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Abstract

Effective low energy models arising in the context of D-brane configurations with
Standard Model (SM) gauge symmetry extended by several gauged abelian factors are
discussed. The models are classified according to their hypercharge embeddings consistent
with the SM spectrum hypercharge assignment. Particular cases are analyzed according
to their perspectives and viability as low energy effective field theory candidates. The
resulting string scale is determined by means of a two-loop renormalization group calcu-
lation. Their implications in Yukawa couplings, neutrinos and flavor changing processes
are also presented.
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1 Introduction

The revelation of the higher dimensional objects [1], called D-branes, has revived the interest
on model building in the context of string theory. As a consequence, during the last decade,
numerous painstaking efforts have been devoted to the study of possible D-brane realizations
of the Standard Model and the higher gauge symmetries containing it1.

Model building in string theory has shown that there is no a priori obvious recipe to
obtain the SM from the first principles of the theory. In recent attempts, various groups
[3]-[11] started mainly a bottom-up approach delving into the string vacua, aiming to sys-
tematically classify all possible D-brane configurations, seeking an acceptable effective low
energy theory which reproduces the success of the Standard Model. It is anticipated that,
such a construction would determine the arbitrary parameters of the Standard Model, while
new phenomena could be predicted and eventually tested in future experiments.

In the present work, we elaborate on low energy implications of a particular class of
D-brane models [4]-[11] with Standard Model gauge symmetry and Split Supersymmetric
spectrum [12]2. The implementation of Split Supersymmetry in the D-brane constructions
under consideration, is justified for the following two reasons: First, it was shown that the
realization of Split Susy is a viable possibility in certain D-brane constructions [14]. Sec-
ond, intermediate and high string scale D-brane models previously abandoned because of
phenomenological drawbacks related to hierarchy problems, rapid proton decay etc, in the
context of Split Supersymmetry offer fascinating new possibilities since there exist now con-
vincing arguments concerning the hierarchy issues. Besides, the renormalization group flow
of the gauge and Yukawa couplings as well as low energy measurable physical quantities de-
pendent on them, change substantially. In view of these interesting novelties, in a previous
work [6], a classification of the various D-brane derived models with Split Supersymmetric
spectrum and Standard Model gauge symmetry extended by U(1) factors was attempted.
All possible configurations with P = 1, 2, 3 abelian branes were considered and the different
hypercharge embeddings compatible with the SM particle spectrum were found. In all viable
cases, a one-loop RG analysis was used to calculate the string scale MS , while the fermion
mass relations of the third generation, the gaugino masses and the lifetime of the gluino were
examined. Here, we will pursue a further investigation, addressing more phenomenological
issues and deriving possible constraints on the Split Supersymmetry breaking scale m̃ and
other so far undetermined parameters. We will extend our previous analysis, and work out in
detail the predictions for the string scale using renormalization group equations at two–loop
order. We note however, that the determination of the string scale is more intricate than in
ordinary Grand Unified models. The reason is that in D-brane constructions, gauge coupling
unification at the string scale does not occur since the volume of the internal space is involved
between gauge and string couplings; thus, the actual values of the SM gauge coupling con-
stants may differ at MS . This arbitrariness looks rather daunting, however, certain internal
volume relations could allow for partial unification. In order to reduce the number of free
parameters and obtain definite predictions, we mainly concentrate on cases where certain
relations are assumed to connect the gauge couplings at the string scale. Particular attention
is also given to models where the non-abelian gauge couplings have a common value at MS .
Next, in each case of the models under consideration, we determine the range of the Split

1For a comprehensive and pedagogical introduction see [2, 3].
2For another approach in partly supersymmetric spectrum see ref.[13]
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Supersymmetric scale which is compatible with the chosen gauge coupling conditions. We
further discuss the Yukawa potential and other low energy predictions which are crucial for
the viability of the models. In particular, we examine the conditions under which exotic pro-
cesses like the lepton flavor violating decay µ → eγ can be detected in future experiments,
we discuss suggested mechanisms predicting a sufficiently heavy mass for the right-handed
neutrino and check the existence of exotic matter like leptoquarks, whose appearance is also
possible in the low energy spectrum of these models.

