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The model described by the Lagrangian 

L=~(i~.a+goo)~+~(o#o)2-~o ° 1  2 2 +  ~ __g°n: 
n=4,6...o~ n[ 

is studied in 1 + 1 dimensions. Wilson's renormalization prescription is adopted and a 
non-trivial infrared stable fixed point is obtained in the mean-field approximation. We 
demonstrate that at the fixed point the operators 0020 andgona n for n = 4, 6, ... o o  

become irrelevant and the theory becomes equivalent to the Gross-Neveu model 

i, = ~(i-~ • o) ~ + ½ f o ( ~ )  2 . 

The equivalence is independent of the values of the dimensionless bare couplings of the 
original model (universality). Similar results are obtained in the case of other models in 
3 + 1 dimensions. 

1. Introduct ion 

In this paper we discuss in 1 + 1 dimensions the mode l  described by the Lagrange 

densi ty 

o o  

L = ~(i3' " a +go o) ~ +½(atao') 2 1/02o2 + ~ go2n o2n 
- 2 0  ~ • n=2 

The mot iva t ion  for the study o f  this mode l  was provided by previous work  concer-  

ning the equivalence o f  the Yukawa and four-fermion theories expanded in a mean-  

field expansion [1] and by previous work  o f  Wilson on field theore t ic  models  in 4 - e  

dimensions [2]. 
The mode l  is expanded in a saddle-point expansion (mean-field expansion)  after 

the fermion degrees o f  f reedom have been exact ly  integrated out .  The resulting 

* Supported in part by the United States Department of Energy under contract no. EY-76-C-02-3130. 
A002 (Task A - Theoretical). 
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theory is super-renormalizable in this expansion just as it is in ordinary perturbation 
theory. Following Wilson we give the dimensional bare couplings a "cut-off" depen- 
dence and keep the resultant dimensionless bare couplings fixed while this cut-off 
is sent to infinity. Thus, we define 

go = 3`oA and gon = 3`on Az for n = 4, 6 . . . . .  

Conventionally the dimensional couplings are kept fixed. The renormalized theory 
that results from Wilson's limiting prescription is exactly equivalent to all orders in 
our expansion scheme to the Gross-Neveu model which is not a super-renormaliza- 
ble theory. We shall show that the equivalence of the two theories occurs because 
they correspond to the same infrared fixed point of the renormalization group. 

The mean-field expansion is being used here mainly for two reasons. First, it 
provides us, to lowest order, with a non-trivial fixed point as long as we adopt the 
already stated prescription. Second, in the case of the Gross-Neveu model it coin- 
cides with the 1/N expansion in which this model has been extensively studied [3]. 

When we approach the fixed point, certain operators appearing in the Lagrangian 
have vanishing contributions. This situation is the field theoretic analogue of a sys- 
tem that approaches the critical region. Near criticality, certain operators become 
irrelevant. As we shall show, the meson kinetic energy operator becomes irrelevant 
and consequently, the meson field ceases to be a fundamental field. This is to be 
expected since at the fixed point the renormalization factor of the meson field va- 
nishes. The vanishing of a renormalization factor is a compositeness condition. The 
compositeness of the o-operator converts the original theory of interacting fermions 
and mesons into a theory of self-interacting fermions. 

With the prescription we use, the fixed point is reached whatever the values of 
the bare dimensionless couplings 3,0,3,04,3,06 .... Thus, the renormalized theory at 
the fixed point is independent of the strengths of all original interactions. This is 
universality [4]. 

The above phenomena are not solely characteristic of the Yukawa-type model. 
We also study a model with only scalar fields in 3 + 1 dimensions. This is described 
by the Lagrangian 

_ ~moq J + lgox(~2 + l(~#X)2 _ ~/aoxl" 2.2 +~-.vg°3 X 3 +g044! X4 " 

We demonstrate that in the mean-field approximation, this model is equivalent to 
the ordinary ~4 theory 

L ( ~ ) = 2 ,  u ~ -~rr'o~° +4-T0 • 

A possible physical interpretation of our approach is that the original Lagran- 
gian contains a fundamental mass scale (the mass of some super heavy boson MB). 
Making the assumption that all dimensional bare couplings have a dependence on 
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this mass scale converts our theory into a critical theory since we are interested in 
momenta and masses in the infrared region q, m < <  MB [5 ]. The possibility that 
high-energy physics could be described as a critical phenomenon has received con- 
siderable attention. However, meaningful field theoretic models in four-dimen- 
sional space-time with non-trivial fixed points wait to be discovered. 

2. The model 

Let us consider in one space and one time dimensions the model described by 

L=-~( i ' r  • a + g o o )  t ~ + ½ ( ~ , o )  2 _~/ao 0122  +,=2~ ~g°2" 02n . (2.1) 

This model has been extensively studied elsewhere concurrently [6]. For complete- 
ness we repeat some of the results and in some cases reformulate them according to 
our present approach. 

The generating functional of the field theory described by (2.1) is 

z ( z  7, ,7) = f dod~d~ exp [i f d 2 z ( L  + So +-~ + ~'7)] • 

J, ~- and r/are c-number sources coupled to the fundamental fields appearing in (2.1). 
The fermions enter quadratically and can be integrated out exactly. The resulting 
functional in Euclidean space is 

= e w = fdo exp/~S-1 ~'/-t- tr In S -1 + ½o(-a 2 - /a~)  a Z(J,  -~, rl) 

"go__~ on / (2.2) + 
n=4,6 ,  ...** F/! J 

For convenience we have introduced 

s - l ( x ,  y) = (iTzaUx +goo(X))  6(2)(x _ y ) .  

