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The dynamics of global topological defects are investigated. The stability towards radial
rescaling of global monopoles and vortices is verified and virial theorems connecting the
potential and gradient energies are obtained. The validity of these theorems is demonstrated
numerically. The angular monopole instability first discussed by Goldhaber is also examined. It is
shown that even though his are correct, this instability manifests itself as motion of the
monopole core rather than unwinding. The interactions of global defects are studied both
analytically and numerically. An analytical derivation of their interaction potential is followed by
numerical simulation verifying the predicted potential. Using boosted field configurations we
demonstrate the existence of critical velocities for defect scattering and annihilation.

1. Introduction

Topological defects are predicted by many particle physics models to form
during phase transitions in the early universe. Such phase transitions are caused by
spontaneously broken symmetries leading to a manifold of degenerate vacua with
nontrivial topology. Several types of defects may form depending on the topology
of the vacuum manifold: domain walls, vortices [1], monopoles or textures. If the
broken symmetry is gauged, the emerging defects have finite energy and their mass
is concentrated in a small core. On the other hand, the breaking of a global
symmetry may lead to defects with diverging mass, due to the long range of the
Nambu-Goldstone field. Such divergences, even though unphysical for isolated
defects, are easily realized in a cosmological setup. The horizon scale, which is the
typical distance between global defects, provides a natural cutoff for their energy
density.

The vast majority of the literature had until recently focused on gauged defects.
There are two basic reasons for this. First, most grand unified theories predict the
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existence of local defects. In order to include broken global symmetries one would
have to extend the grand unified theory models. Thus, even though broken global
symmetries are not inconsistent with the well known models, there is less theoreti-
cal motivation to consider global defects. Second, the study of their formation and
evolution on large scales is more complicated than the corresponding study for
their gauged counterparts. This is mainly due to the long-range Nambu-Goldstone
field which makes the use of simplified actions {(e.g. the Nambu action for vortices)
inappropriate for describing their evolution.

Recently however, the study of global defects has attracted significant attention.
This is due to several reasons. First, their long range interactions rapidly increase
their correlation length to the maximum allowed by causality: the horizon scale.
Thus global defects are more efficient in forming very-large-scale structures in the
universe than their gauged counterparts. This interaction has an additional impor-
tant effect: it introduces an efficient decay mechanism which prevents them from
dominating the energy density of the universe. For example, global monopoles do
not contradict standard cosmology [8,9,12] in contrast to their local counterparts.
Finally, global defects are interesting toy models on which the field theory of the
more complicated gauged defects may be studied.

In order to understand the cosmological effects of global defects like monopoles
and vortices, it is important to study both their gravitational field (7,8], and their
dynamics and interactions [3]. Attempts to study the dynamics of vortices and
monopoles have led to various controversial points. Many open issues remain: Is
the Nambu action appropriate for describing the evolution of vortices? Are global
monopoles stable? What is the detailed form of the interaction between global
monopoles?

This paper is an attempt to shed some light to the questions involving the
dynamics of global monopoles. The dynamics of vortices are also studied, in order
to make contact with previous studies. :

The monopole stability towards radial rescaling and angular perturbations is
investigated in sect. [2]. If Derrick’s theorem was valid for global monopoles they
would be unstable towards radial rescaling of the field configuration. However
their linearly divergent mass makes Derrick’s theorem inapplicable. A careful
study shows that the global monopole field configuration is in fact stable towards
radial rescaling. A virial theorem connecting the gradient with the potential energy
is also derived and its validity is demonstrated by numerically solving the field
equations. Similar results are obtained for vortices. Sect. 3 focuses on the effect of
angular perturbations. It is demonstrated that for an isolated monopole with an
imposed cutoff, it is energetically favorable for angular perturbations on a fixed
spherical shell to grow. However, it is shown that this growth of perturbations does
not correspond to monopole unwinding; it corresponds to monopole motion. The
obtained semi-analytical results are demonstrated by numerical simulations. The
interactions of global monopoles are studied in sect. 4. The detailed form of the
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interaction potential is obtained and its dominant part at large distances is verified
by a numerical simulation. The scattering of two highly-relativistic global monopoles
produces a ring-shaped vortex-like configuration which subsequently expands at
right angles with respect to the line of incidence. It is also demonstrated that the
scattering of a monopole—antimonopole pair with velocities larger than a critical
one (about equal to 0.8¢) with respect to the center of mass, does not lead to
annihilation. Similar results are obtained for the case of vortices. Finally in sect. 5
conclusions are drawn with regard to possible implications of our results for the
cosmological effects and field theoretical properties of global monopoles.

