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We consider an extension of νMSSM with an extra U (1) that realizes D-term inflation driven by the
right-handed sneutrino. Non-renormalizable terms in the Kähler potential and the superpotential are
considered, the latter controlled by a suitable discrete R-symmetry. We find that, for sub-Planckian infla-
ton values, the predictions of inflationary parameters are compatible with observations, establishing the
right-handed sneutrino driven inflation as a viable scenario.
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The most dramatic development of the past decade in parti-
cle physics, namely the discovery of neutrino mass [1], requires
the presence of a right-handed neutrino field, which, in the su-
persymmetric version of the Standard Model, is accompanied by
its scalar partner, a right-handed sneutrino. A straightforward way
to explain the smallness of the neutrino mass is to invoke the see-
saw mechanism [2], in which the right-handed neutrino possesses a
large mass in the range of 1011 to 1015 GeV. What is remarkable is
that right-handed sneutrino fields can be related to inflation, thus,
providing a direct connection between cosmological inflation and
particle physics. Models where the right-handed sneutrino is the
inflaton have been proposed, either in the chaotic inflation frame-
work [3,4] or in the framework of D-term inflation [5]. Although
the minimal sneutrino inflationary scenarios, based on chaotic in-
flation, result in density perturbations compatible with existing
data, from the point of view of particle physics, the model should
be embeddable to supergravity. Then, one has to address the flat-
ness of the scalar potential, which, in general, is problematic due
to supergravity corrections of F -terms (η-problem). This can be
circumvented if one adopts the D-term inflation [6,7] framework,
where the required vacuum energy that drives inflation is supplied
by Fayet–Iliopoulos D-term of a U (1) gauge factor. An alternative
approach is to employ a specific form of the Kähler potential in or-
der to maintain the flatness of the scalar potential (F -term hybrid
inflation) but extra fields are required [8,9].

In the present Letter we reconsider inflation driven by the
right-handed sneutrino in the D-term inflation framework. We
consider an extension of the standard νMSSM that realizes neu-
trino masses through the see saw mechanism, with an extra U (1)

gauge factor, under which all standard fields are neutral apart from
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a pair of MSSM singlets φ± . Suitable symmetries, such as R-parity
and discrete R-symmetries, restrict the superpotential couplings of
these fields. We consider leading non-renormalizable corrections to
the superpotential and the Kähler potential, while restricting our-
selves to sub-Planckian values of the inflaton field. We find that
sneutrino driven inflation leads to inflationary parameters and, in
particular, the spectral index, compatible with observations. Thus,
modulo general inflationary issues, such as the gravitino problem,
right-handed sneutrino driven inflation seems to be a viable sce-
nario.

The extension of the MSSM with three right-handed neutrino
superfields Nc

i realizes the seesaw mechanism through the renor-
malizable superpotential

W0 = M(i)
R

2
Nc

i Nc
i + Yij N

c
i L j Hc. (1)

This is the most general renormalizable superpotential, assuming
R-parity conservation and taking the right-handed neutrino to be
odd under it. We shall extend this model further by introducing an
extra U (1) gauge factor under which all fields are neutral except an
oppositely charged pair φ+ and φ− . We are also going to assume
that a non-zero Fayet–Iliopoulos D-term is present. A renormaliz-
able superpotential term Ncφ+φ− would lead to a neutrino state of
electroweak mass but, here, it is forbidden by R-parity, if we take
the product of φ± to be even. Then, an extra symmetry would be
necessary in order to forbid the direct φ+φ− mass-term. A suitable
such symmetry is a discrete R-symmetry and as a specific example
we may take the following Z (R)

3 symmetry1

1 All standard terms of the superpotential are allowed, provided (Hc, H, L, Ec ,

Q , Dc, U c) → (1,α2,α,α2,α,α2,α). This symmetry is not assumed to be a sym-
metry of the sector of the theory responsible for the spontaneous breaking of local
supersymmetry. It will be explicitly broken by supersymmetry breaking.
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Nc
i → αNc

i , φ± → φ±, W → α2 W. (2)

Adopting this symmetry, we see that at the lowest non-renormal-
izable level the only allowed term is

λi j
M Nc

i Nc
jφ+φ− . Also, there are

no allowed terms of O (M−2). Actually, the allowed superpotential
form, involving only right-handed neutrino fields and φ± , to all
orders can be written down as

WN = (
Nc)2 F

(
φ+φ−,

(
Nc)6)

=
∑

n,m=0

Cn,m

M2m+6n−1
(φ+φ−)m(

Nc)3n+2
. (3)

The first few allowed terms, apart from (1), are

λi j

M
Nc

i Nc
jφ+φ− + λ′

i j

M3
Nc

i Nc
j(φ+φ−)2 + λ′′

i j

M5
Nc

i Nc
j(φ+φ−)3

+ λi1...i8

M5
Nc

i1
· · · Nc

i8
+ · · · .

