x + e1 + e2 + e3 + e4 ζ2 (1,1,1) 1/2 1/2 0
ζ̄2 (1,1,1) −1/2 −1/2 0

S + b2 + x + e1 + e2 + e5 D4 (6,1,1) −1/2 0 −1/2
ζa , a = 3,4 (1,1,1) 1/2 0 −1/2
ζ̄a , a = 3,4 (1,1,1) −1/2 0 1/2
χ+ (1,1,1) 1/2 1/2 1
χ− (1,1,1) 1/2 1/2 −1

S + b1 + x + e3 + e4 + e5 ζ5 (1,1,1) 0 1/2 1/2
ζ̄5 (1,1,1) 0 −1/2 −1/2

S + b1 + x + e4 + e5 + e6 ζ6 (1,1,1) 0 1/2 1/2
ζ̄6 (1,1,1) 0 −1/2 −1/2

S + b2 + x ζ7 (1,1,1) 1/2 0 −1/2
ζ̄7 (1,1,1) −1/2 0 1/2

invariance. A priori there are therefore 78 independent coefficients corresponding to 278 distinct string vacua. Eleven coefficients are fixed
by requiring that the models possess N = 1 supersymmetry. Additionally, imposing the condition that the only space–time vector bosons
that remain in the spectrum are those that arise from the untwisted sector restricts the number of phases to a total of 51 independent
GGSO phases. Each distinct configuration of these phases corresponds to a distinct vacuum. Some degeneracy in this space of models may
still exist due to additional symmetries over the entire space. This is not relevant for our purposes here as our aim in this work is to
extract from the total space an exemplary model with the required phenomenological properties. Statistical analysis over the entire space
was presented in Ref. [12].

The breaking of the SO(10) GUT symmetry by the α boundary condition basis vector results in combinations of the basis vectors that
can produce a priori massless states with fractional electric charge. All these sectors, and the type of states that they a priori can give rise
to, are enumerated in Ref. [12].

By employing an algorithm to generate random selection of the GGSO projection coefficient the Pati–Salam free fermionic heterotic-
string vacua were classified in Ref. [12]. For suitable choices of the GGSO projection coefficients all the massless fractionally charged states
are projected out. Fractionally charged states in this case only exist in the massive string spectrum, which is compatible with experimental
constraints. An explicit choice of GGSO projection coefficients that produces a model with this property is given by:

(vi|v j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1 1 1 1 1 1 1 1 1 1 1 1 1 0
S 1 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 0 0 0 0 0 0 0 0 0 1
e2 1 1 0 0 1 0 0 1 0 0 1 1 0
e3 1 1 0 1 0 1 1 0 0 0 1 0 0
e4 1 1 0 0 1 0 1 0 0 0 1 0 1
e5 1 1 0 0 1 1 0 0 1 0 1 1 1
e6 1 1 0 1 0 0 0 0 0 1 1 0 0
b1 1 0 0 0 0 0 1 0 1 0 0 1 0
b2 1 0 0 0 0 0 0 1 0 1 1 0 0
z1 1 1 0 1 1 1 1 1 0 1 1 1 1
z2 1 1 0 1 0 0 1 0 1 0 1 1 1
α 0 1 1 0 0 1 1 0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

where we introduced the notation c
[ vi

v j

] = eiπ(vi |v j) .

The twisted massless states generated in the string vacuum of Eq. (2.6) produce the needed spectrum for viable phenomenology. It
contains three chiral generations; one pair of heavy Higgs states to break the Pati–Salam gauge symmetry along a flat direction; light
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Table 3
Twisted matter spectrum (hidden sector) and SU(2)4 × SO(8) × U (1)3 quantum numbers.

