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Abstract

We present analytic expressions for the top and bottom Yukawa couplings 1n the context of the mimmal supersymmetric
standard model when both couplings 4, ¢, h, ¢ are large at the untfication scale For sufficiently large h,, Ay, o, using as mput the
central value of the bottom mass m,(m,) =4 25 GeV, we find that the top mass lies 1n the range m,= (174-178) GeV, while
tan B= (55-58) Implications on the evolution of the scalar masses and the radiative symmetry breaking scenario are discussed

It 1s widely believed that the minimal supersymme-
tric standard model (MSSM) is the most natural exten-
tton of the standard theory of strong and
electromagnetic interactions. Furthermore, the MSSM
can be naturally embedded n all unified supergravity
and superstring constructions. Detailed calculations
[ 1] taking into account the most recent data on the low
energy values of gauge couplings and other measurable
parameters, have shown that the above theoretical
expectations are correct when supersymmetry breaks
at the order of 1 TeV and the unification of gauge
couplings takes place at the scale of 10'° GeV provided
that the MSSM fermion and higgs content 1s used It
was therefore recently realized [2] that 1t 1s time to
take a step further and — 1n addition to the gauge cou-
pling unification — explore the nature of Yukawa cou-
plings which, in the MSSM, are treated as free
parameters Grand unified theories [ 3] predict various
relations among them, depending on the precise group
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chosen by the particular untfication scenario Further-
more, string theories relate the fate of Yukawa cou-
plings with that of the gauge constants It 1s expected
that some of them might be of the order of the common
gauge coupling constant at the unification point. In fact,
1n all string scenarios there appears a hierarchical form
of the quark and lepton Yukawa couplings, due to addi-
tional U(1) symmetries which usually allow only one
generation of fermions to receive masses from the tri-
linear superpotential terms. Concentrating on the quark
sector, this would mean that the only tree level Yukawa
couplings which may be large and comparable to the
umfied gauge coupling are A, and 4, Knowing their
mitial values at the GUT scale, we may determine their
low energy values by evolving them down using the
renormalization group equations This has been done
1n many recent works [4,5,2] using numerical meth-
ods. In the present letter, we wish to present analytic
forms for the above couplings, when both are large at
the unification scale Particular solutions as 1n the inter-
esting case of h,o=h,, have already appeared 1n the
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Interature [5]. Such forms might prove extremely use-
ful, for example, in the calculation of the scalar masses
and the Higgs mass parameters. In particular, the latter
play a very important role in the radiative symmetry
breaking scenario [6]. In particular in the large tan 8
scenario where both couplings are large, the higgs
mass-squared parameters may both be driven negative
and the stability of the neutral higgs potential will be
questionable Therefore, analytic forms for the mass
parameters can simplify the analysis of the minimiza-
tion conditions and provide a better insight of the role
of the Yukawa coupling contributions to the scalar
masses.

In the following, we will assume that only 4, and A,
Yukawa couplings are large. We will assume that all
other Yukawa couplings, including %, are small and
will 1ignore them. Thus, we do not implement the min-
mal GUT relation s_o=h,q at the GUT scale. We
should point out that this happens very often in the case
of string GUTs (as 1n the case of the flipped SU(5)
[8]), and therefore 1t 1s of particular interest. Never-
theless, our solutions are still a good approximation
even In the case of appreciable imtial 4, values.

Ignoring all other Yukawa couplings, the coupled
differential system of h,— h, couplings 1s written as
follows

d 1
—h?= — {6h? +h} —Ggy)h?, 1
dt t 87T2 {6 ' hb Q} t ( )
d 2 _ 1 2 2 2
< 1= 53 (kP +6h}=Gy)hi, 2)
with
3 3
GQ= Z C'lez, GB= E C;.'igtzs (3)
=1 =1

where cip = (1§, 3, 2} ch={18, 3, {5} for SU(3),
SU(2) and U(1), respectively. In order to solve (1),
(2), we choose first to absorbe the gauge coefficients
G, Gy by making the transformations-

h?=vpx, hi=7v3y, (4)
where
4
yf=exp{é—;12'|’ G,(t") dt’}, I=Q,B (5)
[]

with to=In Mgyr Then, by observing that y,= vy,
since their only difference 1s only a small coefficient in
the U(1) factor, 1t can be seen easily that the D.E.’s
(1), (2), in the approximation y,= y; transform as
follows

d 1
%= 5o bl6r b, ©
d 1
7= %2 yolx+6yly (7)

Thas last coupled system can give a solution for x in
terms of y and vice versa, leading to the algebraic equa-
tion

7 6
=)= 62 ®
Xo — Yo 0Yo

Furthermore subtracting (6) from (7), we may obtain
the following D.E.:

d 6
G EN=3= Yo(x+y)(x—y), (9)

while (x+y) can be substituted from (7) to give a
differential equation for the difference w=x—y of the
form

d 6
V=32 Yo(x—y)Vko(x— )"+ (x—y)?,
(10)

where the parameter ko= 4xayo/ (Xo—Yo)7’¢ depends
on the imitial conditions xo=h?, and y,=h3,.

