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Abstract 

We present analytic expressions for the top and bottom Yukawa couplmgs m the context of the mmlmal supersymmetnc 
standard model when both couplmgs h ,,0, /I,,~ are large at the umficatlon scale For sufficiently large h,,,, /Q,~, using as mput the 

central value of the bottom mass mb(q) =4 25 GeV, we find that the top mass hes m the range m,= (174-178) GeV, whde 
tan p = (55-58) Imphcatlons on the evolution of the scalar masses and the radiative symmetry breakmg scenano are &scussed 

It 1s widely believed that the mmtmal supersymme- 

trtc standard model (MSSM) is the most natural exten- 
non of the standard theory of strong and 
electromagnetic mteracttons. Furthermore, the MSSM 
can be naturally embedded m all unified supergravity 
and superstrmg constructions. Detailed calculattons 
[ 1 ] takmg mto account the most recent data on the low 
energy values of gauge couplmgs and other measurable 
parameters, have shown that the above theoretical 
expectations are correct when supersymmetry breaks 
at the order of 1 TeV and the unification of gauge 
couplmgs takes place at the scale of lOI GeV provided 

that the MSSM fermion and higgs content 1s used It 
was therefore recently realized [2] that it is time to 
take a step further and - m addition to the gauge cou- 
pling umfication - explore the nature of Yukawa cou- 
plings whtch, m the MSSM, are treated as free 
parameters Grand unified theones [ 31 predict various 
relations among them, depending on the precise group 

’ Permanent address Theoretml Physics Dwmon, Ioannma Um- 
vewty, GR-45 110 Greece 

chosen by the parttcular umficatton scenano Further- 

more, string theorres relate the fate of Yukawa cou- 

plings with that of the gauge constants It is expected 

that some of them might be of the order of the common 
gauge couphng constant at the unification point. In fact, 

m all string scenarios there appears a hterarchical form 

of the quark and lepton Yukawa couplings, due to addi- 
tional U( 1) symmetries which usually allow only one 

generation of fenmons to receive masses from the trt- 

linear superpotential terms. Concentratmg on the quark 

sector, this would mean that the only tree level Yukawa 

couplmgs which may be large and comparable to the 

unified gauge coupling are h, and !Q, Knowing their 

mmal values at the GUT scale, we may determine then 

low energy values by evolving them down usmg the 

renormalization group equations This has been done 

m many recent works [4,5,2] using numerical meth- 

ods. In the present letter, we wish to present analyttc 

forms for the above couphngs, when both are large at 
the unification scale Particular solutions as m the mter- 

esting case of ht,0 = hb,O have already appeared m the 
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hterature [ 51. Such forms might prove extremely use- 
ful, for example, in the calculation of the scalar masses 
and the Higgs mass parameters. In particular, the latter 
play a very important role in the radiative symmetry 
breakmg scenario [ 61. In particular m the large tan p 
scenario where both couplmgs are large, the higgs 

mass-squared parameters may both be dnven negative 
and the stab&y of the neutral hrggs potential will be 
questionable Therefore, analytic forms for the mass 
parameters can simphfy the analysis of the mimmiza- 
tion conditions and provide a better insight of the role 
of the Yukawa couplmg contributions to the scalar 
masses. 

In the followmg, we will assume that only h, and hb 
Yukawa couplmgs are large. We will assume that all 
other Yukawa couplmgs, mcludmg h, are small and 
will ignore them. Thus, we do not implement the mm- 
imal GUT relation ~,,=ZZ,,~ at the GUT scale. We 
should point out that this happens very often m the case 

of strmg GUTS (as m the case of the flipped SU( 5) 
[ 8]), and therefore it is of particular interest. Never- 

theless, our solutions are still a good approximation 
even m the case of appreciable mmal h7,e values. 