Sector Field SU(2)4 × SO(8) U (1)1 U (1)2 U (1)3

S + b3 + x + e1 + e4 H1
12 (2,2,1,1,1) −1/2 −1/2 0

S + b3 + x + e1 + e2 + e3 H2
12 (2,2,1,1,1) 1/2 −1/2 0

S + b2 + x + e2 + e5 + e6 H3
12 (2,1,2,1,1) 1/2 0 −1/2

S + b3 + x + e2 + e3 H1
34 (1,1,2,2,1) 1/2 −1/2 0

S + b3 + x + e1 + e2 + e4 H2
34 (1,1,2,2,1) −1/2 −1/2 0

S + b2 + x + e1 + e2 + e5 + e6 H3
34 (1,1,2,2,1) 1/2 0 −1/2

S + b1 + x + e3 + e4 + e5 + e6 H4
34 (1,1,2,2,1) 0 1/2 1/2

S + b1 + x + e4 + e5 H5
34 (1,1,2,2,1) 0 −1/2 −1/2

S + b3 + x + z1 H1
13 (2,1,2,1,1) −1/2 −1/2 0

S + b3 + x + z1 + e1 + e3 + e4 H2
13 (2,1,2,1,1) −1/2 1/2 0

S + b2 + x + z1 + e2 H3
13 (2,1,2,1,1) 1/2 0 1/2

S + b2 + x + z1 + e2 + e6 H1
14 (2,1,1,2,1) 1/2 0 1/2

S + b1 + x + z1 + e3 H2
14 (2,1,1,2,1) 0 1/2 1/2

S + b1 + x + z1 + e6 H3
14 (2,1,1,2,1) 0 −1/2 −1/2

S + b3 + x + z1 + e3 + e4 H1
24 (1,2,1,2,1) −1/2 1/2 0

S + b3 + x + z1 + e1 H2
24 (1,2,1,2,1) −1/2 −1/2 0

S + b2 + x + z1 + e1 + e2 H3
24 (1,2,1,2,1) −1/2 0 −1/2

S + b1 + x + z1 + e3 + e4 H4
24 (1,2,1,2,1) 0 −1/2 1/2

S + b1 + x + z1 + e4 + e6 H5
24 (1,2,1,2,1) 0 1/2 −1/2

S + b2 + x + z1 + e1 + e2 + e6 H1
23 (1,2,2,1,1) 1/2 0 1/2

S + b2 + x + z2 + e2 + e5 + e6 Z1 (1,1,1,1,8c) −1/2 0 1/2
S + b1 + x + z2 + e3 + e4 Z2 (1,1,1,1,8s) 0 −1/2 −1/2
S + b1 + x + z2 + e3 + e5 Z3 (1,1,1,1,8c) 0 −1/2 1/2
S + b1 + x + z2 + e4 + e6 Z4 (1,1,1,1,8s) 0 −1/2 −1/2
S + b1 + x + e5 + e6 Z5 (1,1,1,1,8c) 0 1/2 −1/2

Higgs bi-doublets needed to break the electroweak symmetry and generate fermion masses; one vector sextet of SO(6) needed for the
missing partner mechanism; it is completely free of massless exotic fractionally charged states. States in vectorial representation are
obtained in the free fermionic models from the untwisted Neveu–Schwarz sector and from twisted sectors that contain four periodic
world-sheet right-moving complex fermions. Massless states are obtained in such sectors by acting on the vacuum with a Neveu–Schwarz
right-moving fermionic oscillator. The model of Eq. (2.6) contains three pairs of untwisted SO(6) sextets, and an additional sextet from a
twisted sector. These can obtain string scale mass along flat directions. Additionally, it contains a number of SO(10) singlet states, some
of which transform in non-trivial representations of the hidden sector gauge group. The full massless spectrum of the model is shown in
Tables 1, 2 and 3, where we define the vector combination b3 ≡ b1 + b2 + x.

3. The superpotential and the top quark Yukawa

Using the methodology of Ref. [19] for the calculation of renormalisable and nonrenormalisable terms, we calculate the cubic level
superpotential of our exophobic Pati–Salam string model. In particular, we seek to extract models that produce a cubic level mass term
for the heavy generation, but not for the lighter generations, which should arise from higher order nonrenormalisable terms. These
requirements impose additional non-trivial constraints on the viable string vacua. Many models do not produce any coupling of the form
F̄ R F Lh. Such models do not admit viable phenomenology as the models should produce at least a top quark mass term at leading order.
Similarly, models that produce leading mass terms for two or more families are not viable. The model presented in Ref. [12] produces
the cubic level terms ( F̄1R F3L + F̄4R F2L)h3. In this model therefore two heavy families may be degenerate in mass. More appealing are
therefore models that produce only a single mass term at leading order. The model produced by Eq. (2.6) is an example of such a model.
The trilevel superpotential is given by

WSM

g
√

2
= F̄2R F3Lh1 + {h1h1Φ13 + h2h2Φ23 + h3h3Φ̄23 + h1h3ζ1} + {

D1 D2Φ̄12 + D̄1 D2Φ
−
12 + D1 D̄2Φ̄

−
12 + D̄1 D̄2Φ12 + D1 D3Φ̄13

+ D̄1 D3Φ
−
13 + D1 D̄3Φ̄

−
13 + D̄1 D̄3Φ13 + D2 D3Φ̄23 + D̄2 D3Φ

−
23 + D2 D̄3Φ̄

−
23 + D̄2 D̄3Φ23

} + {
D1 F1R F1R + D̄1 F̄2R F̄2R

+ D2( F̄1R F̄1R + F1L F1L) + D3( F̄4R F̄4R + F2L F2L) + D̄3( F̄3R F̄3R + F3L F3L) + D4( F̄2R F̄3R + D2χ− + D̄2χ+ + D4Φ13)
}