Up to this point we have made no approximation. The generating functional has 
been expressed as an integral over boson degrees of freedom only. Fermion Green 
functions can still be derived from it by taking variational derivatives with respect 
to the fermion sources. 

Our next step is to introduce by hand a parameter e in the generating functional. 

Ze = e w/e = .,,f d° ,  e - F  (o'J'-~'n) le • 

Our approach will be to expand Z e in a Laplace expansion [7]. The connected func- 
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tional W = e In Z c has the form 

~ ¥ ~ ' W  0 + e W  1 + 6 2 [ 4 / 2  + . . . .  

The order of the approximation is identified by the power of e. If  our integral were 
an ordinary integral this expansion would be an asymptotic expansion in e as long 
as e is small. In our case e is just a book-keeping device and at the end of the compu- 
tations it must be set equal to one. One of the renormalizod parameters has to be 
identified asan alternative small parameter. The expanded functional is 

Ze ~ e -F{°°}/e exp[ -~ t r  lnA] { 1 -  8 f f f f c ( x y z w ) A - l ( x y ) A - X ( z w )  

/ 

+ f f f f f fB(xyz)B( .oo  t2A-' 

+ 3 A - l ( x y ) A - X ( z a ) A - l ( b c ) ]  + O(e2)/ (2.3) I 

/ 
Here, we have introduced the mean field o o defined by the minimum conditions 

~o oo 62F = A(xy)  > 0 (2.4) 6F = O, 6-~o ao 

The other functions appearing in (2.3) are defined as 

64F 
C(x,y,z, wl-5o(xlSo(  (z) o(w) , 

OO 

63F 

B(x, y, w) =- ~tr(x) 6o0,) 6o(z) °o 

The lowest-order connected functional of  our model according to (2.3) corre- 
sponds to the tree approximation of the effective Lagrangian F(oo, J ,~ ,  71 }. 

gon 0~ W o = ~ S - l r ~ + t r l n S  -1 +½Oo(-a 2 - t a ~ ) o o +  ~ ~ o + J ° o  
n = 4 , 6 . . .  

The original Lagrangian (2.1) was invariant under the discrete transformation 
~k -~ 7s ~O, o -~ - o .  A bare mass for the fermion destroys this symmetry. We assume 
that the exact vacuum of the theory does not respect this symmetry and thus breaks 
it spontaneously. In the spontaneously broken theory the vacuum expectation value 
of o is non-zero and a fermion mass proportional to it is generated. Of course, no 
Goldstone boson is associated with such discrete symmetry breaking. The lowest- 
order fermion propagator is * 

s - l ( P ) = g - m ,  

• We cou ld  have  s ta r ted  w i t h  a ba re  mass  m O. In  t h a t  ease the re  w o u l d  be  no  r eason  to  e x c l u d e  
odd  self-coupl ings.  
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where 

m - -  - g o  Oo • 

The set of all connected Green functions can be generated from the connected 
functional by taking variational derivatives with respect to the sources• The 1PI 
vertex functions can also be derived from the effective action by taking variational 
derivatives with respect to the classical fields• 

The classical meson field to lowest order coincides with the mean field defined 
by (2.4). The lowest-order mean-field condition for non-zero mean field takes the 
form 

/-to 2 = 2ig~ f dzk G gon ag-2 (2.5) J ~ (k2 - ('go Oo )2 ) -  I + .=4,6 .... ~ 1)! " 
9 

The a-propagator to zeroth order in the absence of sources is easily derived and is 

62T 
6%6%_A.g l (p2)=p2_la2+g2i i ( .p2)+ n=4,6~ .... (n "~ 2) ! g 0 n  Og--2 

The function 11(/72) stands for the fermion bubble and is 

d2k g d2k 
lI(p z) = i trf(-~)2S(k) S(k + p) = i t r J  ~ (/~ - m) - '  (/¢ +/~ - m) -1 

• r d 2 k  k 2 + k . p + m  2 . r d 2 k  1 k 2 _ p 2 x (  l _ x ) + m  2 
= 2, J(-2~)2 [k 2 _ ~ 2 ] ~ i  ~ . ~ - - -  mZ ] = 2, J ~ - ~  oJ (Ix k2 +p2x(1 _x)_m2)2  

The logarithmic divergence of the fermion bubble can be cancelled by the logarithmic 
divergence already contained in the bare mass/~ according to (2.5). In other words, 
one subtraction suffices. Instead we will subtract twice and introduce wave-function 
and mass renormalization according to the following conditions at zero momentum 

o-zo 
To lowest order we have g2 = g~Zo. Thus, the renormalized propagator is 

~ol(p2) = ZoAol(p2 ) = p2 _//2 + g2 sub2ii(p2) . 

The subtraction symbol stands for II(p 2) - II(0) - p 2  [aii/ap2 ]0. The wave-function 
renormalization Zo is easily calculated from its definition. It is 

( +Jz_o e: 
Zo = 1 12rrm2 ] -- 1 - 12rim 2" (2.6) 

Consequently, the renormalized coupling is related to the bare coupling through 

1 1 1 
g2 g~ + 121rm 2 • (2.7) 
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The higher boson vertex functions are obtained from the effective action by 
taking variational derivatives with respect to the classical meson field. We find * 

f d2q 
r ( ~ ° ) ( p ,  ... p ~ - i  ) = i ( - g o )  K t r j ~ - ~  (S(q) S(q + P l )  ... S(q + Pl  + ... + P ~ - I ) )  

+((K - 1)! XT) + ~ gon (n--K)! (2.8) 

Here the K-fermion polygons, 

d2q 
II(K)(Pl ... PK-1 ) = i ( -1 )  K tr f ( - ~ ) 2 S ( q )  ... S(q + Pl  + ... PK -1 ) ,  

are finite and consequently the u 0 vertex functions do not require any renormaliza- 
tion. Although no subtraction is required, we subtract once at zero momentum and 
define renormalized o self-couplings through the normalization conditions 

= gK 
F(K°)(0 ..... 0) Z~/2 , K = 3, 3, 5 .... oo. 