Throughout this Letter we assume that the defining scale of non-
renormalizable terms will be of the order of the reduced Planck
mass and we set M = M P ∼ 2.4 × 1018 GeV. The only other di-
mensionfull parameters appearing in the superpotential are the
right-handed neutrino masses M(i)

R . In order to obtain an ac-
ceptable neutrino mass through the seesaw mechanism, we must
take the right-handed neutrino masses M1, M2, M3 in the range
1010–1014 GeV. We shall assume that one of these right-handed
sneutrino fields, namely, the lightest, will play a role in inflation
and we shall suppress family indices in what follows.

Since, we have considered non-renormalizable terms in the su-
perpotential, we must do the same with the Kähler potential as
well [10]. Restricting ourselves to the quadratic φ± term, we have

K = ∣∣Nc
∣∣2

f (n) + g(n)
(|φ+|2 + |φ−|2) + · · · , (4)

where f (n) and g(n) are arbitrary functions defined as

f (n) =
∑
j=0

f jn
j, g(n) =

∑
j=0

g jn
j, n ≡ |Nc|2

M2
. (5)

The dots in (4) correspond to higher powers of φ± , which will be
neglected, since we anticipate that φ± will either stay at the origin
or obtain values � M .

We may next proceed to calculate the scalar potential resulting
from (4) and the superpotential

W = MR

2
Nc 2 + λ

2M
Nc 2(φ+φ−) + · · · , (6)

where the dots denote terms of O (M−3) or higher. The F -term
part of the potential is

V F ≈ eK/M2
{

Fi
(

K j
j

)−1 F j − 3
|W|2
M2

}

≈ |Nc|2
A

[
M2

R + λ2

M2
|φ+φ−|2 + λMR

M

(
φ+φ− + φ∗+φ∗−

)

+ M2
R

2M2

(
Nc 2 + Nc∗2)( f + nf (1)

)]

− BM2
R

M2 A2

∣∣Nc
∣∣2(|φ+|2 + |φ−|2) + λ2|Nc|4

4g(n)M2

(|φ+|2 + |φ−|2)

+ M2
R |Nc|2
AM2

[
f (n)

∣∣Nc
∣∣2 + g(n)

(|φ+|2 + |φ−|2)]

− 3M2
R
2

∣∣Nc
∣∣4 + · · · . (7)
4M
We have assumed that field values will be below M and kept terms
up to O (M−2), while keeping the functions f and g intact. The
functions A and B stand for

A(n) ≡ f (n) + 3nf (1)(n) + n2 f (2)(n),

B(n) ≡ g(1) + ng(2)(n). (8)

If we ignore the subleading terms proportional to MR , we obtain

V F ≈ λ2|Nc|2
AM2

|φ+φ−|2 + λ2|Nc|4
4M2 g(n)

(|φ+|2 + |φ−|2) + · · · . (9)

The D-term part of the scalar potential is

V D = g̃2

2
(K+φ+ − K−φ− + ξ)2

= g̃2

2

(
g(n)

(|φ+|2 − |φ−|2) + ξ
)2

, (10)

where we have introduced a Fayet–Iliopoulos D-term ξ 	 M2
R .

The φ±-mass terms read off from the potential are

M2± = λ2

4M2 g(n)

∣∣Nc
∣∣4 ± g̃2ξ g(n). (11)

Both masses are positive for

n2 = |Nc|4
M4

� 4g̃2

λ2

ξ

M2
g2(n). (12)

Anticipating sub-Planckian values for Nc , we may define the critical
field

nc ≡ 2g̃

λ
g0

√
ξ

M
, (13)

where g(n) ≈ g0 + ng1 + · · · . Thus, (12) becomes just n � nc , or, in
terms of a real field

Nc = φ√
2

�⇒ φ � φc = 2

√
g0 g̃

λ

√
ξ M. (14)

For φ > φc both φ± have positive masses and their vevs stay at the
origin. In the unbroken phase the scalar potential is