In the following analysis we normalize fields, masses and space coordinates to
dimensionless quantities using the scale of symmetry breaking that gives rise to the
investigated topological defects.

2. Radial rescaling: Virial theorems

The simplest lagrangian density that describes the evolution of global monopoles
is of the form

Z=19.@ ®— NP ®-1)° (2.1)

where @ is a Higgs field with an O(3) symmetry. This lagrangian gives rise to a
global symmetry breaking O(3) — O(2). The vacuum manifold is S? implying the
existence of spherically symmetric, topologically non-trivial solutions. Such
monopole solutions are described by the ansatz

®=f(r), (22)

with boundary conditions f(r —» 0) - 0 and f(r - ») > 1. It is easy to show that
the boundary conditions f(r — R) — 1 would only modify f(r) by terms of O(R™?).
This 1s a three-dimensional scalar field configuration. Derrick’s theorem states that
any finite-energy scalar field configuration in d >3 (d is the number of spatial
dimensions) is unstable towards shrinking and collapse. Since the energy of the
global monopole is linearly divergent, Derrick’s theorem is not applicable in this
case. However this does not automatically imply that global monopoles are stable
towards radial rescaling. To address this issue we must check whether the energy
of the monopole corresponding to a rescaled field f(ar) has a minimum with
respect to the rescaling parameter «. The energy resulting from such a rescaling is
of the form

4
EP=

- Wﬂ-a”l[llm(aR) +IP(aR) + ta~?IP(aR)], (2.3)
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with

12
I™(aR) =f0"Rdrr2f )

Ip(aR) = [““ar f2(r),

0

I7(aR) = [“dr r2(£2(r) - 1)}, (2.4)

0

where R is a cutoff naturally imposed in a cosmological setup and r has been
rescaled by the scale of symmetry breaking 7 to the dimensionless form YA nr. The
superscript m stands for “monopole”. Stability implies that the conditions

oE,
Ja

9
a=1

?’E,

da?

>0, (2.5)

a=1

are satisfied. Using (2.3) in (2.5) we obtain
I™(R) +IM(R) + 3I™(R) =R, (2.6a)
IP(R) +I"(R) + $IP(R) >0, (2.6b)

where we have ignored terms of #(R™!) but have included all terms of #(1).
Thus, the virial condition (2.6a) which connects the monopole gradient and
potential energies is exact to & (1).

Since I, I*, I{* > 0 condition (2.6b) is obviously satisfied. Due to the diver-
gent term, both sides of (2.6a) are positive. Therefore it may have a solution which
must be identical to the solution of the monopole equations of motion resulting
from variation of the lagrangian (2.1). It is straightforward to solve these equations
of motion numerically, using the ansatz (2.2). The solution f(r) is linear for small r
as may be verified analytically. Its slope at the origin is 0.50 while the correspond-
ing result for vortices [3] is 0.58. Using this solution we may calculate the quantities
I, I" and IJ" corresponding to the radial gradient, angular gradient and
potential energies respectively. In fig. 1 we plot the left-hand side of eq. (2.6a)
versus the cutoff R. The result is a straight line with slope 1.03 + 0.05 in good
agreement with the slope of 1.0 predicted by eq. (2.6a). Thus not only has the
radial stability of global monopoles been verified but also we have derived a virial
theorem connecting the gradient and potential energies to the cutoff scale.
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GLOBAL MONOPOLE VIRIAL THEOREM
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Fig. 1. Numerical verification of the virial theorem for global monopoles. Predicted slope: 1.0.
Numerically obtained slope: 1.03 +0.05.

The physical reason for the radial stability of the global monopoles is the
balance between the potential energy term I"(R) which favors shrinking and
collapse of the field, and the diverging angular gradient term I;°(R) which favors
expansion of the monopole configuration.