The even boson self-couplings can be expressed in terms of the bare self-couplings 
through the introduction of  new renormalization factors Z K . 

gK = goKZrJ2 /ZK , K = 4, 6 . . . . .  oo. 

Our oversubtraction scheme has been designed to parametrize the renormalized 
theory in a form that will bring to the surface the limiting equivalence we have in 
mind. Going back to the K a vertex functions we define the renormalized functions 
a s  

F(K°)(Pl ... PK -1 ) = Z~/2 P(KO)(pl ... P r - I  ) .  

In agreement with our normalization conditions the renormalized vertex functions 
are 

-~(KO)(p, ... p K _ 1 ) = g  K +(g)K subol {ri(K)(p I . . . pK- I )}  ( ( K -  1)! XT) (2.9) 

The fermion polygons with all momentum zero can be easily calculated. They 
are given by the formula 

_ m 2 - - K  

II(K)(0, ..., 0) rr(K -- 2)(g -- 1) ' K = 3, 4, 5, 6 ... oo 

The renormalization factors ZK are given by the following expression. 

1 = (gO)K(K -- 3)!m 2.K (go) K gon/(go) n 
+ - -  ~ ( - m )  n-K , (2.10) 

ZK Itg 0 gOK n=4,6... (H -- K)! 

* The symbol (XT) means: crossed terms. 
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r takes even values. Substituting in the above expression the renormalized couplings, 
we obtain the sum rule 

1 - (g)K (K - 3)! m2_ ~ + (g)_~ ~ gn/(g) n Zn(_m)n_K.  (2.11) 
gK rr ge  n=4,6 . .  (n  - K)! 

The renormalized o-propagator is defined by the equation 

122 
z o  - - g on(o) - n  gon = ... ( . - - 2 ) !  °go - 2  

In terms of  the gap equation (2.5) the above is reduced to 

122 g2 ~n)n ( - m ) n - 2 ( n  - 2) =__  +g2 ~ Z n - ~ - ~ .  . (2,12) 
ff n=4,6... 

The renormalized theory has been parametrized in terms of  the renormalized coup- 
lings g, g3, g4, gs ,  and the fermion mass m. The renormalized meson mass is not an 
independent parameter but is a function of  the couplings and m .  The renormaliza- 
tion factors Z o and Z n are finite functions of  these parameters. Thus (2.12) can 
serve for the computation of  this mass. 122 is not the physical meson mass but is 
related to it in a simple way. The physical meson mass is a solution of  

2 -  2 Zx~ 10a~) = 0 or 12a - 12 - g~ sub2r l (~ )  • 

3. The fixed point 

The bare theory was parametrized in terms of  the dimensional couplings go, go4, • 
and the mass 122. The divergence associated with 122 suggests the presence of  another 
mass in the bare theory, the cut-off A 2 . In the renormalized theory the meson mass 
is exchanged for a new mass parameter, the fermion mass m which arose due to the 
asymmetric vacuum. We are going to make the assumption that the bare couplings 
are scaled in terms of  the cut-off according to 

g~o = k~ A2 and gon = Xon A2 for n = 4, 6 .... o~ (3.1) 

Here ~,o, Xo4, Xo6, ... are dimensionless. The renormalized theory is characterized 
by the couplings g, ga, g4, gs ,  ... and the mass m. We can define dimensionless renor- 
malized parameters using the scale of  the renormalized theory m; 

g2 = X2m 2 and gn = Xn m2 n = 3, 4, 5, 6 . . . . .  (3.2) 

Here X, ?~a, X4, ... are dimensionless. 
The renormalizabili(y of  the model can be summarized in the statement 

P(n°)(Pl ... Pn-1 ; rn, X 2 , X 3 .... ) = znl2p(n°)(p 1 ... Pn-x ; 12~, go ..... A2) - 
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Dimensional analysis implies that 

Z o = Z o  2 . . . . .  Xn . . . .  ; , 

Z~ =Z K z ..... kn .... ; . 

Considering the arbitrary vertex function p(no) and taking a derivative with respect 
to Inm while keeping go, go4 .... and A 2 fixed, we obtain 

m Om ]go ..... A2 "") ~-~ + K=3 ~ 3~(X2 .... ) --aXK 

_ n.Yo(~k2, ...)) ~(no)= (m aug]  0F (n°) 

~m Igo,...A2 aug 

We have introduced the well-known renormalization group 3 and 3' functions defined 
in the usual manner as 

~(x ~ .... ) = m-~m ~ , . . a~ '  

, , g = 3 ,  4 . . . .  o o ,  

&(~2 ...)- -a-mm/go,...Az 

70(~ 2 , ...) = (m O ln0m z ° ]  
l I 

~g0 ,-" -As 

Instead of expressing the right-hand side in terms of a derivative with respect to the 
bare mass Ug we can express it as a derivative with respect to the constant classical 
field o which is a "bare-mass parameter" related to Ug through the gap equation. The 
Callan-Symanzik equations then become 

o o  

m ~m + 3 ~ + K=a ~/3K ~ - n?°  P(n°)( '")  = zn°12m P((n+O°)(0; "'') 

Considering the analogous equation for the inverse fermion propagator, we obtain 

( a a )  =-Zlo/2 ( I - 2 7 ¢ ) / g .  
~m go""A 2 

Here 7¢ stands for the anomalous dimension of the fermion field. Thus, the Callan- 
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Symanzik equations take the form 
o o  

m +/3 ~ + ~ /3K - n~o ~(no)(...) = - -~(1  - 2~'~ ) P(('÷1)°)(0; ...) 
K=3 ~ g 

(3.3) 

For p~/m 2 ~ oo (asymptotic region) the right-hand side becomes negligible due to 
Weinberg's theorem and the Callan-Symanzik equations reduce to the renormaliza- 
tion group equations. This is the region that is of  interest in critical phenomena 
because that is where the correlation length of  the renormalized theory ~2 = 1/m 2 
becomes much larger than the length scale x 2 = 1/t92 we are looking at 

~ 2 /x2 - ~  ~ . 