Ignoring all other Yukawa couplmgs, the coupled 

differential system of h,- hb couplmgs is written as 
follows 

;h:= ${6hf+hf-G&h;, 

;h:= & {h:+6h;-G,}h;, 

G,= ; cbg;, GB = i cbd, (3) 
I=1 r=l 

where c;2= [y, 3, s} cZ={y, 3, &} for SU(3), 
SU( 2) and U( 1)) respectively. In order to solve ( 1 ), 
(2)) we choose first to absorbe the gauge coefficients 

Go, GB by making the transformations. 

h;=y;x, h;=y;y, (4) 

where 

y: =exp{s _/ G,(t’) dr’}, Z=Q, B 

10 

(5) 

with to = In Mour Then, by observing that yQ= ‘yB, 

since their only difference is only a small coefficient m 
the V( 1) factor, it can be seen easily that the D.E.‘s 
( 1), (2)) in the approximation yQ = -yB transform as 
follows 

-$= 5 &W+yb, (6) 

;Y= $ ~;]x+~Y]Y (7) 

This last coupled system can give a solution for x m 
terms of y and vice versa, leading to the algebraic equa- 
tion 

(8) 

Furthermore subtracting (6) from (7)) we may obtain 
the following D.E.: 

$ (X-Y) = 5 rgx+Ym-Y> 1 (9) 

while (x + y) can be substituted from (7) to give a 
differential equation for the difference o = x - y of the 
form 

; (X-Y> = & &(x-Y)bfJ(x-Y)7’6+ (x-Y>2, 

(10) 

where the parameter b = 4xoyal (x0 -ye) ‘M depends 
on the mmal conditions x,, = h $, and yO = h& . 

In order to solve Eq. (9) we make the following 

transformation 

ko ko 
‘= (x_y)5/6 = w5/6 

dI= -$ y'e dt. (11) 

Eq. (9) can be put m the form 

u “‘du 

Jl+u 
= -dk;“&, (12) 

which can be integrated to give the solution m terms of 

hypergeometric functions 2Fl (a, b, c; z), 1 e 

U7/10 F 

( 

1 
21ZY 9 ' -&+),-- 

--uI 1 

_ U7/10 
0 

1 
X,F, f -$i,&-- 9 9 

-Ug’ 
= 6 k;*“‘f( t). (13) 
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Table 1 

m, and tan p predictions for two uutlal values of h,,, and various hb O 
Yukawa cou Imgs, usmg expresslons (21) and (22), whde fixing 

mb = nb( u/ P 2) hb cos /3 = 4 25 GeV, with n, = 1 4 being the renor- 

mahzatlon group factor from p - m, down to p = m, 

h ,O 

25 

35 

h bO m, tan p 

1 75 175 6 56 25 

2 00 1750 56 73 

2 25 1745 57 07 

2 50 1740 57 32 

1 75 177 3 54 85 

2 00 1766 56 26 

2 25 176 1 56 65 

2 50 175 7 56 93 

3 00 175 0 57 31 

Analytic solutions for the large hb,, Yukawa cou- 
plings are of particular interest in supersymmetric the- 
ories. The masses of the higgses responsible for the 

electroweak breaking as well as the scalar masses of 
the third generation receive large negative contribu- 
tions when hbr h, are also large. In the radiative elec- 
troweak symmetry breaking scenario [ 61, one of the 
higgs mass-squared parameters should become nega- 

tive This is m fact possible because of the large nega- 
tive Yukawa corrections. However, when both Yukawa 

couplmgs are large, both higgs mass parameters receive 
large contributions Thus, when dealmg with the RGE 
of the scalar masses it is very useful to have analytic 
expressions for the Yukawa functions which appear m 
the role of scale-dependent coefficients m the differ- 

ential equations of the former. 
In the followmg, we discuss briefly the effects of h,, 

hb couplmgs to the Higgs and scalar quark masses of 
the thud generation, disentangling the coupled differ- 
ential system of them and reducing it down to a simple 
differential equation of second order which may be 
solved either numerically or by standard analytic math- 
ematical methods 