+ Φ̄13χ−χ+ + Φ23Φ̄12Φ
−
13 + Φ13Φ̄12Φ

−
23 + Φ23Φ̄13Φ

−
12 + Φ−

12Φ
−
23Φ̄

−
13 + Φ13Φ̄23Φ̄

−
12 + Φ12Φ̄23Φ̄

−
13 + Φ−

13Φ̄
−
12Φ̄

−
23

+ Φ12Φ̄13Φ̄
−
23 + ζ1

2Φ̄−
12 + ζ̄1

2Φ−
12 + (

ζ3
2 + ζ4

2 + ζ7
2)Φ̄−

13 + (
ζ̄3

2 + ζ̄4
2 + ζ̄7

2)Φ−
13 + 1

2
ζ̄2ζ̄5χ+ + ζ2

2Φ̄12

+ (
ζ5

2 + ζ6
2)Φ̄23 + Φ12ζ̄2

2 + Φ5(ζ1ζ̄1 + ζ2ζ̄2) + Φ2(ζ5ζ̄5 + ζ6ζ̄6) + Φ23
(
ζ̄5

2 + ζ̄6
2) + Φ4ζ7ζ̄7 + ζ4ζ5ζ̄2√

2
+ ζ2ζ̄3ζ̄5√

2
.

(3.1)

The string vacuum contains three anomalous U (1)s

Tr U (1)1 = −12; Tr U (1)2 = −24; Tr U (1)3 = −12 (3.2)

redefining we obtain two anomaly-free
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U (1)′1 = U (1)1 − U (1)3, (3.3)

U (1)′2 = U (1)1 − U (1)2 + U (1)3 (3.4)

and one anomalous combination

U (1)′A = U (1)1 + 2U (1)2 + U (1)3, Tr U (1)A = −72. (3.5)

The electroweak Higgs doublets come in pairs and are accommodated in the Pati–Salam bi-doublets h1,h2,h3. Their mass matrix is

Mh ∼

⎛
⎜⎜⎝

h1 h2 h3

h1 Φ13
ζ1√

2
0

h2
ζ1√

2
Φ̄23 0

h3 0 0 Φ23

⎞
⎟⎟⎠. (3.6)

In order to keep h1 massless we need to impose the condition

Φ13Φ̄23 − ζ 2
1

2
= 0. (3.7)

Next, we discuss the colour-triplet mass matrix in our string derived Pati–Salam model. Three pairs of colour-triplets arise in the
model from the untwisted Neveu–Schwarz sector, and are accommodated in the sextet of the Pati–Salam SU(4). we denote these by
Di = di(3,1,1/3) + dc

i (3̄,1,−1/3), D̄i = d̄i(3̄,1,−1/3) + d̄c
i (3,1,1/3). An additional sextet arises in the model from a twisted sector. A

further pair of colour triplets is obtained from the heavy Higgs states, F̄1R and F1R that are used to break the Pati–Salam symmetry, and
must get a VEV of the order of the GUT scale. We denote the colour triplets in these fields by FαR = dαH + · · ·. At the cubic level the
colour triplet mass matrix then takes the form,

MD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 d2 d3 d̄1 d̄2 d̄3 d4 d1H

dc
1 0 Φ̄12 Φ̄13 0 Φ̄−

12 Φ̄−
13 0 F1R

dc
2 Φ̄12 0 Φ̄23 Φ−

12 0 Φ̄−
23 χ− 0

dc
3 Φ̄13 Φ̄23 0 Φ13 Φ−

23 0 0 0

d̄c
1 0 Φ−

12 Φ13 0 Φ12 Φ13 0 0

d̄c
2 Φ−

12 0 Φ−
23 Φ12 0 Φ23 χ+ 0

d̄c
3 Φ̄−

13 Φ̄−
23 0 Φ13 Φ23 0 0 0

dc
4 0 χ− 0 0 χ+ 0 Φ13 0

d̄c
1H 0 F̄1R 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)

We have det(MD) ∼ Φ2
13 so in order to keep triplets heavy and h1 light we need {Φ13, ζ1, Φ̄23} 
= 0.