The above equation becomes then 
o o  (0 0 t m -~m +/3 a-~ + K:3 ~ / 3 K  -~K - n~/° P(n°)(asym) ~ 0 

Starting from the definition of  the/3 and 3' functions we can calculate them in the 
zeroth-order mean-field approximation. The Yukawa-type coupling leads to a/3-func- 
tion 

The anomalous dimension of  the meson field is 

X 2 
3'°(X2)- 12~'" 

The/3-functions of  the boson self-couplings are easily computed to be 

.. . .  ) = XK(--2 + K')'o) -- - ~ ( 1  -- 2")'~ ) ,  /3~(x 2 

K = 3 , 4 , 5  . . . ~ .  

The/3-function of  the Yukawa coupling (fig. 1) has an infrared stable fixed point at 

DC~ ) 

12~ 

Fig. 1. 
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~k 2 = 12n. Examining the definition (2.7) of  the renormalized dimensionless coup- 
ling X 2 to this order 

1 m 2 1 1 

X 2 - A 2 X~ + i 2 . '  

we see that the limiting value X 2 = 12rr is obtained as soon as we take the cut-off to 
go to infinity, regardless of  the value of  the bare dimensionless coupling X g. Our 
renormalization prescription (3.1) has converted the theory into a theory sitting at 
the fixed point. The value o f  the renormalized coupling is independent of  the value 
of  the bare dimensionless coupling. The renormalization factor Zo to this order is 
according to (2.6) 

X 2 
Z o = 1 12n ' 

which vanishes at the limiting value ?t 2 = 12ft. The vanishing of  a renormalization 
factor is a compositeness condition. Later we shall see that at the fixed point the 
meson field ceases to be a fundamental canonical field and turns into a composite 
operator. The anomalous dimension of  the meson field takes its maximum value 
at the fixed point 

To(X 2 = 12r 0 = 1 .  

It is obvious from eq. (2.10) that our prescription (3.1) will make the renormalization 
factors Z K vanish as well. (2.10) can be written as 

when we take the cut-off to infinity we instantly have Z~ ~ 0, whatever the values 
of  XoK are. From (2.11) it follows that the vanishing of  the renormalization factors 
implies 

(X)~ K X K = - - (  - 3 ) ! ,  K =4,6,. . .~0. (3.4) 
rr 

The lowest order #-functions o f  the meson self-couplings are 

( + KX2'~ X~+I 

/ ~ = X  K - 2  12rr/ X 

At the fixed point X 2 = 12rr they become 

XK+I 
/3K=XK(g--2) Vr]- ~ . 

The choice XK = ((12zr)K/2/n)(g - 3)!, which agrees with (3.4) at the fLxed point, 
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makes the/~K functions vanish, as can be easily seen, so 

3K(3` 2 = 12rr ..... 3`n - (12~)n/2 (n - 3)! .. . .  ) = 0 ,  k = 3, 4, 5 ... .  
7r 

As we mentioned earlier, in the asymptotic region p2/m2 -+ o% the Callan-Symanzik 
equations reduce to the renormalization group equations. The 3-functions vanish for 
the critical theory, defined by the values 3`* = 1 ~  and 3`n = ((127r)n/Z/lr)( n - 3)!, 
and the anomalous dimension of  the meson becomes unity. Consequently, 

(m a n) ~(na)(p; m, 3`*) ~ 0 
~mm- 

A solution to the above equation is 

~(na)(p; m, 3,*) = mn,~,(p). 

From dimensional considerations we must have 

P(n°)(Op; m, X*) = pz-n~(no)(p; m, 3`*). 

For the two-point function the scaling law reads 

~(2a)(o~p~ ) = ~(2O)(p2). 

In order to verify this behavior let us re-examine the o-propagator for the limiting 
theory. Since, 

P(2°'(p2) =p2 -11' +mZ3`2 sub2olI(p2)=p2(l - ~l--2-~rr) -t12 +m23`2sub1II(p 2) 

when 3`5 ~ 12n the asymptotic behavior of  the propagator ceases to be ~ p2 and 
becomes 

F(2°)(P2) 2~ mS ln(P~2) • 
p - - ~  

Thus, the asymptotic behavior of  the limiting theory is drastically different than the 
asymptotic behavior of  the theory we started with. 

The renormalized theory at the fixed point is characterized only by the fermion 
mass m. The o-mass/2 2 is calculable. From (2.12) we obtain that/~2 = 12m2. The 
physical o-mass will be the solution of 

//2 = 12m 2 - 12~m 2 sub~II(u~) 
which reduces to 

sub~lI(/220) = 1  
ff 

and leads to ta2o = 4m 2 . Thus the physical o-mass is at threshold to this order of  
approximation. The values of  the renormalized couplings do not depend on the values 



K. Tamvakis, G.S. Guralnik / Irrelevant operators and equivalent fieM theories 235 

of  the bare couplings. That implies that the critical theory does not depend on the 
strength or the form of  the bare interaction Zn=4,6,...(,gon/n!) o n.  This is reminis- 
cent of  the analogous situation in critical phenomena where near criticality the 
detailed microscopic structure of  different systems becomes irrelevant (universality). 