The paper is organized as follows: In the next section, we summarize the salient features
of the D-brane configurations and determine the hypercharge embeddings leading to Stan-
dard Model particle spectrum. In section 3 we present in some detail selected cases of low
energy effective models, while in section 4 we calculate the string scale and explore its cor-
relation with the Split Supersymmetric scale by means of a two-loop renormalization group
analysis. In section 5 we analyze the effects of exotic states. In section 6 we discuss the
observability conditions for rare flavor violation like µ → eγ. Finally, in section 7 we present
our conclusions.

2 D-brane configurations and Split Supersymmetry

The embedding of the Standard Model in a D-brane configuration as well as some implications
in low energy phenomenology and the magnitude of the string scale have been explored in
several works [4, 5, 6, 7, 8]. The same problem in the context of intersecting D-branes, has
also been extensively discussed [9, 10].

The resulting field theory model involves the SM non-abelian gauge symmetry extended
by several U(1) factors, a linear combination of which defines the hypercharge.3 A systematic
bottom-up investigation of all possible configurations for the SM gauge symmetry with two
abelian branes was presented in [7]. Here, as in [8], we assume the existence of at most three
extra U(1) abelian branes, thus, the full gauge group is

G = U(3)C × U(2)L × U(1)P , P = 1, 2, 3 · (1)

Since U(n) ∼ SU(n) × U(1), the final symmetry is

G = SU(3)C × SU(2)L × U(1)P+2, P = 1, 2, 3 (2)

while the SM fermions and Higgs fields carry additional quantum numbers under the extra
U(1)’s.

Given that strings attached to various D-brane stacks represent the SM matter fields, the
hypercharge generator is in general, a linear combination of all possible U(1) factors. If we
define the anomaly free linear combination of these U(1)’s to be

Y = k3Q3 + k2Q2 +

3
∑

i=1

k′
iQ

′
i

the most general hypercharge gauge coupling condition can be written as

1

g2
Y

=
6k2

3

g2
3

+
4k2

2

g2
2

+ 2

P
∑

i=1

k′
i
2

g′i
2 · (3)

3see reviews [11, 3].
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For a given hypercharge embedding, the k′
i’s can be determined and equation (3) relates the

weak angle sin2 θW = (1 + kY )−1 ( kY = α2

αY
, αi ≡ g2

i /4π), with the gauge coupling ratios at
the string scale MS . Since in D-brane scenarios the gauge couplings do not necessarily attain a
common value at the string (brane) scale MS , the ratios α2/α3, α2/α

′
i differ from unity there.

In a previous analysis, various relations between the gauge couplings were considered and a
systematic investigation of the magnitude of the string scale and the split SUSY breaking
mass scale was presented [8]. Here, in order to reduce the arbitrary parameters and come up
with definite predictions, we assume the existence of relations between the gauge couplings
at MS , while we pay particular attention to the interesting case α2 = α3 at MS . If we accept
that m ≤ P U(1) branes are aligned with the U(3) stack and the remaining P − m abelian
branes are aligned with the U(2) set, kY becomes

kY ≡ α2

αY
= n1 ξ + n2 (4)

where

n1 = 6k2
3 + 2

m
∑

i=1

k′
i
2
, n2 = 4k2

2 + 2

P
∑

i=m+1

k′
i
2
, (5)

and ξ is the ratio of the non-abelian gauge couplings α2/α3.
To obtain the fermion and Higgs spectrum of a given brane configuration, we note that

each state corresponds to an open string stretched between pairs of brane stacks or to a string
with both ends attached to the same brane stack. Taking all possible arrangements of the
SM particle spectrum represented by the various strings attached between the U(3), U(2)
and extra U(1)i brane sets, we end up with the admissible brane configurations. Some par-
ticular arrangements are shown in figure 1. For each particular configuration, the coefficients
k2,3, k

′
i are determined by the requirement that the SM particle spectrum acquires the correct

hypercharge.
To proceed further, we recall here the results obtained for brane setups that include up to

three abelian branes. The admissible solutions for the U(3)×U(2)×U(1) case setup have been
explored in [14] and the ki distinctive solutions are presented in the first two lines of Table 1.
For the U(3) × U(2) × U(1)2 configuration [4, 5, 7], we assign the quantum numbers of the
SM particles Q(3, 2;+1, ǫ1, 0, 0), dc(3̄, 1;−1, 0, ǫ2, 0), uc(3̄, 1;−1, 0, 0,−ǫ3), L(1, 2; 0, ǫ4 , 0, ǫ5)
and ec(1, 1; 0, 0, ǫ6 , ǫ7), where ǫi = ±1. A similar assignment can be written for the P = 3
case too. Solving the corresponding hypercharge assignment equations [6, 8], we find that
the hypercharge can be expressed in terms of k′

