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Abstract

We present some methods of determining explicit solutions for self-dual supermembranes in 4q1 and 8q1 dimensions
Ž .with spherical or toroidal topology. For configurations of axial symmetry, the continuous SU ` Toda equation turns out to

play a central role, and a specific method of determining all the periodic solutions are suggested. A number of examples are
studied in detail. q 1998 Elsevier Science B.V.

Nowadays, a revived interest in membrane theory
w x1 has been spurred by the fact that M-theory, which
is considered as the leading candidate theory for
explaining the non-perturbative net of string duali-
ties, contains membranes and their dual five-branes

w xin eleven dimensions 2 . The main activity in recent
literature has been the classification of the BPS
spectra of various string compactifications which
pressumably M-theory owes to organize in a com-
pact and intuitive way. Among the BPS states, there
is an important class made up of the Euclidean

Ž .solitons instantons . This sector plays a role in the
understanding of the non-perturbative vacuum struc-
ture of string compactifications.

1 Supported by the European Community under Human Capital
and Mobility Grant No ERBCHBICT960773.

Some years ago, we introduced, at the level of the
bosonic membranes, a specific self-duality, which in
modern language is nothing but S-duality for Eu-

w xclidean instantons 3 . The self-dual membranes solve
Ž .SU N Nahm’s equations for a specific N™` limit

Ž .where SU N becomes the area-preserving diffeo-
morphism group on the surface of the membrane, a
symmetry that exists in the light-cone quantization of
the membranes.

Recently, extensions of the self-duality of mem-
branes in 7, 8, 9 dimensions have been introduced
w x4,5 . In the present work, we develop new methods
for solving the self-duality equations in three and

w xseven dimensions 6 . In the case of toroidal com-
pactifications, the role of string excitations of self-
dual membranes becomes visible and we exhibit
explicit examples where analytic solutions are found.
In three, and also in seven dimensions, and for the

0370-2693r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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case of cylindrical symmetry, the self-duality equa-
tions reduce to continuous Toda equations which
have been studied in order to determine self-dual

w xEuclidean solutions of Einstein equations 7 . In the
present work, we provide a first-order non-linear
system, the axially-symmetric three-dimensional
self-duality equations, which at the same time pro-
vide a Lax pair of the axially symmetric Toda equa-
tion. Inverting this non-linear system, we find a
completely integrable linear system, which we ex-
plicitly solve and, thus, we present a method to
determine all the solutions of the axially symmetric

w xToda equations 8,9 .
We start our analysis by reviewing the salient

w xfeatures of the theory. In Ref. 10 it was pointed out
Ž .that in the large-N limit, SU N YM theories have,

at the classical level, a simple geometrical structure
Ž . Ž .with the SU N matrix potentials A X replacedm

by c-number functions of two additional coordinates
u ,f of an internal sphere S2 at every space time

Ž .point, while the SU N symmetry is replaced by the
infinite-dimensional algebra of area-preserving dif-

2 Ž 2 .feomorphisms of the sphere S called SDiff S .
Ž .The SU N fields are Hermitian N=N matrices

which in the large N limit are written in terms of the
spherical harmonics on S2, while commutators are
replaced by the Poisson brackets on S2:

E A E A E A E Am n n m
A , A ™ A , A s y .� 4m n m n Es Es Es Es1 2 1 2

1Ž .

In three dimensions the self-duality relation is de-
fined by the equation 2

E sB , 2Ž .i i

where E and B are the electric and the magnetici i
Ž .SU ` colour fields. Since

E Ai
E s , is1,2,3 3Ž .i E t

and
1B s ´ A , A , 4� 4 Ž .i i jk j k2

2 The anti-self dual case E sy B can be treated similarly.i i

where ´ is the antisymmetric tensor in three di-i jk

mensions, one obtains the following equations

1Ȧ s ´ A , A , i , j,ks1,2,3. 5� 4 Ž .i i jk j k2

These equations solve the Gauss constraints and
the second-order Euclidean equations of motion for

Žthe bosonic part of the supermembrane fermionic
. w xDOF set to zero in the light-cone gauge 11 . In

what follows we discuss methods of solution of the
above three-dimensional system.

w xIt has been suggested in Ref. 3 that one can use
quaternions to transform the above equations into a
matrix differential one. We define the matrix

AsA s , is1,2,3, 6Ž .i i

where s are the standard Pauli matrices. The matrixi

function A satisfies the equation

ı
˙ � 4Asy A , A . 7Ž .