4. ( ~ ) z  in 1 + 1 dimensions 

In this section we shall consider the theory of  a massless fermion field interaction 
via a quartic self-interaction 

£ = ~( i7 .  a) ~/, + ½fo(~k) 2 . (4.1) 

We have examined this theory elsewhere [1,6] but for completeness we restate some 
of  our previous results. 

The bare theory has no dimensional parameter apart from the cut -offA 2 . The 
bare coupling fo is dimensionless. The Lagrange density (4.1) can be rewritten as 

£ = ~(i~, a + goo) ~ - 1.2_2 
• ~,UoO • 

We have made the identification 

\ / . t  o / /.t o 

The reason that we rewrote the Lagrangian in terms of  a dimensionless scalar opera- 
tor a is that we plan to make contact with the Yukawa-type model of  the previous 
sections. There is no kinetic term for o of  course since a is not a fundamental meson 
field but an auxiliary variable. 

The fermions enter quadratically and can be integrated out exactly in the gene- 

rating functional. The resulting functional is expressed as an integral over the boson 
variable only. 

Z= --do e -P  (a,~,n,1} = --da exp(~S77 + tr j , 2 2 -I- Jo  } . 
- -  51200 

Here, as before S -x = i~ +go o. 
The functional can now be expanded in a mean-field expansion in exactly the same 

fashion as the theory of  sects. 2 and 3. The zeroth-order connected functional is 

Wo =-~S(oo)rl+trlnS-l(Oo) 1.2_2 +joo 
- -  ~la 0 u 0 

The mean field o o is defined by the minimum conditions 

~F = 0 ,  ~o~---~ " 

aO a 0 
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The first of them for a non-zero mean field a o takes the form 

la~ 2ig 2 : d 2 k  k 2 
= - e o a o ) 2 ) - ' .  

To lowest order the classical a-field, i.e. the vacuum expectation value of the opera- 
tor a, coincides with the mean field. A non-zero classical field breaks spontaneously 
the discrete 7s symmetry of the Lagrangian. As a consequence of a non-zero mean 
field the fermion acquires a mass m = - g o a o ,  as can be seen from the lowest-order 
fermion propagator. 

The zeroth-order a-propagator is 

A ; '  (p2) = -/l~ +g~H(p2) .  

H(p 2) is the fermion bubble that appears in sect. 2. Having in mind the Yukawa.type 
model, we renormalize the propagator imposing the following normalization condi- 
tions at zero momentum: 

Aa- i (o) -  Zo ' \ 3p: ]o =Z-~" 

The resulting renormalized propagator 

Z~I (p2)=p: _•2 +g~ sub~nfp:) 
is structurally identical with the analogous meson propagator of sect. 2. However, 
in the present case the renormalized coupling has a fixed value 

1- Z~"- l__.(aA~'l'~ g.~ ( 3II)o 1 
g2 g2 g ~ 0 P 2  ]o = - -  g°2 ~ = 127rm2" 

Thus, the dimensionless renormalized coupling has the fixed value ~2 = 12n. The 
a-mass is not an independent parameter either. Its value can be computed using the 
mean-field condition (gap equation). The mass is/a 2 = 12m z . The physical mass 
can be found in relation to p2. It is 

p2 = 4m 2 . 

The higher a-vertex are obtained from the effective action and to this order are 
just the fermion polygons 

d2q 
F(n°)(Pl ... P k - 1  ) = i ( -go )  k tr f ~ - ~  (S(q)  ... S(q + Pl + ... pk-1 )) ((t~ - 1)! XT) .  

Although the polygons are finite, we subtract once in accordance with the normaliza. 
tion condition 

P(k)(0 . . . . .  ) = g k / Z  klz , k = 3, 4 . . . .  o,, . 
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The renormalized vertices then, are 

- d2q 
r(kO)(pl ... P k - l )  = g k  + i ( - -g)  k sub1 trf  ~ ( s ( q )  ... S ( q  +Pl + ... P k - l ) ) .  

The renormalized couplings are calculable. They are 

Xk 
gk = m2 - - ( k  - 3) ! ,  k = 3, 4, ... o o .  

rr 

The dimensionless Yukawa-type coupling has a fixed value 

x= l v q ~ .  

Thus the couplings of our theory have the fixed values 

, (12rr) k/2 
X*= lx/]-~,  X k - - - ( k - 3 ) ! ,  k = 3 , 4 . . . o o .  

rt 

The appearance of the contact terms in the renormalized vertices is illusory since they 
have the value of the polygons at zero momentum and they exactly cancel. Writing 
the vertices in this way however, serves the purpose to make contact with the pre- 
vious model. The vertex functions are structurally identical to the vertices of the 
Yukawa-like model. 

The only independent parameter of the renormalized theory is the fermion mass 
rn, while the bare theory was characterized by the dimensionless bare coupling fo- 
This "dimensional transmutation" occurs because the massless theory is unstable and 
the instability is avoided with the spontaneous generation of mass by breaking the 
discrete 3's invariance of the Lagrangian. 

From our derivation of the lowest order 1PI vertex functions it is already appa- 
rent that the renormalized Green functions of  the self-coupled fermion model are 
identical functions of m, X2, Xa, X4 .... and the momenta with the renormalized 
Green functions of the Yukawa-like model of the previous sections, when the dimen- 
sionless couplings are fixed to have the value 

. (121r) k/2 
X .2 = 12rr X k -  ( k - 3 ) ! ,  k = 3 , 4 , 5 , . . . o o .  

rr 

The lowest-order renormalized effective actions of both models become numerically 
identical when the dimensionless couplings are restricted to have the above values 
[6]. These values are exactly the values that make the 3-functions of the Yukawa- 
type model vanish 

3(x*,x 3 .... )=o ,  

3~(X*, * X3 .... ) = 0 ,  ~ = 3 , 4  .... .o.  
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Thus, the Yukawa model (2.1) becomes entirely equivalent to the four-fermion 
model (4.1) at the fixed point. 