V (φ) ≈ g̃2ξ2

2
+ O

(
M2

R

)
φ2 + O

(
M2

R/M2)φ4 + · · · ,

which is approximately equal to g̃2ξ2/2 and very flat. Thus, when
the Universe is in the above global vacuum the energy density is
constant and inflation can occur. The amount of inflation depends
on the initial and final value the sneutrino field which plays the
role of the inflaton. When the critical value φ ∼ φc is reached the
above local minimum ceases to exist and the Universe makes a
transition to the global minimum

φ+ = 0, φ− ≈ √
ξ/g0 (15)

and inflation stops.
At the local vacuum φ± = 0, the tree potential receives con-

siderable radiative corrections given by the standard Coleman–
Weinberg formula in the terms of the split masses of the φ±
superfields as2

2 The kinetic terms, near the origin φ± = 0, are

A(n)
∣∣∂μNc

∣∣2 + g(n)
(|Dμφ+|2 + |Dμφ−|2)

.
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	V = 1

32π2

∑
±

M4±
g2(n)

ln

(
M2±

g(n)Λ2

)

− 1

16π2

M4(0)

g2(n)
ln

(
M2(0)

g(n)Λ2

)
,

where

M2± = M2(0) ± g̃2ξ g(n).

Thus, we finally obtain

V ≈ g̃2

2
ξ2 + g̃4ξ2

16π2
ln

(
φ4

g2(n)Λ̃4

)
, (16)

where we have suitably chosen the cutoff to absorb the constant
factors.

Let us conclude the presentation of the model by discussing
the mass-scales involved. We have already assumed that the scale
of the right-handed neutrino mass MR is much smaller than the
other scales involved. The assumed range of MR is between 1010

and 1014 GeV. Apart from the reduced Planck scale M ∼ 2.4 ×
1018 GeV, the only other scale appearing is the Fayet–Iliopoulos
scale

√
ξ . There is a well-known constraint for ξ coming from the

formation of cosmic strings [11], namely

3.8 × 1015 GeV �
√

ξ � 4.6 × 1015 GeV. (17)

In order to safely ignore contributions from the right-handed neu-
trino mass MR , we should have

M2
Rφ2 � g̃2ξ2 �⇒ MR � g̃ξ/φmax.

Taking
√

ξ ∼ 4.6 × 1015 GeV and g̃ ∼ O (0.1), for φmax ∼ M , we
obtain

MR � 1012 GeV.

Note that the non-minimality of the Kähler potential will not mod-
ify this significantly, since, for sub-Planckian values of n, A(n) ≈ f0
and the physical mass is just M∗

R = MR/
√

f0 with f0 ∼ O (1).
In the local vacuum the scalar potential is well approximated

by the constant g̃2ξ2/2 plus the radiative corrections part (16).
Assuming that the slow-roll approximation is valid, namely φ̈ �
Hφ̇ and (φ̇)2 � V (φ), the classical evolution equations are

3Hφ̇ ≈ − V ′(φ)

A(φ)
,

H2 ≈ V (φ)

3M2
�⇒ dφ

d ln a
≈ − M2

A(φ)

V ′(φ)

V (φ)
. (18)

The above expression can be integrated to give the number of e-
folds N as

N = ln

(
a f

ai

)
≈ 1

M2

φi∫
φ f

dφ A(φ)
V (φ)

V ′(φ)

= 2π2

g̃2

ni∫
n f

dn

(
f (n) + 3nf (1)(n) + n2 f (2)(n)

1 − n g(1)

g

)
. (19)

Anticipating n � 1, we approximate and obtain

N ≈ 2π2

g̃2

ni∫
n f

dn

(
f0 + n

(
4 f1 + g1

g0
f1

)
+ · · ·

)

or
Fig. 1. The Kähler coefficient f0 as a function of ni .

g̃2

2π2
N ≈

(
f0(ni − n f ) + 1

2

(
n2

i − n2
f

)(
4 f1 + g1

g0
f0

))
. (20)

The comoving curvature perturbation, in terms of the potential
(16), is

Rc = H2

2π |φ̇| ≈ V 3/2 A

2π
√

3M3|V ′|
= π√

2
√

3g̃

(
ξ

M2

)(
φi

M

)(
f (ni) + 3ni f (1)(ni) + n2

i f (2)(ni)

1 − ni
g(1)(ni)

g(ni)

)

≈ π√
6g̃

(
ξ

M2

)(
φi

M

)(
f0 + ni

(
4 f1 + g1

g0
f0

))
. (21)

Matching this to the observed value Rc ≈ 4.7 × 10−5 and choosing√
ξ ≈ 4.6 × 1015 GeV and g̃ ≈ 0.1, amounts to the constraint

√
ni

(
f0 + ni

(
4 f1 + g1

g0
f0

))
≈ 0.705. (22)

Similarly, (20), for N ∼ 65, can be thought off as an equation con-
straining n f .