It is straightforward to extend the above analysis to the case of vortices. In this
case the field of the lagrangian density (2.1) is a complex singlet while the
symmetry breaking is U(1) — I, giving rise to vertices since the vacuum manifold is
now S'. The vortex ansatz has the cylindrically symmetric form

®(p) =f(p)%, 2.7

where @ is written as a two component vector on the complex plane. The rescaled
energy per unit length of the vortex is

dEY

o

d/

=m[IY(aR) + I (aR) + a™2I}(aR)], (2.8)
with
I (aR) = [“ap pf"(p),

ard
13(aR) = [ R{fl(p),

13(aR) = [“ap p(13(p) = 1), (29)
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VORTEX VIRIAL THEOREM
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Fig. 2. Numerical verification of the virial theorem for vortices. Predicted value for potential energy I5:
1.0. Numerically obtained value: 1.0 +0.02.

0

where the superscript v stands for “vortex”. Minimizing with respect to a {(condi-
tions (2.5)) leads to the virial theorem

Iy(R) =1, (2.102)
I(R) = 3. (2.10b)

Notice that (2.10a) is exact for R — «. Obviously (2.10b) is always satisfied given
(2.10a). 1t is straightforward to solve the equations of motion for f(p) numerically.
The slope of f(p) at small p is 0.58 in agreement with ref. [3]. In order to check
the virial condition (2.10a) we plot Iy(R) versus the cutoff R in fig. 2. The
numerical results clearly verify the analytical prediction (2.10a).

Thus the radial stability of global vortices has also been checked, their potential
energy has been analytically calculated and the result numerically verified.

3. Angular instabilities of global monopoles

The stability of global monopoles towards angular perturbations clearly plays a
crucial role on the evolution of the field configuration after the phase transition.
This issue has recently become the source of significant controversy. In ref, [2]
Goldhaber claimed that there is an energy gradient favoring the unwinding of an
isolated but finite-size global monopole, after an initial angular perturbation. On
the other hand the claim of ref. [4] was that in fact such an energy gradient does
not exist and only unrealistically large thermal fluctuations could lead to monopole
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unwinding and decay. This section is an attempt to shed some light on this
controversy. Using semi-analytical methods it will be shown that the claims of ref.
[2] are valid. There are energy gradients that favor the amplification of an initial
angular perturbation on any spherical shell surrounding a global monopole.
However, it will be shown that the smaller the spherical shell the larger these
gradients are. Thus the unwinding will start from the inner shells and then proceed
to the outer ones. Such an evolution can not be distinguished from the motion of
the monopole core in the direction of the reduced field magnitude. This evolution
is indeed seen in our numerical simulation of an angularly perturbed global
monopole.

In order to study the effect of angular perturbations it is convenient to use an
ansatz which describes the monopole configuration on a fixed spherical shell of
radius r much larger than the monopole core. This ansatz is of the form

@, =f(8) sin 6(8) cos ¢,

@, =f(0) sin 8(8) sin ¢,

@,=f(8) cos 6(8). 3.1
It is straightforward to use this ansatz to calculate the energy of the monopole on

the fixed spherical shell. The change of variables 8 — y = In(tan(8 /2)) significantly
simplifies the form of the final expression. The result is

o

=1 [dy de| f?+ (F2=1)" +£2(8" + sin%d)|, (3.2)

cosh?y

where a = ;An?r? and the prime denotes derivative with respect to the new

angular variable y. This is the same expression obtained in ref. [2] (up to some
typos which we have corrected and ignoring the time dependence of 8). The
crucial observation made there was that the part of (3.2) that depends on 8 is
exactly the energy of a sine—Gordon soliton. Therefore we may substitute 8 in (3.2)
by the sine—-Gordon solution which minimizes this part of the energy functional.
This argument however, assumes that f’ is negligible. Indeed, it is easily verified
that the equations of motion for f and 6 accept a sine—-Gordon solution for 8 only
if f’(y) is zero. Such an assumption is valid for a monopole solution but not for an
unwinding configuration. However, it may be shown that neglecting f'(y) does not
change the final result. Therefore, here we will neglect f'(y) to simplify the
analysis.
The sine—Gordon solution to be substituted in eq. (3.2) is

6(y)=2tan"! e, (33)
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Fig. 3. The angular dependence of the field f(y) that minimizes the potential energy. Notice the
angular dependence that is introduced for y, # 0.

where y, is an arbitrary constant resulting from translational invariance. Using
(3.3) in eq. (3.2) we obtain the potential energy density

£ a(f2-1)’

U(f) = + : 4
(f) cosh?(y —yo) 2 cosh?(y) (3.4)
The function f,,(y) that minimizes the above potential energy density is
cosh?y
2
minl Y) = 0’ @ —— 5~
Fou() cosh?(y —y,)
cosh?y cosh?y
fam(y)=1- (3.5)

- a4y ——
a cosh?(y —y,) ~ cosh?(y —y,)

This function is shown in fig. 3 for y,=0 and y, # 0.