In order to solve Eq. (9) we make the following
transformation

ko ko 6

4 Gy S e U gmved (D
Eq. (9) can be put in the form
ul/Sdu

=—3k§*dl, (12)

Vidtu

which can be integrated to give the solution 1n terms of
hypergeometric functions ,F,(a, b, c;z),1¢

7/10 1 7 —_— g, 7/10
U 2F1 (7, —10» '11(), ,) Uo

X2F1 (%, __17—0’ ]%9 ’) =l7_2k(1)2/10i(t)' (13)
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Asa+b—c=—1<0and z= — 1/u, the above solu-
tion 1s valid 1n the entire circle |z| =1, 1.e as long as
ju| =1 Once the initial values, x;, ¥, are chosen, the
last equation can determine the value of the difference
w=x-—y (I(t) can be calculated for any given scale
) Then, x and y (and therefore 4, and A,) can be
found with the use of Eq (8) One finds

x=lo(1+V1+ko %), (14)
y=iw(—1+V1+kw ) (15)
In the following, we choose to distinguish two separate
cases, depending on the value of k, where the results
exhibit a rather interesting simplicity

(1) kp << 1 In this case (9) 1s easily integrated to
give

Xo — Yo

x=y+ =y+0(), (16)

6
1—;3—77—2();0 —yo)I(2)

with I(¢) =[}, y5(¢') dt’ Substitution of (16) 1nto
(3) and integration leads to the result

q(t)

2_.212
ht —’Yth.O 1_7h,2’0](t) ’ (17)
with
1 t
q(t)=exp[— Py f Y5(t)0O(t") dr'] (18)
and
1 t
I == f Yo(t')q(t') dt’ (19)

10

Eq. (7), can also be integrated in the same way result-
ing to a similar formula for the bottom quark mass

(1) ky > 1 In this case we can 1gnore the second
term mn Eq (9) A straightforward integration then
gives

Xo — Yo

7
(1 “W\/xo)’ol(t))n/7

x=y+ =y+ 1) (20)

Returning to the imitial differential system, we may
obtain the formulae for the top and bottom Yukawa
couplings For the top-quark we obtain

1))

he = yphly — 2D

Yoo T 902 () 2D

while for the bottom quark
H!

B2 =2 h2 p(

b ’YBhb’Ol—7h§,0N(t)’ (22)

where

P(t)=eXp[*ﬁ Yo(t") (1" dt’], (23)
0]

1 t
L(r) = WJ’ Yo(t)p(2') dt’, (24)
— 1 t 2 41 n —1 7
N(t)—ﬁ Yo(t)p(¢') =" dt (25)

1o

In order to compare our analytic results with numer-
1cal methods, we have also solved the RGEs (1), (2)
numerically for some particular cases As an example
we present here the results obtamned for imitial value of
the top Yukawa coupling close to 1ts fixed poimnt, 1€
h =35 and h,,=15. The numerical solution gives
h,=102 and h,=0.955 at the scale m,=170 GeV,
while the analytic expressions obtained above give
h,=1.025 and h,=0957 We have checked that this
accuracy holds for all the regions of validity of the
above analytic expressions

In Table 1, we present values of the top mass, when
both h, 4 and A, o couplings are large. In particular, we
choose two characteristic values of the top-Yukawa
coupling, (one of them very close to 1its fixed point)
and calculate m, (running mass) and tan (3, assuming
a central value for the bottom quark, 1e
my(my) =n,(v/V2)h, cos B=425 GeV Here n,
includes the running from the scale ~m, down to the
scale m,, and 1s taken to be n, = 1.4.

A very interesting infer from this table 1s that the top
quark has a mass around 175 GeV which 1s close to the
central value predicted by CDF [13], while
tan B= (55—58). We note however, that sparticle
exchange corrections on m, [9,5] or thresholds and
other uncertainties [ 10] may result to small m, correc-
tions for specific ko, i, o TEgIONS
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Table 1

m, and tan S predictions for two 1nitial values of k, and various 4, o
Yukawa couplings, using expressions (21) and (22), while fixing
my=n,(v/V2)h, cos B=4 25 GeV, with n,=1 4 being the renor-
malization group factor from g~ m, down to u=m,

heo hyo m, tan 8
25 175 1756 56 25
200 1750 5673
225 1745 5707
250 1740 5732
35 175 1773 54 85
200 176 6 56 26
225 176 1 56 65
250 1757 5693
300 1750 5731

Analytic solutions for the large 4,, Yukawa cou-
plings are of particular interest in supersymmetric the-
ortes. The masses of the higgses responsible for the
electroweak breaking as well as the scalar masses of
the third generation receive large negative contribu-
tions when h,, h, are also large. In the radiative elec-
troweak symmetry breaking scenario [6], one of the
higgs mass-squared parameters should become nega-
tive This 1s 1n fact possible because of the large nega-
tive Yukawa corrections. However, when both Yukawa
couplings are large, both higgs mass parametersreceive
large contributions Thus, when dealing with the RGE
of the scalar masses 1t 1s very useful to have analytic
expressions for the Yukawa functions which appear in
the role of scale-dependent coefficients 1n the differ-
ential equations of the former.