Next, we examine the pattern of symmetry breaking. The anomalous U (1)A is broken by the Green–Schwarz–Dine–Seiberg–Witten
mechanism [20] in which a potentially large Fayet–Iliopoulos D-term ξ is generated by the VEV of the dilaton field. Such a D-term would,
in general, break supersymmetry, unless there is a direction φ̂ = ∑

αiφi in the scalar potential for which
∑

Q i
A |αi |2 < 0 and that is D-flat

with respect to all the non-anomalous gauge symmetries along with F -flat. If such a direction exists, it will acquire a VEV, cancelling the
Fayet–Iliopoulos ξ -term, restoring supersymmetry and stabilising the vacuum. Assuming VEVs for the non-Abelian gauge singlets and a
pair of PS breaking Higgs, F1R = F̄1R = MG , the D-flatness constraints in our model are given by:

U (1)′1:
(|Φ12|2 − |Φ̄12|2

) + (∣∣Φ−
12

∣∣2 − ∣∣Φ̄−
12

∣∣2) + 2
(∣∣Φ−

13

∣∣2 − ∣∣Φ̄−
13

∣∣2) − (|Φ23|2 − |Φ̄23|2
) + (∣∣Φ−

23

∣∣2 − ∣∣Φ̄−
23

∣∣2)
+ 1

2

∑
i=1,2

(|ζi|2 − |ζ̄i|2
) − 1

2

∑
i=5,6

(|ζi|2 − |ζ̄i |2
) +

∑
i=3,4,7

(|ζi |2 − |ζ̄i|2
) − 1

2
|F1R |2 = 0, (3.9)

U (1)′2: 2
(∣∣Φ−

12

∣∣2 − ∣∣Φ̄−
12

∣∣2) + 2
(|Φ13|2 − |Φ̄13|2

) − 2
(∣∣Φ−

23

∣∣2 − ∣∣Φ̄−
23

∣∣2) + (|ζ1|2 − |ζ̄1|2
) + 2|χ−|2

+ 1

2

(| F̄1R |2 − |F1R |2) = 0, (3.10)

U (1)′A : 3
(|Φ12|2 − |Φ̄12|2

) − (∣∣Φ−
12

∣∣2 − ∣∣Φ̄−
12

∣∣2) + 2
(|Φ13|2 − |Φ̄13|2

) + 3
(|Φ23|2 − |Φ̄23|2

) + (∣∣Φ−
23

∣∣2 − ∣∣Φ̄−
23

∣∣2)
− 1

2

(|ζ1|2 − |ζ̄1|2
) + 3

2

∑
i=2,5,6

(|ζi|2 − |ζ̄i |2
) + 3|χ+|2 − |χ−|2 − 1

2
|F1R |2 − | F̄1R |2 = + 3 g2

16π2
M2 ≡ ξ. (3.11)

In Eq. (3.11) g is the gauge coupling in the effective field theory, and M is the so-called reduced Planck mass M ≡ MPlanck/
√

8π . In setting
ξ we followed the conventions of [21]. The set of F -flatness constraints are obtained by requiring〈

Fi ≡ ∂W
〉
= 0 (3.12)
∂ηi
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Fig. 1. Solution of the D-flatness equations for |Φ−
13|, |Φ̄−

23| and |Φ̄−
12| as a function of χ = |Φ̄23| = |Φ̄−

13| = 1
2 |Φ̄−

23| (all VEVs are in units of
√

ξ ).

where ηi are all the fields that appear in the model. The solution (i.e. the choice of fields with non-vanishing VEVs) to the set of
Eqs. .9.9.9.10.11.12(3.9)–(3.12), though non-trivial, is not unique. Therefore in a typical model there exist a moduli space of solutions to
the F and D flatness constraints, which are supersymmetric and degenerate in energy [22]. Assuming VEVs for the non-Abelian gauge
singlets and a pair of PS breaking Higgs, F1R = F̄1R = MG , the following 9 parameter exact solution{

Φ3,Φ4,Φ6, Φ̄23,Φ
−
23, Φ̄

−
23,Φ

−
13, Φ̄

−
13, Φ̄12

}
(3.13)

satisfies all F -flatness equations while keeping one linear combination of the bi-doublets (h1,h2) massless:

0 = Φ1 = Φ2 = χ+ = χ− = ζi = ζ̄i, i = 3, . . . ,7, (3.14)

Φ5 = − 2i√
3

Φ̄12

Φ̄23

√
Φ−

13Φ
−
23Φ̄

−
23

Φ̄−
13

, (3.15)