For y, =0 the field is spherically symmetric and is identified with the monopole
configuration (notice that f=1— (1/2a) gives the correct asymptotic radial power
law behavior for monopoles). However for y, # 0 the field varies with the polar
angle and for y, larger than a critical value determined by a = cosh?y /(cosh*(y —
¥o)) it goes to zero along the south pole 8 =7 (y — +). In this case the
configuration becomes trivial and nothing can prevent the monopole from unwind-
ing on the particular shell determined by «.

The question that should be addressed is the following: Given an initial
topologically non-trivial spherically symmetric configuration (y,=0), on a fixed
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Fig. 4. The total potential energy for « =1, a = 2 and & = 100 obtained by using the f(y) of fig. 3 in the
integral for the potential energy. The energy maximum increase with a. Notice that configurations with
large | yq! (i.e. high angular distortion) are energetically favorable for all values of a.

shell of radius r are there energy gradients that will favor a configuration with
yg— +o(—x), leading the global monopole to unwind from the south (north)
pole? To address this question we have calculated the total potential energy:
Vil o) = [12 dy U(f,i.(y, yo) for a range of values of y,. The results are
plotted in fig. 4 for « =1, @ =2 and « = 100. Notice that even though in all cases
_the spherically symmetric solution y,=0 is a stationary point of the energy
functional, it is also an unstable point. Energy gradients tend to amplify any initial
angular perturbation. This result remains valid even if we include the gradient
term f’(y) in the energy functional.

The important thing to observe in fig. 4 is that the energy gradients that favor
unwinding decrease as the shell radius increases. Therefore it is the inner shells
that develop a zero along the south pole and unwind first. Clearly, such an
evolution is identical to motion of the monopole core in the direction § = or
8 = —a depending on the initial perturbation.

It is interesting to check the above semi-analytical results using a numerical
simulation. In order to study the way the monopole instability proceeds we can not
use the o-model approximation used in ref. [9] since this would artificially exclude
the possibility of reduced magnitude of the field. Therefore, we have solved the
full equations of motion obtained from the lagrangian (2.1) on a 483 lattice, using a
leapfrog algorithm. The boundary conditions used were reflective (the first deriva-
tive of the field was taken to be zero at the boundaries) while the lattice spacing
and timestep were dx = 0.5 and d¢ = 0.1 respectively. The Courant stability crite-
rion was therefore satisfied. The fact that the timestep is smaller than the Courant
number dz = 0.3 introduces a small numerical viscosity implying a spurious de-



674 L. Perivolaropoulos / Global topological defects

crease of the wave mode amplitude on large timescales. On the timescale of our
simulation however there was no significant effect from numerical viscosity as can
be verified from the energy conservation tests that we performed. The equations of
motion solved during the simulation are

2P = (D - 1). (3.6)

The energy conservation was better than 3% for all runs (up to 1000 timesteps).
We first used initial conditions corresponding to an unperturbed monopole:
& =r/r. The field configuration kept oscillating without violating spherical sym-
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metry. These oscillations are the result of competing angular gradient (favoring

expansion) and potential (favoring collapse) energies as explained in sect. 2. We

then perturbed the monopole configuration by decreasing the field magnitude

along the south pole (8

7). This was achieved by the initial conditions: & =

(r/r)2m — 0)/27]. The evolution of this perturbed configuration is shown in fig.

5. As predicted, the initial perturbation gets amplified, the field tends to zero for

7. However, it is the inner shells that unwind first, resulting to motion of the

monopole core in the direction of the perturbation.

0:

The physical reason for this instability is the competition between the angular
gradient energy, which favors reduced field magnitude and subsequent unwinding

t=20.0

Deccy of GLobal Mornopoles.