This equivalence to lowest order in themean-field expansion is good to all orders 
in this expansion. According to formula (2.3) if the lowest-order functionals F and 
their derivatives are identical, since higher orders are constructed by iterating the 
lowest order, the higher-order functionals will be the same. Thus, the Yukawa model 
at the fixed point will coincide with the self-coupled Fermi model to all orders in 
the mean-field expansion. 

A striking difference between the original theory and the critical theory is that 
in the original theory we had a fundamental meson field interacting with the fermions. 
The critical theory is a theory of self-interacting fermions. The successor of the 
meson field is the composite operator ~b$. The compositeness has as an immediate 
consequence the change in the asymptotic behavior of the 0.-propagator. 

5. Relevant and irrelevant operators 

The meson field of the Yukawa-like model enters in the Lagrangian with an infi- 
nity of terms 

£ = ~(i'y" ~ + go0.) t~ + ½0.(-a 2 - /a~)  0. + ~ 0 .4 + ~-.16 0. 6 + 

The critical theory on the other hand is characterized by 

£ = ~(i3' • a + go 0.) ~0 _ [/ao0.1 2 2 , 

in which the successor of the meson field 0. enters in only two terms. The vanishing 
contribution of the operators ea2o and 0. 4, 0. 6, ... is a consequence of the fact that 
the theory occupies an infrared fixed point. In the language of critical phenomena 
these operators become irrelevant at criticality. How this happens can be sketched 
from the lowest-order effective action. The only needed counter-term for the Yuka- 
wa-like model in lowest order is the mass counter-term. In fact, since this theory is 
superrenormalizable for finite go this is the only counter-term needed to all orders. 
However in the critical limit, the theory ceases to be super-renormalizable and 
becomes only renormalizable because of the change in the asymptotic behavior of 
the meson propagator. Additional counter-terms are needed for calculations at the 
critical point beyond lowest order. Our "over subtraction" procedure outlined in 
sect. 2 handles this limiting case smoothly and straightforwardly for higher order 
calculations [6,7]. 

The effective action in terms of the translated meson field s = 0.-0. 0 is, to zeroth 
order, 

F=  s ~ s -~ / ~ o  s + +0.0) n 
n=4,6.., n 
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(: tr(,, ; 
= • 3 +goao/ 

, t  

~-(i7 " 3 +gO(S + e o ) ) - l r / /  . + 
/ 

The linear in s term is not present because of  the condition 6PlUs = O. Choosing 

8 u 2 = U~o - gg tr(i~ • a + go o o ) - S  _ u s / Z o  

we obtain 
_ g ~  n 

-~  tr • a-;-g~o 

_ ½(g~-)s subgtr(il,_ 
. 3 +  g g o )  

1 
2 

+ n=4,6 ~ ~. l.zn(~-+-~O)n. + n ( i ' g ' 3  +g(s- + ° ° ) ) - I n }  " 

Taking the limit Z o -+ 0 and Z n -+ O, the effective action reduces to the effective 
action of  the self-coupled Fermi field 

:{ ( P = ~(i7" 3 + g(~- + Co)) r/-  1 _ ½.2 ~-s _ ~ (_)n tr gT ~ n 
n=a n i'r. 3 +~ol 

- ½fgs-) s subg tr(i'y • a +:o)-~I. 
I 

The relevance or irrelevance [4] of  a certain operator is a statement concerning 
its growth rate as we approach the fixed point. With our renormalization prescrip- 
tion the theory is converted to a critical theory as soon as we take the limit A s ~ ~.  

Let us consider the individual operators and see how they grow with the cut-off. 
For example the boson self-coupling terms are 

)~on-dn A s 
On ~ gonOn = X°nASZnR-on = (1 + ~,~AS /12mS) n~ 

[127rmS~ nl2 Xon-ff n 
A s ~ - ~ - ~ - o  ! a . _ ~  ~ 0 .  

Similarly, the kinetic energy operator is 

( ~ 3 s ~ )  ~ o Ok - 0320 = ZoC63s-6) = (1 + kgAS/12nmS) l/'z A2-,® " 

On the other hand the e-mass term is relevant. 

I_XsAS ln(AS/n s) 
Or,, ---- U2o os = u2o-~2 Zo ~ v ' o ' "  

As--,** 1 + h~A2 /12nm s ' 
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Om does not go to zero at criticality. The logarithmic infinity is cancelled by the 
fermion bubble diagram and its limit is finite and non-zero. 

6. Other  m o d e l s  

Similar phenomena occur in other models. As an example we shall consider the 
following scalar model in 3+1 dimensions. 

~ ( - a  m~ +goX)~+½x(-O 2 2, .  lgo3 x 3 x4 - - ~o1  x T-~-.v + . . ( 6 . 1 )  

The b-field enters quadratically and can be integrated out. The resulting functional is 
an integral over X only and can be expanded in a mean field expansion following 
sect. 2. 

The lowest-order ~b-propagator is 

G o l ( p 2 )  = p2 _ m2o + goXo = p2 _ m 2 . 

Xo stands for the mean field. 
The only divergence that shows up in the zeroth-order mean-field approximation 

is associated with the ~b-bubble 

r d 4 k  Go " 1 l ** 
lI(p 2) = - ~iI J~4~.,.~ (k )  G o (k + p) = 2(4~-~ f dx / dr r(r - p2 x(1 - x) 

o o 

+ m 2 )  - 2  . 