Φ23 = Φ−
23Φ̄

−
23

Φ̄23
, Φ13 = −Φ−

13Φ̄
−
23

3Φ̄23
(3.16)

Φ̄13 = −3Φ̄23Φ̄
−
13

Φ̄−
23

, Φ12 = − Φ̄12Φ
−
13Φ

−
23Φ̄

−
23

3Φ̄23
2Φ̄−

13

, (3.17)

Φ−
12 = Φ̄12Φ

−
13Φ̄

−
23

3Φ̄23Φ̄
−
13

, Φ̄−
12 = − Φ̄12Φ

−
23

Φ̄23
, (3.18)

ζ1 = i

√
2Φ−

13Φ̄
−
23

3
, ζ̄1 = −

√
2Φ−

23Φ̄
−
13, (3.19)

ζ2 = i

√
2Φ−

23Φ
−
13Φ̄

−
23

3Φ̄23
, ζ̄2 =

√
2Φ̄23Φ̄

−
13. (3.20)

The triplet mass matrix (3.8) determinant is

det MD = −64

27

F1R F̄1RΦ̄12Φ
−
13

3Φ−
23

2Φ̄−
23

3

Φ̄23
3

(3.21)

and thus all triplets are massive.
For this F -flatness solution, the three D-flatness Eqs. .9.9.9.10.11(3.9)–(3.11) depend on seven parameters, |Φ̄23|, |Φ−

23|, |Φ̄−
23|, |Φ−

13|,
|Φ̄−

13|, |Φ̄12|, and |F1R | = | F̄1R |. Setting |F1R | = | F̄1R | = MG = 0.02
√

ξ the D-flatness equations can be solved numerically in terms of three
parameters. Choosing, for example, |Φ̄23| = |Φ̄−

13| = 1
2 |Φ̄−

23| = χ we can solve numerically for |Φ−
13|, |Φ̄−

23| and |Φ̄−
12|. The results are shown

in Fig. 1. In Fig. 2 we plot the mass of the two lightest colour triplets for the one parameter solution displayed in Fig. 1. From the figure
we note that for singlet VEVs of the order of 0.1

√
ξ the lightest triplet mass is of the order of 0.4MGUT. Thus the additional colour triplets

are heavy enough to protect proton from decaying through dangerous triplet mediated dim-5 operators [23]. Additionally, we note that
the three U (1) symmetries in Eqs. .3.3.3.4.5(3.3)–(3.5) are broken in the F - and D-flat vacuum. We further remark that the superpotential
vanishes in the vacuum as well.

4. Conclusions

In this Letter we analysed the phenomenology of an exemplary exophobic Pati–Salam heterotic string vacuum, in which exotic frac-
tionally charged states exist in the massive spectrum, but not among the massless states. In that respect the exophobic models are
distinguished from other models in which exotic states gain heavy mass by vacuum expectation values of Standard Model singlet fields.
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Fig. 2. The ratio of the two lightest colour triplet mass over MGUT as a function of χ = |Φ̄23| = |Φ̄−
13| = 1

2 |Φ̄−
23| (in units of

√
ξ ).

Our exophobic model also contains the Higgs representations that are needed to break the gauge symmetry to that of the Standard Model
and to generate fermion masses at the electroweak scale. One can then start to probe the phenomenology of such models in more detail.
We showed in particular that the presence of a top quark Yukawa coupling at leading order places an additional strong constraint on
the viability of the models. In many models a top quark Yukawa may not exist at all, whereas in others two or more generations may
obtain a mass term at leading order. In our exemplary model a mass term at leading order exists only for one family. Additionally, we
demonstrated the existence of supersymmetric F - and D-flat directions that give heavy mass to all the colour triplets beyond those of
the Standard Model and leave one pair of electroweak Higgs doublets light. Hence, below the Pati–Salam breaking scale the spectrum
of our model consists solely of that of the Minimal Supersymmetric Standard Model. We remark that while there exist other models in
which the exotic states are decoupled along flat directions, in many of these models the mass scale of the exotic states is ambiguous as
the relevant mass terms arise from higher order superpotential terms that are expected to be suppressed compared to the leading string
scale mass terms [24]. The novelty in our model is that the exotic states are absent from the massless spectrum to begin with and hence
necessarily have string scale masses. In this respect the model is superior to earlier constructions. Further analysis of higher order terms
in the superpotential can now be pursued to confront the model with the detailed Standard Model mass and mixing data. We note that
the interplay between statistical searches and detailed analysis of specific models takes us a step further toward the construction of string
models that reproduce the phenomenological Standard Model data. We will return to these issues in future publications.
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