(b)

o

S

S T R S S L S A R b 2 B2
N S N R R A A R I B I
N N R N N A I I v
N N A U Y S0 S L L A 2 =
/////!kw\iff///////////f//////////////////,///,,,f&
N N S N N R R R A A S S S R R A R AR A
NS RN N R A R R S A B R R s
MNNN——— RN N N R R R R A R R A R A A S B S S A
AR S l//////l///l/////////////////////////// o
AR S N R R A R A R R R A R R AR B RS NN Ly
NS S NN R R A L A S S S R d# =
AR S R N N S R A R A R JJ
AR S N N A N e R R S T 1!
A S R R N S N NN R R R AR A A A =
NS RN N N N S T A N W N U U 0 A g
NN N \\\ff///////////lfff////,//////,“..‘\\\\\ =
NS T S NS NSNS e e s SANAANANNNN NNV
SRR SRR N W W WL W WA U L U B B0 A A A Qv Qi
NS RN NN L N W WA TR R SR U B O A A 2 I 2 IS IS
/’flrlvll\\Hl\ J R O N U W WA VR T Vit rr777vy -
————— e, e e e SNNNANNNANNN S Ao
fffffffff e e e SSNNNNNNNN A A S S e
————— e et e e —————————e ettt TN NNNNN S A e
o e NN N | S e ——,— uLD
vvvvvvvvvvvvvvvvv Lo
gt W a f A R R R R e e 4
-—— D et DR o e N IR TR N N N NL N N skt
fffffffff R e A R R N A N
o T e s e s T T e /A A L VNN O
e T Il T T T T T TS/ PV AN NNNANS T T T
\\\"”f/f’ o TS APV -
\\\\9!///4-.-\\\\\\\\\k¥&51\\\\\\\\\\\*“,,,,///f
ARttt A I B 4 A I I I I B NSy S
SR O St S A A A A 3 3 I B IR IR T IS\ S ]
T —— T A A ST LSSV NNNNNE
S —— Al\\b\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘“’r/// |
S T N T e S S S YA AT ] )
\\\\\%IH/Hf1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ o
M R S et S S S S S AR AR ARSI NN \li
e A A S A S A S A AR AR AN Yy
T T e A S A T S S S S AAAAAAAS S S S
AR LA AT S S ST S A AS S S
P R e S S it S A A A A A A AR RN NN T
ST T e S S S Y S ST
N R A A Sttt g P P G S S S AN A NN N NN N
Y S A A A sttt S O VIV OV VNN NN NN NN R
J ST T T R A St G G G O S O S LS OYENENENEREIIA
J ST T AR AL bt S I IS AN R R R RN
Y e SRR OR D Ittt RS S SOt d e N R R RARNIEY
| T T T T T T T T T ]
Z 0°02 0°s1 00! 0°s 00 0°5- 0°0l1- 0°S1- 002~ 0°Se-
z

Fig. 5b.



L. Perivolaropoulos / Global topological defects

676

and the potential energy, which tends to confine the field in the vacuum manifold
and thus prevent the unwinding. The angular energy density is larger for the inner

shells and therefore the unwinding starts from them. We also performed a similar

simulation for an angularly perturbed straight vortex, with similar results. The

vortex core indeed moved in the direction of reduced field magnitude.

The above analysis has focused on an isolated perturbed global monopole with
no velocity. In a realistic situation however, monopole interactions will introduce
non-zero velocities and specific types of boundary conditions. It is important to

understand what is the effect of the angular perturbation on a finite energy system
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Fig. 6. The evolution of monopole—antimonopole pair. (a) ¢ = 0, v = 0; (b) ¢ = 7.5. The pair attracts and

annihilates into radiation.
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LGLobal Monopoles.t

of monopoles. We have evolved the axially symmetric monopole—antimonopole
system shown in fig. 6a. As is shown in sect. 4 there is a constant attractive force
equal to 472 in such a monopole—antimonopole system. As predicted the monopole
configurations are not unwinding uniformly. Instead the unwinding proceeds from
the inner shells to the outer. Unless the monopole cores are held fixed during the
evolution, this behavior manifests itself as acceleration of the monopole cores