The lowest-order x-propagator is 

1 2 +g~ii(p2) . Axl(p2 ) = p 2  _ #~ +go3Xo + ~go4Xo 

A renormalized mass #2 and a renormalized coupling g2 = g ~ Z  x are introduced 
through the following normalization conditions at zero momentum 

__#2 ( ~ _ ~  = 1 

~'(0)-- z--~' ~ ~p2 1o z-~" 
The renormalized propagator takes the form 

~ 1  (p2) = p2 _ #2 sub~ii(p2) . 

The lowest-order dimensionless renormalized coupling is 

1 m 2 m 2 1 

x2 g2 g~ 12(4~)2. 
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Fig. 2. 

In terms of ~2 the renormaiization factor, 

Zx l  = 1 + 

becomes 

12(41r)2m 2 

~k 2 

Z x = 1 - 12(4n) ~ .  

Higher X functions can be obtained from the effective action by taking variational 
derivatives with respect to the classical X-field. The 3X and 4X vertices are 

1 3 r d 4 k  -~ 
V(aX)(PlP2) =go3 + g04×o + [igoJ(~Go(k) Go(k +Pl) Go(k +Pl +P2) 

+(1XT) ,  

=go4 - lig~ / ~ G o ( k )  Go(k + P l )  Go(k +Pl  +P2) F(4X)(plP2P3) 

×Go(k +Pl  +P3 +P2) + (5XT).  

The lowest-order 3X and 4X vertices do not contain any divergences. Higher orders 
of course will contribute logarithmically divergent diagrams since we have a quartic 
coupling present (fig. 2). Although there is no divergence present we can still define 
renormalized couplings subtracting once in accordance with the normalization con- 
ditions: 

r(3 (o, o) z o, o) g4 
Z x 

The renormalized X self-couplings are defined as 

3/2 
g3 = go3 Z x  g4 = g04 Z2x 

Z3 ' Z4 ' 

while the corresponding dimensionless X self-couplings are 

~3 =g3/m, ?,4 =g4 • 

The renormalized 3X and 4X vertex functions are 

F(3X)(plp2) ;k3m + 1i(~)3m3 su 1 r d4k = b0/742-O Go(k) Go(k +Pl) Go(k +Pl  +P2) 
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+ (1XT),  

1 d4k 
p(4X)(plP2Pa) = k4 - li(X)4m4 sub 0 f ~ G o ( k )  Go(k + Pl) Go(k + Pl + P2) 

X Go(k +Pl +P2 +Pa)  + (5XT). 

The parameters of  the bare theory are the masses m~ and/~  and the couplings 
go, goa, and go4. The renormalized theory is expressed in terms of m s ,/~2 and X 2 , X 3 
and £ , .  The ~-functions associated with the dimensionless renormalized couplings 
can be defined in the usual way. In the lowest-order mean-field approximation we 
obtain 

~k 2 
~(X2) = --2~'2 (1 -- 1 2(41r)2 ) , 

~a(x 2, x3, x4) = - x a  ] - ~ / -  -X-  ' 

X2 
~4(x 2, x , )  = a~-g~-)= (x4 - 6 x 2 ) .  

The renormalization factors can be calculated in the mean-field approximation. We 
find 

~k 2 

Z x = 1 12(4,t) 2 ' 

(1_ X 3 
Z a = 1 - ~ 2(41t) 2),4] ), 2(4*02 Xa' 

~k 4 

Z4 = 1 2(4rr) 2),4 " 

The/3-functions vanish for the values 

X* = 81rx/3 , X 3 = 487rX/3 and X4 = 72(4rr) 2 

For the same values the renormalization factors vanish as well. The model possesses 
an infrared f'txed point at X* = 8rtx/3. Examining the definition of the renormalized 
coupling 

1 _ m 2 1 

X 2 g2 o + 12(4n)2 

we can see that Wilson's renormalization prescription ~o = X2A2 carries the theory 
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to the fixed point as soon as the cut-off is taken to infinity 

1 m 2 1 1 1 1 

X 2 - A s ) ,2 + - -  ~ 1 2 ( 4 z r )  2 A2--,o. 12(4rr) 2 X*2 • 

This happens regardless of the value of ~'2. 
Let us consider next the theory described by 

½¢(-a 2 - m2) ~ + ~ ,  ¢4 . .  £ 

We can rewrite it in terms of an auxiliary field X as 

&/a2 X 2 
z = ½¢(-a 2 - m2 +gox) ¢ -  2 o • 

Expanding this theory in a mean-field approximation we obtain to lowest order 
the following x-propagator 

t 

Axl (p:) = _/22 + ~0n(p:). 
II(p 2) is the same scalar q-bubble we encountered earlier. Employing the same nor- 
malization conditions as for the previous model: 

__/22 [ ~ A _ ~ _  1 

6 ; '  ( o ) -  z× ' ~ av 2 f 0 z× ' 

we obtain the renormalized x-propagator in a structurally identical form with the 
previous model 

~ 1  (p2) =p2 _/22 +g2 sub2ii(p2).  

In this case however the renormalized coupling g2 is fixed 

l = Z - l g 2  go-~--=~-~o ~-~p2 o l  an  ~_12(4~r)2m2 " 

The dimensionless renormalized coupling was the value 

X 2 = 12(47r) 2 . 

