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Abstract

The CPLEAR set-up (modified) has been used to determine the KL–KS mass difference by a method where neutral-kaon
strangeness oscillations are monitored through kaon strong interactions, rather than semileptonic decays, thus requiring no
assumptions on CPT invariance for the decay amplitudes. The result,�m = (0.5343± 0.0063stat± 0.0025syst) × 1010h̄/s,
provides a valuable input for CPT tests. 2001 Published by Elsevier Science B.V.

1. Introduction

Very early, after the hypothesis of particle mixture
had been advanced for K0 and �K 0 [1], the change
of strangeness content with time was predicted, as a
consequence, for beams starting as pure K0 or �K 0 [2].
Proposals followed how to monitor the strangeness
oscillations and measure the KL–KS mass difference
�m, that is the oscillation frequency modulush̄. It
was suggested that starting with a pure K0 (or �K 0)
beam, one could observe the building up of a�K 0 (or
K0) flux by measuring either weak decays to eπν

[3] or the products of strong interactions in a thin
slab of material [4,5]. These suggestions were soon
followed by the first experiments [4,6,7]. In another
approach [8–10] it was shown that the intensity of
the KS component transmitted through an absorber
is a very sensitive function of the mean lifeτS and
of the KL–KS mass difference, and this led to the
first of many variants of the regenerator method [11].
Later, this method provided results in the current range
of accuracy [12–15] and even allowed the�m sign
to be determined [16,17]. Comparable accuracy was
obtained with the oscillation method coupled to the
measurement of semileptonic decays in Ref. [18], and
recently by CPLEAR [19].

CPLEAR has revisited the oscillation method, tag-
ging the strangeness of the neutral-kaon by strong in-
teraction at two different times. This work is reported
in the present Letter.

2. Principle of the measurement

The principle of the measurement consists in mea-
suring the probability that a neutral kaon, created at
t = 0 in a strangeness (S= 1 or S= −1) eigenstate,
is found after a timet = τ in the same or opposite
strangeness state. Each probability contains a KL–KS

interference term which is sensitive to�m; moreover,
it is dependent onε and δ, the T- and CPT-violation
parameters of the neutral-kaon mixing matrix, thus
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where�m = mL − mS, �Γ = ΓS + ΓL, andmS,L and
ΓS,L denote the KS,L masses and decay widths, respec-
tively. In a measurement, these probabilities translate
to different numbers of events recorded,N± and �N±,
depending on the detection method for initial and fi-
nal neutral kaons. The sensitivity to the interference
term may be increased and the dependence on the de-
tection efficiencies may be weakened, by considering
convenient functions of the measured quantities.

In the measurement reported here, both initial and
final neutral-kaons are detected by an associated strong
interaction (strangeness conserving). The neutral-
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kaons are produced concurrently by antiproton anni-
hilation at rest in a high-pressure, gaseous hydrogen
target via the reactions:

(1)p̄p→ K−π+K0,

K+π−�K 0,

each of which has a branching ratio of≈ 2×10−3. The
conservation of strangeness in the strong interaction
dictates that a K0 is accompanied by a K−, and a�K 0

by a K+. Hence, the strangeness of the neutral-kaon at
production is tagged by measuring the charge sign of
the accompanying charged-kaon.

In order to identify the strangeness at a later time
t = τ , we took advantage of the carbon absorber,
shaped as a segment of a hollow cylinder, which
had been added to the CPLEAR detector for the
regeneration amplitude measurement [20]. Hence we
measured the numbers of K0 and�K 0 interacting with
the absorber’s bound nucleons in one of the following
reactions:

K0 + p→ K+ + n, �K 0 + n → K− + p,

(2)�K 0 + n → π0 + �(→ π−p).

In the case of initial K0, we denote byN+ and
N− the numbers of K0 and�K 0 which are measured
to interact at timeτ in the absorber, and by�N+
and �N− the corresponding numbers for initial�K 0.
These numbersN± and �N± are converted to the
probabilitiesP± and �P± using the cross sections
of the reactions (2) and the detection efficiencies of
the relevant particles. However, all cross sections and
efficiencies cancel in the ratiosN+/�N+ andN−/�N−,
except for the detection/tagging efficiency of�K 0

relative to K0 at the production. The latter is expressed
by the ratioξ between the detection efficiencies of
the accompanying charged K±π∓ pair, Eq. (1),ξ =
ε(K+π−)/ε(K−π+),
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with the phenomenological asymmetryA�m,
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the relative efficiencyξ also cancels. Fitting the
experimental data with Eq. (5) as a function ofτ will
provide a measurement of�m without assumptions
on the unknown efficiencies. In Eq. (5) additional
terms, quadratic in T- and CPT-violation parameters of
the mixing matrix, are neglected as they were shown
to be irrelevant in the fit.