2

In the case of the sphere, which has been analysed in
w xRef. 3 , the Darboux coordinates are j scosu ,1

Ž 2 .j sf. The infinite-dimensional group SDiff S2
Ž .has SO 3 as the only finite-dimensional subgroup

which is generated by the three functions e s1

cosfsinu e ssinfsinu , e scosu :2 3

� 4e ,e sy´ e 8Ž .i j i jk k

Ž .Looking for factorized SO 3 -symmetric solutions,
Ž .we set AsT t e , which impliesi i

ı
Ṫ s ´ T ,T , 9Ž .i i jk j k4

Ž .that is, the Nahm equation for an SU 2 monopole of
w xmagnetic charge ks2 12 . We thus obtain for each

choice of solution of the Nahm equations for mag-
Ž .netic charge ks2 eight-dimensional moduli space

a solution of the self-duality equations.
This system of equations is known to be inte-

grable, and particular solutions for specific boundary
Ž Ž .conditions at ts0, ts2 simple poles with SU 2

.matrices as residues can be expressed in terms of
w x w xelliptic functions 13 . In Ref. 3 , zero total angular

Ž .momentum axially symmetric solutions of the sys-
Ž .tem 5 have been explicitly determined in terms of

Ž .the functions e and the solutions of the SU 2 Todai

equation.
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In the following we will show that the require-
ment of axial symmetry on the above system leads to
a first-order system for two functions, which plays
the role of the Lax pair for the continuous axially
symmetric Toda equation. Indeed, the ansatz

A sR s ,t coss , A sR s ,t sins ,Ž . Ž .1 1 2 2 1 2

A sz s ,t 10Ž . Ž .3 1

leads to the system

zsRRX 11Ž .˙

˙ XRsyRz , 12Ž .
where the prime now is used to declare differentia-

E 3Ž .tion with respect to s i.e. . Combining Eqs.1 Es1

Ž . Ž .11 and 12 we obtain the axially symmetric con-
tinuous Toda equation

d2C d2eC

q s0, 13Ž .2 2dt ds1

where R2 seC. Solutions of this equation have been
discussed in the literature in connection with the
self-dual 4d Einstein metrics with rotational and

w xaxial Killing vectors 7,8 . Here though, we note that
Ž .s runs in a compact interval 0,2p for torus and1

Ž .y1,1 for the sphere.
At this point, we want to provide a specific

example of a solution with separation of variables of
the Toda equation, in the case of spherical topology
Ž .s s cosu , s s f . Separation of variables1 2
Ž . Ž . Ž . Ž .R s ,t sR s R t corresponds to C s ,t s1 1 1 2 1
Ž . Ž .Q s qT t which leads to1

d2T
Tyke s0 14Ž .2dt

d2eQ

qks0, 15Ž .2ds1

˙Ž .Multiplying 14 by T we obtain

1r2dT n
T's 2k e q , 16Ž .ž /dt k

3 We observe that, if we replace s by ns , n integer, then2 2

this implies that t™ nt in the original solution.

Ž .where n is a new constant. Eq. 16 is easily solved,
nT y2making use of the transformation e s f , thek

final result being

sinu
R u ,t sk 17Ž . Ž .

sinh k t y tŽ .0

z u ,t skcoth k t y t cosu , 18Ž . Ž . Ž .0

where k is a new constant. Interestingly, this solu-
w xtion coincides with that of 3 representing axisym-

Ž .metric ellipsoids, which was derived from the SU 2
Ž .Toda equation with respect to the time t .

We now exhibit a variation of the method of Ref.
w x Ž .14 where by inversion of the non-linear system 12
we construct a linear one and we determine all
solutions. Indeed, by going from the pair of variables
Ž . Ž .R, z to S,T , which we take to be the inverse

Ž . Ž .mapping s ,t ™ R, z , we find1

ES E T
y s0 19Ž .

E u E Õ

ES E T
qu s0, 20Ž .

E Õ E u

where usR2 and Õs2 z. This system is linear and
we can easily separate the variables u and Õ, Ss
Ž . Ž . Ž . Ž .S u S Õ , TsT u T Õ . We introduce two con-1 2 1 2

stants of separation,

ES rE uslT , yuE T rE usmS1 1 1 1
21Ž .