The 3X and 4X renormalized vertices can be derived in a straightforward fashion. 
They are structurally identical with the vertices of  the previous model if the dimen- 
sionless couplings are fixed to have the values X a -- 48n~/3 and ?'4 -- 72(4~) 2 

The only parameters of this model are m s and/22. The X-field is not fundamen- 
tal but represents a collective excitation. There are regions in the parameter space 
m 2 '/22 for which the model is stable whatever the sign of the bare coupling fo. The 
original model becomes entirely equivalent to 4~ 4 theory * at the fixed point. This 

• Interesting equivalences of a ~t~ interaction in a 1IN approximation to the 44 interaction in 
lowest order in a different limit than ours have been observed by the Brandeis group. See, for 
example, ref. [8]. 
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happens independently of  the values of  the dimensionless bare couplings. The 
operators that become irrelevant at criticality are X~2X, X 3 and X 4. 

This picture refers to the lowest order. To higher orders the 47( coupling intro- 
duces divergences that give to the renormalization factors an explicit dependence 
on ln(A2/m 2) apart from the dependence on A 2 through the dimensional coup- 
lings. The limit Z x --> oo will still be attainable. For example i f Z  x (to order k) --> 0, 

Zx(tO order k + 1) = Zx(tO order k)(1 + ea t ... + e k+l a k + t ) - t  . 

The functions a l  ... ak+l contain divergent terms (ln A 2) with n < k. Thus, the 
limit Z x ( k  + 1) ~ 0 is feasible. The lowest-order factor vanishes like ~ I / A  2 . 

The vanishing of  the renormalization factors corresponds to the vanishing of 
the ~-functions for some values of  the renormalized couplings *. We have no guaran- 
tee however that the fixed point will continue to be non-trivial. If  the fixed point is 
trivial, the operator most likely to become relevant to higher orders is ×4. The 
approach to the fixed point is guaranteed if we take its bare coupling equal to zero. 

Another model that displays the same phenomena is the Yukawa theory in 4 - e  
dimensions 

= ~ ( i ~ .  a + goX) ~ t 2 + ~X(-~ - ta~) × +g03x 3 +go4X 4 

Its equivalence to the self-coupled fermion field has been studied by the authors 
and Wilson [1,2]. In the mean-field approximation the dimensionless renormalized 
coupling is 

1 m e m e 

f(e)  is logarithmically divergent as e ~ 0. The renormalization factor of  the X-field is 

Z x = 1 - f ( e )  X 2 . 

The/~-function of  the coupling ?2 is 

~(x 2) = -2~, 2 (1 - Ae) x 2 ) .  

An infrared stable fixed point occurs at 

1 ~*  = 

This value is achieved, according to our prescription, when A 2 -+ ~ .  In the four-dimen- 
sional case (e --> 0) the fixed point becomes trivial (X* = 0). 

* The renozmalization factors ~tisfy the renormalization group equations. For example 

(m° ot - -  - - - 2 3 ,  Z a = O .  

At the fixed point, obviously Z a ~ [m/A] 2~a ~ 0 . 
A.-.~.oo 
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One can repeat the steps we undertook previously and prove the equivalence of 
this theory with the self-coupled fermion field theory 

z = a) + 

to all orders in the mean-field expansion. As long as the dimensionality is less than 
4 and the theory is super-renormalizable the operators xa2x,  x a and X 4 are irrelevant. 

In four dimensions, although in the lowest-order mean-tield approximation the 
fixed point is trivial [9], one can still demonstrate the formal equivalence between 
the Yukawa theory and the four-fermion theory introducing the renormalized Yuka- 
wa coupling as an extra renormalized parameter independent of  the bare Yukawa 
coupling [1 ]. 

7. Conclusions 

(a) We have considered in 1 + I dimensions the model described by 

z =  a +goo)  + lo(-a  o ÷ go2. : n  

(b) We assumed that the bare couplings have a cut-off dependence 

go = XoA, and gon = Xon A2 , n = 2, 4 .... ~ .  

and Xon are dimensionless. 

(c) When the cut-off is taken to infinity the theory is converted into a critical 
theory occupying an infrared stable fixed point. 

(d) The critical theory is exactly equivalent to the Gross-Neveu model 

£ = ~(iv" a) ~t + If0(~---~/)2 . 

(e) The operators oa 2 o, 0 4, 0 6 ..... o n .... become irrelevant at criticality. 

(0  The approach to the fixed point is entirely independent of the values of the 
dimensionless bare couplings (universality). 

(g) The critical theory is a massless theory in the sense that it contains no bare 
dimensional parameters. Masses however are present due to dimensional transmu- 
tation. 

(h) The fundamental meson of the original theory disappeares at the fixed point, 
leaving as a remnant a fermion-antifermion bound state, excited by the composite 
operator ~b .  The conversion of the meson into a composite particle is accompanied 
by a change in the asymptotic behavior of its propagator. This has as a consequence 
the appearance of new primitive divergences that convert the theory from superre- 
normalizable to renormalizable. 

(i) Higher orders in the mean-field expansion are not expected to alter the above 
picture. The equivalence is true also in the ordinary renormalized perturbation theory. 
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(j) Similar phenomena occur for other models, like the Yukawa theory in 4 - e  
dimensions 

£ = ~(i~, • a +go a) ~ + 10 ( -82  - / a  2) o +go3 03 + go4t74 . 

This theory is equivalent, in the mean-field expansion to the four.fermion theory 

£ = ~(i'y • 8) ~ + ~fo(~b)  2 

provided we are at a fixed point. This suggests the renormalizability of  the four- 
fermion theory in the mean-field expansion. The four-fermion theory is indeed renor 
malizable in the mean-field expansion as it has demonstrated elsewhere [1 ]. In four 
dimensions the fixed point becomes trivial but the above results still hold in a for- 
mal sense [ 1 ]. 

We wish to thank A. Houghton and J.M. Kosterlitz for illuminating discussions. 
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