To summarize, even though the results of this section agree with the arguments
of ref. 2, it is shown that these arguments should not be interpreted as monopole

towards the origin where annihilation into radiation takes place (fig. 6b).
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collapse but as motion of the monopole towards the region of the reduced field
magnitude. This conclusion is consistent with other recent studies [4,5].
4. Interactions of global defects
The study of the interaction of global defects is important in order to under-
stand their general evolution properties. In this section we focus on the interac-

tions of a/vortices and b/global monopoles, using both analytical methods and
numerical simulations. In all cases, we will consider a pair of global defects placed
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L. Perivolaropoulos / Global topological defects 679
at a distance 2a from each other, much larger than their core radius. The
interaction potential will be derived in each case and it will be verified by a
numerical simulation of evolution. Boosted configurations will also be considered
in order to study the existence of critical velocities.

Consider a pair of vortices with core centers at p; and p,. The field configura-
tion away from the vortex cores is well approximated by [3]

DG (p) =+,

(4.1)

where 6, and 6, are the azimuthal angles with respect to the two centers and the
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upper (lower) sign refers to a vortex—vortex (vortex—antivortex) pair. This ansatz
was introduced in ref. [3] and was motivated by that of Abrikosov [10] for two
gauged strings. It clearly gives the right topological charge for each of the vortices
and smoothly interpolates between them. It is straightforward to obtain the
interaction energy density between the two vortices by subtracting the sum of the
individual vortex energies from the combined configuration energy. Thus, ignoring
the deformation of the cores due to the interaction, we have

ei o= H[(Vor) - (Vo) - (Vo)) (4.2)
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where @, = e’®' and @; =e*'". The resulting energy density is

o> —a?

681

=t ———s (4.3)

where a is half the intervortex distance and p is measured from the center
between the two vortices. Notice that the interaction energy density is cylindrically
symmetric even though the field configuration is not.
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The interaction potential is obtained by integrating (4.2) up to a cutoff L. The
result is
log( L? + a?) a*
+
2 = 7

L
Et= 277/(-) dp pet(p) = £27 —1-log(a)

= F2m(log(a) —log(L)), (4.4)
where the assumption L > a > 1 was used. The corresponding force is

£ dE* 29 45
= — [ +—’ .
he =i (45)

giving repulsion (attraction) for the vortex—vortex (vortex—antivortex) system. The
result for the interaction force is in agreement with ref. [3] even though a different
method was used there.

In order to verify the derived interaction potential we have performed a
numerical simulation evolving the initial conditions (4.1). The code described in
sect. 3 was used, with appropriate modifications to account for the substitution of
global monopoles by vortices. In particular egs. (3.7) were solved with @ a two
component field. The initial separation between the two vortices was five core-sizes.

The repulsion in a vortex—vortex configuration is demonstrated in fig. 7, while
in fig. 8 the attraction and annihilation into radiation of a vortex—antivortex pair is
shown.

String-String Interaction
40'_r_|—1_r—rﬁ_1—r—]-—v-ﬁ‘v—r—]——r—x“v—r—[——l—-r—r—r-7—r—
KRR X XXX XX X X X X x X x X

30— —

20— .

Ekin

2 2.25 2.5 2.75 3
LoglR)
Fig. 9. The Kkinetic energy per unit length of a vortex—vortex configuration during evolution, as a
function of the log of the vortex separation R (+ symbol). The points are on a straight line to a good
approximation. The slope is 7.4+ 1.0 consistent with the predicted value 27. The conserved total
energy is also plotted (X symbol).
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The precise form of the interaction potential (4.3) may be checked by plotting
the kinetic energy E,,, = ®? versus the log of the vortex separation R =2a.
Energy conservation implies that E, , = const.— E,;, and therefore, by (4.4), the
slope of E,;,(log(R)) for a vortex—vortex pair should be positive and equal to 2.
In fig. 9 we plot E,;, versus log(R) (+ symbol in plot) as well as the conserved
total energy (X symbol in plot). The function E,;, (log(R)) is indeed a straight line
to a good approximation with slope 7.4 + 1.0 which is consistent with the analyti-
cally predicted value 2.
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mass frame necessary to overcome the repulsive interaction were 0.95¢.
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The velocity effects on the interactions were studied by boosting the vortex
configurations. In the vortex—vortex system, scattering through 90° was observed
for scattering velocities larger than 0.9 with respect to the center of mass (fig. 10).
For smaller velocities no scattering occurred due to the repulsive interaction.
Notice that the emerging scattered vortices are not identical to the original ones:
the field phase is rotated by 90° in their vicinity. These vortices may be viewed as
the evolved highly distorted field lines that were connecting the original two
vortices. Pursuing this observation further may lead to a plausible analytical
understanding of the right angle scattering of vortices which is in turn closely
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related to the intercommuting of cosmic strings [11]. Such an investigation is
currently in progress.