E T rE ÕslS , ES rE ÕsmT .2 2 2 2

Ž .We see that S and T are trigonometric hyperbolic2 2

functions of Õ depending on whether the sign of the
Ž .product lPm is minus plus . Also, from the first

order equations of S and T , assuming analyticity1 1

around us0, we obtain unique solutions T A1
Ž . Ž . 'J k R and S ARJ k R , and k s lPm . By0 0 1 1 0 0

appropriate linear combinations of the solutions of
S ,T and S ,T , we can determine functions S and T1 1 2 2

which, by inversion, give functions R, z, periodic in
s . As a demonstration, consider the solution1

Ss ıAcos k z RJ ık R qk z 22Ž . Ž . Ž .0 1 0 1

TsAsin k z J ık R yk ln R , 23Ž . Ž . Ž .0 0 0 1

where A,k ,k are real constants. If space is com-1 0

pactified in the z-direction with length L, and we
want s to range from 0 to 2p , we choose k s1 1
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2prL and k snk for some integer n. The above0 1

then represents a membrane with n branches extend-
ing to Rs`, which, at some critical time, collides
with itself and separates into a finite piece with
toroidal topology, exhibiting n ripples within the
period L, and n infinite pieces that fly away. We
leave the question of explicit constructions for a
future work. We should note, though, that the lin-

w xearization method of Ref. 14 should be examined in
more detail in order to construct other interesting
examples.

We finally discuss in three dimensions two sorts
of toroidal compactifications where by double com-
pactification we derive string self-dual solutions.
First, when the three dimensional space topology is

2 1 w xR =S , we doubly compactify the membrane 1 .
We choose as an example A sns and A s3 2 1,2

Ž .A s ,t . Then it is straightforward to see that1,2 1

A q ıA must be an analytic function of s y ınt,1 2 1

where n is the winding number. These are world-
sheet string instantons.

The second compactification is on the three-di-
mensional torus T 3, where windings for various
embeddings of toroidal membrane lead to string
excitations with non-zero center-of-mass momentum.
We discuss this case below, where more general
seven-dimensional embeddings are studied.

We now extend our discussion in seven dimen-
sions, where the fully antisymmetric symbol of three

Ž .dimensions ´ in Eqs. 5 is replaced by the corre-i jk
w xsponding octonionic structure constants C 4,5 :i jk

1Ẋ s C X , X , 24� 4 Ž .i i jk j k2

where the indices run from 1 to 7 while C isi jk

completely antisymmetric and has the value 1 for the
following combinations of indices:

1 2 4 3 6 5 7
C s . 25Ž .2 4 3 6 5 7 1i jk ½

3 6 5 7 1 2 4

The second-order Euclidean equations and the Gauss
law results automatically by making use of the Ci jk

˙� 4 w xcyclic symmetry X , X s0. In Ref. 5 , one classi i

of three-dimensional solutions which are embedded
in the seven-dimensional system was found accord-
ing to the identifications

'X ™A , X ™A r 3 , 26Ž .3 3 " "

Ž .where the seven coordinates X , is1,2, . . . ,7 arei

grouped in terms of the complex coordinates X s"

X " ıX ,, Y sX " ıX , and Z sX " ıX and1 2 " 4 5 " 6 7

we have made the ansatz that X sZ s ıY , whileq q y
A is the three-dimensional solution. The seven-di-",3

mensional solution is essentially the three-dimen-
sional one rotated by an orthogonal transformation in
7-space. Therefore, any three-dimensional self-dual
solution automatically generates a corresponding 7
dimensional one.

The generalization to the string-like solution of
Ž .the self-duality Eq. 24 in 7 dimensions is straight-

forward. We assume the form

X s ,t sA s qB s qP tq f s ,s ,t ,Ž . Ž .i 1,2 i 1 i 2 i i 1 2

27Ž .
with is1, . . . ,7, and f being a periodic function of
s and A, B integer vectors. Then we obtain1,2

P sC A B 28Ž .i i jk j k

E E
1ḟ sC A yB f q C f , f .� 4i i jk j j k i jk j k2ž /Es Es2 1

29Ž .
Since f is a periodic function with respect to s ,1,2

we can expand it in terms of an infinite number of
strings, depending on the coordinate s :1

f s ,s ,t s X n s ,t e ins 2 . 30Ž . Ž . Ž .Ýi 1 2 i 1
n

Ž . Ž .Then, from the self-duality Eqs. 28 , 29 we find
that the winding number of the membrane is related
to the center-of-mass momentum, which is transverse
to the compactification directions A and B. Also,
the infinite number of strings are coupled through
the following equations

E
n nẊ s ,t sC A nyB XŽ .i 1 i jk j j kž /Es1

ı E X n1 E X n2
j kn n2 1q C n X yn X .Ýi jk 2 k 1 jž /2 Es Es1 1n qn sn1 2

31Ž .
The string-like solution corresponds to the particular
case E f rEs s0, where we obtaini 2

E Xj0 ˙X sX s ,t ™X sC B . 32Ž . Ž .i i 1 i i jk k Es1
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This equation is formally solved in vector form by

E
tMX s ,t se X s ,0 , 33Ž . Ž . Ž .Es1 11

where we defined the 7=7 matrix M sC B .i j i jk k

Explicit solutions are found by expanding X ini

terms of the eigenvectors of M. In fact, since M is
real and antisymmetric, the real 7-dimensional vector
space decomposes into three orthogonal two-dimen-
sional subspaces, each corresponding to a pair of
imaginary eigenvalues "ıl, and a one-dimensional
subspace, in the direction of B , corresponding to thei