3. The CPLEAR detector

The measurement was performed at the Low-Energy
Antiproton Ring (LEAR) at CERN with the CPLEAR
detector [21], shown in Fig. 1. The 200 MeV/c an-
tiprotons were extracted from LEAR with an inten-
sity of 106 particles per second and stopped inside
a cylindrical gaseous hydrogen target (27 bar pres-
sure). The target (11 mm radius) was surrounded by
a small cylindrical proportional chamber PC0 (15 mm
radius, 1 mm pitch,> 99.5% efficiency). A track-
ing detector, located inside a solenoid (1 m radius,
3.6 m long) providing a 0.44 T magnetic field par-
allel to the beam, consisted of two layers of propor-
tional chambers (PC1, PC2), six layers of drift cham-
bers and two layers of streamer tubes. A hodoscope of
32 threshold Cherenkov counters (C) sandwiched be-
tween two scintillator hodoscopes (S1, S2) provided
charged-particle identification (Cherenkov light, time
of flight and energy loss). A thin silicon detector in
front of the target entrance window ensured the pres-
ence of an incoming antiproton, thus rejecting back-
ground events resulting from interactions in the target
support structure. The arrangement enabled the mea-
surement of neutral-kaon decay rates in the region of
0 to 20 τS, whereτS denotes the KS mean life. Fast
and efficient background rejection was achieved on-
line by a multilevel trigger system. The data for the
present measurement are a subset of the data taken
for the regeneration measurement [20]. The latter were
taken under the same detector and trigger conditions
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Fig. 1. Transverse view of the detector at the centre of the experiment (thez axis coincides with the solenoidal magnet axis), and display of an
event. The display shows, as a result of ap̄p annihilation, the K+π− pair produced together with a�K 0. The latter, by interacting in the carbon
absorber, produces a� subsequently decaying to pπ− (also shown).

as for the CP-violation measurement, except for the
presence of the absorber. The absorber had an open-
ing angle of 115◦ and a thickness of 2.5 cm, with an
inner radius of 5.8 cm and a length of 25.5 cm, and al-
lowed neutral-kaon interactions to be measured within
the time interval 1.3–5.3τS. About 5.6× 108 triggers
were recorded.

4. Event selection

The events to be selected arep̄p annihilations into
either channels of Eq. (1), at a primary vertex inside
the target, followed by the production of a charged-
kaon or a� in one of the reactions of Eq. (2), at a
secondary vertex inside the absorber. When a charged
kaon is produced (first two channels of Eq. (2)),
the events contain a total of three charged tracks
(the proton being too slow to be detected). The�

events contain instead four charged tracks. Thus, a first
selection requires the number of tracks to be equal to
three (K events, see Section 4.2) or four (� events,
see Section 4.3), with a total charge of±1 (in units

of e charge) or zero, respectively. No track should
have an unphysical fitted momentum, i.e., less than
60 MeV/c (below which the track would not reach
the inner scintillator S1) or above 1 GeV/c. To allow
clean particle identification, no more than one track
should enter any S1 sector.

The geometrical cuts are mainly applied on quan-
tities measured in the transverse view of the event,
using a (r,φ) reference frame, with its origin on the
solenoidal magnet axis (z axis), see Fig. 1. The succes-
sive cuts are outlined below. The cuts on any variable
are fixed at±2σ from the center of the measured dis-
tribution fitted with a Gaussian, see for instance Fig. 2.

4.1. Selection of the p̄p annihilation channels

The selection of either reactions (1) requires a
track pair from the primary vertex with the following
conditions:

– At least one charged-kaon candidate, defined as
a track associated to a S1�CS2 signal from the
scintillator–Cherenkov-scintillator sandwich, with a
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Fig. 2.m2
K± distribution;mK± is the measured mass of a secondary

charged kaon. The arrows correspond to the cuts (see text).

momentum componentpT > 300 MeV/c in the
transverse plane, and an energy loss in the inner
scintillator S1 consistent with the particle being a
kaon.