In the following, we discuss briefly the effects of &,
h, couplings to the Higgs and scalar quark masses of
the third generation, disentangling the coupled differ-
ential system of them and reducing 1t down to a simple
differential equation of second order which may be
solved either numerically or by standard analytic math-
ematical methods

We start first (as a reminder for reminding the
reader) with the exact solution of the scalar masses
my;, = My, , M = Hy,, and mg, =iy, 1n the case where
h, > h,, and tan B=¢#(1). It has been found 1n this
case that the above scalar masses are given by a sumple

formula [11]
-2 2 2 a2 a2
iy, =my+ Cy, (H)mi,, —ndy(t) —ndy(t) (26)

where 8% (¢) has been estimated to be much smaller

than 7% and can be ignored for the present purposes,
while-

2 _ m,(1) : 2
on(1) = (——ng(t) P B) (BmgI(1)
+mi;ndo(D) , (27)

where I(¢) has already been defined in solving Eq
(16), while

3 t
OES> f Cun(t) V() dr . (28)

n=1%

The coefficients Cp;, can be found in the literature
[6,4]. Notice that 1n the derivation of the above, 1t was
assumed that ko > h, o while h,, was omutted from
the equations. However, 1n the case where h, o~ h,q
this 1s no longer valid Since both Yukawa couplings
are k0~ @ (1), both higgs mass-squared parameters
m3, , m%, recetve large negative contributions and play
a very important role 1n the stability of the neutral higgs
potential This can be easily seen from the minimization
conditions 9 vy/dy, =0, where v, = (H,), which result
1n well known equations

ui— pj tan’g

M2 =
e tan> -1

(29)

m3

uitud’
where u? =m%, + u’+ o2, with o2 being the correc-
tions [12] to the Higgs potential from the one-loop
contributions and u the higgs mixing term. Therefore,
these contributions should be calculated with great
care. Analytic expressions, 1f possible, may be
extremely useful in the minimization conditions of the
potential

In the following, we use the same techniques as 1n
Ref. [11] to calculate the Higgs and scalar masses 1n
the case tan 8 > 1, or, equivalently, when h,,, h,, are
large The relevant RGEs can be found in the literature
[4,6]. We define

U=m%,1+m:,",2+m%,3, 31

ism2B=— (30)

D=m3 +m3,+m?,, (32)

where the my, have been defined previously, while
mg, =tip, , Mg, = Hip,, and my, =rip,. By recalling the
same arguments used 1n the solution of scalar masses
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for the case k,, > h,, we can conclude that the con-
tributions of the trilinear parameters A, Ap, do not play
an mmportant role in the final solutions for the scalar
masses 1n the present case too. Therefore, to simplhify
the subsequent analysis, we drop Ay, Ap terms (the
extension of the solution to the most general case is
straightforward). Then it 1s easily observed that one
can write the equations for the sums of scalar masses
1n the following form

v 1
b 1
5 "5 {Uh? +6Dh3 —Gpmin ), (34)

where Gy =Gy + Gy, +Gye and Gp =Gy +Gy, +
Gg.. To simplify the above coupled equations we make
the following transformations

t
3 7
U=x, T=exp{— yp f h? dt},
0
3 t
D=ay, a=cxp{— —-—zj’hg dt'} (35)
4
to

Then Egs. (33), (34) can be written 1n the form

&x 1do_ Gy

Urril et Bl LATEX (36)

dy 1dr Gp , 37)

It 1s trivial to check that D E (36) n the case h, > h,
can be solved independently giving the solution (25)
for the up-squarks and the mggs H, Moreover, using
the fact that G, = G, =2G, one can easily obtamn an
exact solution of Egs. (36), (37). In the general case,
(36), (37) can combine to two simple, second order
differential equations of the form

& a _ dfe)y f

ag?” " B’ dQ(B) X (38)
e B __1(1)_5

szx ax_ dP \¢, a’ (39)
with

ok _1d0 o 40
Q= —— = - — =
87 rdt’ «dr, (40)
87 odt’ =B
and
G G
fin= é;’;;m%/z, g(t)= Swé’gm%/z (42)

These are both decoupled and have a standard second
order form with a nonhomogeneous part on the RHS

Since the coefficients are known functions of the ana-
lytic solutions h,(1), k(1) they can be solved either
numerically or n particular cases by standard methods
yielding expressions for the sums of my;,, mp, Then the
expressions for the individual masses may be obtained
n the way described in Ref [11] Detailed results of
the above procedure will be presented elsewhere

We have been informed that C. Kounnas and F
Zwirner have obtained similar expressions for &, cou-
plings We would like to thank them for discussions
and communicating to us their results and M Carena
and C. Wagner for discussions on their work. G K.L.
would like to acknowledge a useful discussion with 1.
Antoniadis
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