We start first (as a reminder for remmdmg the 
reader) with the exact solution of the scalar masses 
miL = r&, , m;;, = tii,, and rnnZ = fii, m the case where 
h, X- hb, and tan p=&‘( 1). It has been found m this 
case that the above scalar masses are given by a simple 
formula [ 111 

r%fj,, =rnFj +Cu,z(t)m:l, -ntS%(t) -r&(t) , (26) 

where 82 (t) has been estimated to be much smaller 

than S$ and can be ignored for the present purposes, 
while* 

( m,(t) 

2 

s;(t) = 

2777vdQ 1 sin P 
(3&(t) 

+mS2Jo(t)) , (27) 

where Z(t) has already been defined in solving Eq 
( 16)) while 

1 

Jo(t) = i [ C,(t’)&(t’)dt’ . (28) 
n=l J 

10 

The coefficients C, can be found m the hterature 
[ 6,4]. Notice that m the derivatton of the above, it was 

assumed that ht,0 B- hb,o while hb,O was omitted from 
the equations. However, m the case where hb,Ow hr,O 
this is no longer valid Since both Yukawa couplmgs 

are hrlb o _ 
2 

” 

@( 1) , both higgs mass-squared parameters 

mH13 mHz receive large negative contributions and play 
a very important role m the stabihty of the neutral higgs 
potential This can be easily seen from the minimization 

conditions a vH/au, = 0, where v, = (H,), which result 
m well known equations 

+M; = 1-4 - 1-4 an2P 
tan’P--1 ’ 

(29) 

f sm2p= - m: 

EL?+& 
(30) 

where pf = m$, + p2 + uf , with crf bemg the correc- 
tions [ 121 to the Higgs potential from the one-loop 
contributions and p the higgs mixing term. Therefore, 
these contributions should be calculated with great 
care. Analytic expressions, if possible, may be 
extremely useful m the minimization conditions of the 
potential 

In the followmg, we use the same techmques as m 

Ref. [ 111 to calculate the Higgs and scalar masses m 
the case tan /? X- 1, or, equivalently, when hb,o, h,,. are 
large The relevant RGEs can be found in the literature 
[ 4,6]. We define 

2 2 U=m& -km, -i-m,, (31) 

2 D=m& -km:, +m,, , (32) 

where the mu, have been defined previously, while 
rngL = m,, , mgR = r&,, , and mp, = fii, . By recalling the 
same arguments used m the solution of scalar masses 
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for the case /z,,~ B- hb,O we can conclude that the con- 
tributions of the trrlmear parameters A,, A, do not play 
an Important role m the final solutions for the scalar 
masses m the present case too. Therefore, to simplify 
the subsequent analysis, we drop A,,, A, terms (the 
extension of the solution to the most general case 1s 
straightforward). Then it 1s easily observed that one 
can write the equations for the sums of scalar masses 
m the followmg form 

dU 1 -=- 
dt 8rr2 

{6Uh:+Dh%--Gum:,,), 

dD -= 
dt 

& (Uh: +6Dhg -G,m:,,] , 

(33) 

(34) 

where GU = G, + G, + GU, and GD = G, + GH, + 
GBc. To simplify the above coupled equations we make 
the followmg transformations 

Then Eqs. (33)) (34) can be written m the form 

(36) 

dy ldr Go 
u- = --x- Tm:j2 

dt 6dt 8rr 
(37) 

(35) 

cr h; 1 da 
a= -- = --9 

7 8,rr2 r dt 
dP=adt, 

p= L!s& = i!!, dQ=pdz 

and 

f(t)= -5 8r2r 42, g(t) = +& m?12 

d2 P d f qx__x=-- _ __K 
dP a 0 dPa 9 a 

with 

These are both decoupled and have a standard second 
order form with a nonhomogeneous part on the RHS 
Since the coefficients are known functions of the ana- 
lytic solutions hb(t), h,(t) they can be solved either 
numerically or m particular cases by standard methods 
yielding expressions for the sums of mu,, m,, Then the 
expressions for the mdlvldual masses may be obtamed 
m the way described m Ref [ 111 Detailed results of 
the above procedure will be presented elsewhere 
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