– The charged-kaon candidate should be crossing the
other track at a vertex inside the target (r < 1.5 cm
and −3.5 cm < z < 6 cm), and at an angleθ <

168◦.
– To eliminate a large number of unwanted, very

early decay-time KS decays as well as background
multikaon and multipion annihilations, no more
than two hits should be found in PC0, each one
being within�φ < 0.2 rad of a primary track.

– Offline, the primary charged kaon and the associ-
ated pion are the same tracks as those used online to
satisfy the trigger conditions. Moreover, fitting the
primary pair kinematics with Eq. (1) results in a 1C-
fit probability> 2.5%, and the square of the neutral
kaon mass (calculated as missing mass with the mo-
menta returned by the fit) is within 0.20 GeV2/c4 of
the central value.

4.2. Selection of secondary K± events

These are three-track events where the neutral
kaon undergoes a charge exchange in the absorber

(K0p → K+n , �K 0n → K−p). Their signature is the
presence, beside the primary Kπ pair, of one charged
track (secondary) with the following requirements:

– The track is a K± candidate, with a S1�CS2 signature
and an energy loss in S1 within four standard
deviations of the average Bethe–Bloch value. From
the particle’s measured momentum and velocity, the
massmK± is obtained. Only events with values of
m2

K± within 0.16 or 0.18 GeV2/c4 of the central
value are considered, for velocity measurement by
energy loss or time of flight, respectively.

– The track originates away from the target, from
an interaction inside the absorber. Thus, PC0 has
no hits within �φ < 0.2 rad of the track, while
PC1 and PC2 have hits within the same distance.
The projections of the neutral-kaon path and of the
secondary track on the transverse plane form the
secondary vertex with coordinatesr andφ, 5.3 cm
< r < 9.2 cm and−56◦ < φ < +58◦. The angular
distance of the two projections at the mean radius of
the absorber is�φ < 0.18 rad.

4.3. Selection of secondary � events

These are four-track events where a�K 0 interacts in
the absorber as�K 0n → π0�(→ π−p). Their signa-
ture is the presence, beside the primary Kπ pair, of
another track pair, with the following requirements:

– The two tracks originate away from the target. Thus
PC0 has no hits within�φ < 0.2 rad of each track.

– One track is a p candidate, with a positive charge,
a S1�C signature, and a massmp with a squared
value (from momentum and time of flight) within
0.38 GeV2/c4 of the central value.

– The fit to the two-track invariant mass has a proba-
bility > 5% for the�-mass hypothesis, and< 15%
for the KS (→ π+π−) hypothesis.

– The � originates from an interaction inside the
absorber, that is the projection of the� path on the
transverse plane intersects the�K 0 path projection
at the secondary vertex with coordinatesr andφ,
5.3 < r < 9.2 cm, and−56◦ < φ < +58◦. The
angular distance of the�K 0 and� projections at the
mean radius of the absorber is�φ < 0.15 rad.
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4.4. Final data samples

After applying the above cuts, 1.1× 104 K+ events,
2.0 × 103 K− events and 1.3 × 104 � events re-
mained. Fig. 3, showing the azimuthal distributions
of the secondary vertices (φ cuts released), indicates
that the background events are very few, as extrap-
olated from outside theφ region covered by the ab-
sorber, between−56◦ and +58◦. Inside that region,
the distributions are not flat, especially in the case of
secondary K± events, as a consequence of the trig-
ger operating mode — the trigger searching for a
single (primary) K±. As the direction of the scan-
ning was unimportant, it was arbitrarily chosen to
search first along the positive angles. In the special
case of the present analysis where a secondary kaon
is looked for, at positive angles, this kaon is encoun-
tered first in the trigger search, and the event is re-
jected in the offline analysis (last requirement in Sec-
tion 4.1).