The vortex—antivortex system failed to annihilate when the collision velocities in
the center of mass frame were larger than the critical value v, = 0.9 (fig. 11).
Notice however that as in the vortex—vortex case the field around the vortices that
survived annihilation has acquired an additional phase which in this case is equal
to m.

The above analysis for vortices was extended to the case of global monopoles. A
pair of monopoles was considered at positions r; and r, along the z-axis at +z,.

t=0.0.v=0.95
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Fig. 11. Vortex—antivortex scattering above the critical velocity v, = 0.9¢. The initial velocity was 0.95c¢.
(a) t=0, v=095¢c; (b) t =7.5. Notice the additional phase equal to 7 acquired by the emerging
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The two-vortex ansatz may be easily generalized in the case of monopoles as
&, =sin(0, £ 6,) cos ¢,
&, =sin(#;, + 8,) sin o,
&, =cos(8, +6,). (4.6)

Notice that both signs in this case refer to monopole—antimonopole pairs (this is
easily seen by calculating the topological charge around each pole). In spite of this,
it will be seen that the interaction is repulsive (attractive) for the plus (minus) sign.
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Thus strictly speaking the statement that ‘“‘monopoles—antimonopoles always at-

tract” is incorrect.
Using the same method as for the case of vortices we may obtain the interaction
energy density for each configuration. The result is

2 2
or = 22 ma)
(r*+a?)
2(r?—a?
Si:n—_— _(ﬁz. (4.7)
(r*+a?)

The interaction potential obtained by integration is

22— q? L (L*+3a%)
E,-J;t=2f d3r———2 = —8ra tan~! —) +4rLl —————
L (r2+a2) a 3(L +a )

4L

= —47% + =

r?—a? 12 -24°

L
Eq = —2f d*r——— =167a tan“l(—) —87L—5— =87’ — 8wL,
L (r2+a2) a L +a

(4.8)

Monopole-Monopole Interaction
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Fig. 12. The kinetic energy of a repelling monopole—antimonopole configuration as a function of the
monopole distance R (+ symbol). The functional relation is linear to a good approximation. The slope
is 17+ 3 consistent with the predicted value 27 2. The conserved total energy is also plotted (X symbol).
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with L > a = R/2 > 1 where R is the monopole—antimonopole distance and L is

the imposed cutoff. The corresponding force is
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Fig. 13. Scattering of a repelling monopole—antimonopole pair. The initial velocities in the center of
mass frame were 0.95¢. (a) t =0, v = 0.95¢; (b) t = 7.5. An expanding ring of vorticity emerges after the

scattering. Its projection on the x — z-plane is shown in fig. 13b.
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12 we plot the field kinetic energy E,;, versus the monopole separation R for the
Boosted configurations were also studied in the monopole case. Initial velocities
v; = 0.95 were sufficient to overcome the repulsive interaction and lead to scatter-

We have verified the above interaction potential for monopoles by evolving the
repulsive case. The slope predicted by the derived interaction potential is 272. The

initial configuration (4.6). The code described in sect. 2 was used with the
appropriate initial conditions. As predicted, the interaction for the configuration
with the plus (minus) sign was repulsive (attractive). Fig. 6 demonstrates the
attraction and annihilation of a “minus” type monopole—antimonopole pair. In fig.

slope obtained by the simulation is 17 4+ 3 consistent with the analytical prediction.
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ing. The finite size of the lattice may become a problem in simulating the

scattering of highly Lorentz contracted defects. In particular scattering velocities

larger than a threshold that depends on the lattice spacing may lead to disintegra-

tion of the scattering defects [3] followed by violation of energy conservation. No

such problems were present for the scattering velocities considered here. The
emerging configuration after the scattering was a ring shaped vortex expanding at

right angles with respect to the line of incidence. The projection of this configura-
tion on the x—z-plane is shown in fig. 13. This is consistent with the corresponding

result for vortices where the scattered defects could be viewed as remnants of the
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Fig. 14. Scattering of attracting monopole—-antimonopole pair with velocities above the critical v, = 0.8¢.