Ž 2 . 2zero eigenvalue. Since, in addition, M syB di j i j
Ž .qB B as can be checked , we see that the imagi-i j

< <nary eigenvalue pairs are all "ı B . Therefore the
problem decomposes into three 3-dimensional prob-

Ž .lems one for each subspace of the kind we solved
before. The general solution is then

X Žn.q ıX Žn.sF s y ıBt , ns1,2,3 34Ž . Ž .1 2 n 1

Ž0. < <X s B t , 35Ž .
Ž Žn. Žn..where X , X are the projections of the mem-1 2

brane coordinates on the n-th two-dimensional
Ž0. < <eigenspace and X sX B r B is the projection oni i

B . As an example, if we choose B in the thirdi i

direction, B sBd , we havei i3

X q iX sF s y ıBt 36Ž . Ž .1 2 1 1

X q iX sF s y ıBt 37Ž . Ž .5 4 2 1

X q iX sF s y ıBt 38Ž . Ž .6 7 3 1

X sBt . 39Ž .3

Considering, now, the case when at ts0 we have
Ž .a proper not string-like membrane configuration,

with its periodic part dependent on both variables,
we write

X s f cl q f , 40Ž .i i i

where f cl sA s qB s . The equation of the gen-i i 1 i 2
Ž .eral case 24 can be written in a symbolic form, by

defining the matrix differential operator

E f E E f Ej ji kL sC y 41Ž .f i jk ž /Es Es Es Es1 2 2 1

as a vector equation

1˙ clfs L q L f . 42Ž .Ž .f f2

It is possible to solve this non-linear matrix differen-
tial system by iteration of the solution of its linear
part,

gsL cl g . 43Ž .˙ f

The above differential system can be written as a
matrix integral equation as follows

1 X XtL yt Lf cl f clfsgq e e L fdt . 44Ž .H f2 t

It is easy to show that the infinite iteration of the
solution g solves the non-linear differential system
and, moreover, when the initial configuration is a
string, the second part of the integral equation is zero
and the problem is reduced to the homogeneous case.
The general solution of the homogeneous system
Ž .43 is

g t setL f cl g ts0 , 45Ž . Ž . Ž .
Ž . Ž .where f ts0 sg ts0 .i i

w xAt this point, we would like to note that in ref 5
for the case of zero-winding we have been able to
separate the time and the parameter dependence of
the coordinates of the octonionic self-dual mem-
brane. The time equations are generalizations of

Ž .Nahm matrix Eqs. 9 , where in the place of the
Ž .three SU 2 -T matrices, a pair T ,S appears. Ai i i

generalization of the Euler Top equations using octo-
w xnions has been proposed in ref 6 , where it was

shown that this system is an integrable one and the
explicit set of seven conservation laws including
their algebraic relation has been provided. This sys-
tem of equations is a specific case of the generalized
Nahm equations when T ,S are proportional to thei i

Pauli matrices. Thus, for every solution of the gener-
alized Euler Top system, one can obtain the corre-
sponding self-dual membrane.

We close our short analysis by pointing out the
existence of a different kind of self-duality equations
which satisfy also the second-order Euclidean equa-
tions which has been introduced for self-dual Yang-

w x 4Mills fields in Ref. 15 . This system of equations
could be generalized to membranes embedded in

Ž .dimensions Dsdim G where G is any Lie algebra.

4 We thank T. Ivanova for bringing her work with A. Popov to
our attention.
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This system of self-duality equations is an integrable
Ž .one as it was pointed out to us by T. Ivanova but

the geometrical significance for the dynamics of the
self-dual membrane is not obvious to us. On the
other hand, it is interesting to see what type of
world-volume membrane instantons are obtained by
this method.

We would like to conclude with few remarks. A
systematic approach for the solutions of the seven-
dimensional equations has been proposed in the case
of toroidal compactifications which turn out to pro-
vide world volume membrane instantons which play
an important role in the understanding of the vacuum
structure of supermembrane theory. The question of
the surviving supersymmetries for various classes of
solutions is an important problem for the determina-
tions of the BPS states of the supermembrane. The
richness of the self-duality equations concerning
string excitations suggest that probably it is the right
framework of examining the non-perturbative unifi-
cation of string interactions. This goes along the
lines of an old suggestion that supermembranes are
string solitons or coherent states of interacting strings.
It remains to be seen if the strong coupling problem
of string interactions is tamed by the determination
of the correct non-perturbative string vacuum.
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