Fig. 4 shows the radial distributions of the sec-
ondary vertices (r cuts released). These were best fit-
ted by a uniform distribution (from 6.25 to 8.30 cm)
folded with a Gaussian ofσ = 0.50 cm for K± events,
and σ = 0.65 cm for � events, respectively. The
quality of our measurements was checked by esti-
mating the� mean lifetime, which was found to be
τ� = (2.60± 0.03stat± 0.10syst) × 10−10 s, in agree-
ment with the current valueτ� = (2.632± 0.020) ×
10−10 s [22].

The time of the interaction,τ , is determined from
the secondary-vertex position and the neutral-kaon
momentum (as given by the 1C fit, Section 4.1). The
N+(τ ) and �N+(τ ) distributions are obtained from the
sample of secondary K+ events. ForN−(τ ) and�N−(τ )
one can use the secondary K− events alone, the�
events alone, or the sum of the K− and � sam-
ples. With these distributions, we form asymmetries
A

exp
�m(τ ), Eq. (4) for each type of�K 0 tagging in the fi-

nal state, and also for the complete set of events with
a�K 0 in the final state.

(a) (b)

Fig. 3. Azimuthal (φ) distribution of the secondary vertices after all selections (a) for K± events; (b) for� events. The events are well localized
in the interval[−56◦,+58◦] corresponding to the position of the absorber. Outside this interval the background is very small; the arrows
indicate the cuts. The large asymmetry between the number of events recorded for negative and positive angles is related to the trigger operating
mode (see text).
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(a) (b)

Fig. 4. Radial distributions of the secondary vertices (a) for the K± events and (b) for the� events. The measured distributions (solid lines) are
compared with the simulated distributions (dashed lines), see text. The arrows indicate the cuts.

Table 1
�m values obtained by the fit

�K 0 tagging K− � K− + �

�m [1010h̄/s] 0.5253± 0.0106 0.5357± 0.0066 0.5343± 0.0063

χ2/ndf 31/41 57/56 53/56

5. Fit

Each of the three sets of measured asymmetries
A

exp
�m, formed with theN± and �N± samples defined

above, was fitted with Monte Carlo simulations of the
asymmetryA�m(τ ), Eq. (5), performed for values of
�m in the range(0.515–0.545) × 1010h̄/s. The sim-
ulations included the neutral-kaon momentum distri-
butions, theP± and �P± probabilities, the secondary-
vertex spatial resolutions as well as a time resolution
of 0.025τS due to the uncertainty on the determination
of the K0 momentum; forΓS,L = 1/τS,L the world-
average values [22] (τS = (89.35± 0.08) × 10−12 s
andτL = (5.15±0.04)×10−8 s) were used. The simu-
lated asymmetries were compared to the experimental

asymmetriesAexp
�m, and the values of�m correspond-

ing to the minimumχ2 were determined. The results
are reported in Table 1. Owing to the agreement be-
tween the values obtained with the two ways of tag-
ging�K 0, our final result is that given for the (K− +�)
sample, shown in Fig. 5.

6. Systematic errors

Various sources of systematic uncertainties were
investigated:

– the uncertainty onΓS (the sensitivity toΓL is
negligible),

– the dependence of the efficiencies on momentum,
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(a) (b)

Fig. 5. (a) Best fit to the data pointsAexp
�m(τ )(squares) with the simulated asymmetries (triangles) for the (K− + �) sample, see text. (b)

Distribution of the fit residuals.

Table 2
Evaluation of systematic errors

Source �m [1010h̄/s]

ΓS 0.0010

efficiencies 0.0005

Monte Carlo 0.0015

binning and fit range 0.0005

selection criteria 0.0015

Total 0.0025

– the geometrical parameters included in the Monte
Carlo simulation,

– the binning and fit range,
– the choice of cuts for the selection criteria.

These uncertainties are summarized in Table 2.

7. Final results and conclusion

Our final result is the following:

�m = (0.5343± 0.0063stat± 0.0025syst) × 1010h̄/s.

This result is in good agreement with the current
values [22]:�m = (0.5300± 0.0012)× 1010h̄/s (fit),
or �m = (0.5307± 0.0015)× 1010h̄/s (average). Our
measurement, though not improving on the current
world-average error, has the merit of relying only
on strong interactions to tag the kaon strangeness.
Moreover, the only parameter of the neutral-kaon
system which enters the measurement, apart from
�m, is the KS mean lifetime. We conclude that this
measurement provides a valuable input for�m in
many CPT tests.
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