The initial velocity was 0.7c. (a) t =0, v = 0.7¢; (b) t = 7.5. The emerging configurations are reflected as

in the case of vortices.
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By boosting an attractive

field lines connecting the two incident vortices.

monopole-antimonopole configuration we determined the critical velocity v, above

which the monopoles failed to annihilate and went through each other (fig. 14).

The obtained critical velocity is v, = 0.8, slightly less than the one for vortices. This
difference is probably due to the stronger interactions between monopoles which

rapidly accelerate them at small distances.

At present there is no detailed analytical understanding for the existence of the
above described critical velocities. An investigation in this direction is currently in

progress.
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5. Conclusions

A wide range study of the dynamics of vortices and global monopoles has been
performed. Our results have several implications for both the cosmological effects
and the field theoretical properties of the above topological defects.

The radial stability of both vortices and global monopoles has been verified by
showing that the hamiltonian has a minimum with respect to a radial rescaling
parameter o. This minimum is a manifestation of the balance between the angular
gradient energy and the potential energy of the defects. It leads them to oscillate
radially after their formation until (and if) they stabilize by dissipation. Such
oscillations were indeed seen in our simulations but are expected to rapidly damp
out in an expanding background.

The virial theorems obtained as the conditions for minimizing the defect energy,
provide analytical information for the non-asymptotic behavior of the vortex and
global monopole ficlds. Generalizing this method may lead to obtaining higher
moments of the defect fields by introducing parameters and minimizing with
respect to them.

Even though we have shown that the instability of ref. [2] will not be realized in
realistic situations where the monopole cores are free to move, it may have some
consequences of academic interest. For example a perturbed monopole whose core
has been artificially fixed (e.g. by boundary conditions or by interactions with a
background) may indeed go through the unwinding described in ref. [2]. Such cases
have been reported in refs. [5] and [9].

The derivation of the interaction potential for the global defects studied in this
paper may be used to investigate the statistical mechanics of these defects. Such
analytical calculations could be important especially in cases where large scale
numerical simulations are impossible as in the case of vortices in three dimensions.

Our numerical simulations demonstrating the interactions of global defects have
led to several interesting results. First, it was shown that the right-angle scattering
of vortices is not strictly speaking a scattering process. The field around the
emerging vortices has an additional phase equal to 7 /2 compared to the phase of
the incident ones. This additional phase is easily understood if the scattering
process is viewed as an evolution of the field lines. The emerging vortices are the
evolved field lines that were connecting the original vortices (fig. 10). This
argument extended to the case of global monopoles would predict an expanding
ring of vorticity forming after the scattering. This ring is indeed seen in our
simulations (fig. 13).

Topological defects with attractive interactions and relative velocities larger
than a critical value v, failed to annihilate in our simulations. The critical velocity
measured just before the cores started overlapping was 0.9¢ for vortices and 0.8¢
for global monopoles. The difference was attributed to the stronger interactions of
global monopoles. The long-range interactions of global defects are expected to
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introduce highly relativistic velocities during their evolution. Therefore the effects
of the critical velocities should be carefully considered in any numerical or
analytical study of global defect evolution. In particular the global monopole
lifetime before annihilation takes place may increase significantly if the effects of
critical velocities are considered.

The form of the derived interaction potential and the results of the simulations
have shown that it is not the topological charge that determines the type of
interaction between global monopoles. In particular defects of opposite charge
may either attract or repel depending on the field configuration. For example,
defining a configuration (&, @,, &) as a monopole (i.e. having positive topologi-
cal charge), we have two distinct types of antimonopoles (i.e. having negative
topological charge): (a) (®,, @,, — D) where only one of the field components has
been reflected and (b) (—®,, —~P,, —P,) where all components have been
reflected. As we have shown analytically and numerically, the former anti-
monopole configuration is attracted to the monopole while the later is repelled.
Therefore the critical factor that determines the topological defect interactions is
not their topological charge; it is the relative phase of their field configurations. A
detailed study of the effects of the relative phases of topological defects is in
progress.
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