As a very rough approximation, we shall assume that f1 ∼ f0
and g1 ∼ g0. The range of values for f0 is shown in Fig. 1 for a
range of sub-Planckian values of ni . Assuming that inflation ends
when the value nc is reached, we may identify

n f ≈ nc = 2g̃

λ
g0

√
ξ

M
. (23)

For the chosen values, of
√

ξ ∼ 4.6 × 1015 GeV and g̃ ∼ 0.1, this
corresponds to nc ∼ 0.38 × 10−3(g0/λ) and requires a small (but
not unnatural) coupling λ ∼ g0 O (0.01). In Fig. 2 n f is plotted as a
function of ni .

Let us now consider the slow-roll parameters ε , η and ζ . They
are given in terms of the potential and its derivatives. We have

ε = M2
(

V ′

V

)2

≈ 1

8ni

(
g̃

π

)2(
1 − 2ni

g1

g0
+ O

(
n2

i

))
, (24)

η = 2M2 V ′′

V
≈ − 1

2ni

(
g̃

π

)2(
1 + ni

g1

g0
+ O

(
n2

i

))
, (25)

ζ = M2

2

√
V ′′′V ′

V 2
≈ 1

4
√

2ni

(
g̃

π

)2(
1 − n

g1

g0
+ O

(
n2

i

))
. (26)

The corresponding spectral index ns is
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Fig. 2. n f as a function of ni .

Fig. 3. Spectral index ns as a function of ni .

ns = 1 + 2ηi − 6εi ≈ 1 + 2ηi

≈ 1 − 1

ni

(
g̃

π

)2(
1 + ni

g1

g0
+ O

(
n2

i

))
(27)

and it is plotted in Fig. 3 for the choice g̃ ∼ 0.1 and g0 ∼ g1. From
this plot one can immediately see that our values for the spectral
index are compatible with the corresponding value from observa-
tional data, ns = 0.963+0.014

−0.015 [12].
We have assumed that the right-handed sneutrino that drives

inflation is the lightest one. It is well known that this sneutrino
through its lepton violating processes can produce the desired lep-
ton number asymmetry. Its decays (Ñc → L̃∗ + Hc∗) will reheat

the Universe to a temperature T R = 1.4 × 1010
√

M∗
R(GeV)/1010 ×√∑

j |Y1 j|2/10−6. In order to avoid overproduction of gravitinos

this temperature must not exceed 106–107 GeV. This corresponds
to the preferred values Y ∼ 10−6 and MN ∼ 1010 GeV. Note how-
ever that it is possible that a late time entropy production will
dilute the gravitino density without the need of small Yukawa cou-
plings. Apart from the ubiquitous gravitino problem, there is also
another issue, namely the problem associated with the decays of
the heavy fields φ± , a typical problem of all models of D-term
inflation. These decays can lead to a potentially high reheating
temperature causing overproduction of gravitinos. Note however
that the subsequent decay of the right-handed sneutrino at a lower
temperature will produce additional entropy that can sufficiently
dilute gravitinos. The precise way this can occur depends on the
range of various parameters.

Let us now conclude summarizing the main points of this Let-
ter. We have considered the right-handed neutrino extension of
the MSSM that realizes neutrino masses through the see saw
mechanism. We extended this model further with a U (1) gauge
group under which all standard fields are neutral apart from a
pair of MSSM singlets φ± . Suitable symmetries, such as R-parity
and discrete R-symmetries, restrict the superpotential couplings
of these fields to a class of non-renormalizable operators. As it
stands the model can realize the scenario of D-term inflation with
the inflaton being identified with the right-handed sneutrino field.
Considering also non-minimal corrections to the Kähler potential
but staying in the sub-Planckian field space, we arrive at inflation-
ary predictions compatible with existing data, thus, establishing
the possibility of right-handed sneutrino driven inflation as a vi-
able scenario.
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