2 = x which remains undetermined, as

Y = (2/3 − x)Q3 + (1/2 − x)Q2 + (1 − x)Q′
1 + xQ′

2 + δN3 xQ′
3 · (6)

Choosing appropriate values for x so that the corresponding boson remains massless at MS ,
the simplest solutions for the three different brane configurations are shown in Table 1. For
future use, the values of the coefficients n1, n2 appearing in (5) for all possible U(3) and/or
U(2) alignments of the U(1) branes are also included in the last column of the same Table.

3 Low energy effective models of particular embeddings

In the previous section we saw that the SM spectrum can be successfully accommodated in
D-brane setups with gauge symmetry of the form U(3)×U(2)×U(1)P , P = 1, 2, 3, and made
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P |k3| |k2| |k′
1| |k′

2| |k′
3| (n1, n2)

a1
1
3

1
2 0 − − (2

3 , 1)
1

b1
1
6 0 1

2 − − (2
3 , 0); (1

6 , 1
2)

a2
1
6 0 1

2
1
2 − (1

6 , 1); (7
6 , 0); (2

3 , 1
2)

2 b2
2
3

1
2 1 0 − (8

3 , 3); (14
3 , 1)

c2
1
3

1
2 0 1 − (2

3 , 3); (8
3 , 1)

a3
1
6 0 1

2
1
2

1
2 (1

6 , 3
2); (2

3 , 1); (5
3 , 0); (7

6 , 1
2)

3 b3
1
3

1
2 0 1 1 (2

3 , 5); (14
3 , 1); (8

3 , 3)

c3
2
3

1
2 1 0 0 (8

3 , 3); (14
3 , 1)

Table 1: Simplest hypercharge embeddings for the P = 1, 2, 3 brane configurations. The last
column shows the (n1, n2)-values of (5) for the various possible alignments of the U(1)-branes
with respect to U(3) and U(2) brane-stack orientations.

uc
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U(2)

Q

U(3)

L

ec

dc

c ec

Hd

dc

L
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Q

U(1)U(2)

U(1)U(3)

Hu

Hd

Hu

ec

L

uc
dc

Q

U(1)

U(1)

U(1)
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Figure 1: Selected Standard Model configurations with one, two and three abelian branes
P = 1, 2, 3.

a complete classification of models for the various hypercharge embeddings which imply a
realistic particle content. In this section, we will present the particular embeddings in more
detail, and work out the Yukawa couplings and other phenomenologically interesting features.

In a previous work [8], we presented an analysis dealing with the implications of Split
Supersymmetry on the string scale, first considering models that arise in parallel brane sce-
narios where the U(1) branes are superposed with the U(2) or U(3) brane stacks. Varying the
Split Susy scale in a wide range, we examined the evolution of the gauge couplings and found
three distinct classes of models with respect to the string scale. The Split Supersymmetry
breaking scale m̃, can in principle be much larger than the electroweak scale and, as a con-
sequence, squarks and sleptons can obtain large masses of order m̃, while the corresponding
fermionic degrees as well as gauginos and higgsinos, remain light. This splitting of the spec-
trum is made possible only when the dominant source of supersymmetry breaking preserves
an R-symmetry which protects fermionic degrees from obtaining masses at the scale m̃.

Assuming that above m̃ only the MSSM spectrum exists, while below m̃ we only have
SM fermions, gauginos, higgsinos and one linear combination of the scalar Higgs doublets,
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the one-loop RGE expression for the string scale is given by

MS = MZ

(

m̃

MZ

)a

eb (7)

where, the parameters a, b depend on the beta function coefficients, the values of the gauge
couplings at MZ and the model dependent constants n1, n2 given in (5). After substituting
the beta functions, these constants are given by

a =
21 − 12n1 − 13n2

6(11 + 3n1 − n2)

b =
2π

11 + 3n1 − n2

(

1

αY
− n2

α2
− n1

α3

)

·

The above one-loop formula is sufficient to produce some qualitative results. Thus, one
class of models that arises in the configurations with P = 1 and P = 3 abelian branes,
predicts a string scale of the order of the SUSY GUT scale MS ∼ 1016 GeV; interestingly
enough, these models also imply that the non-abelian gauge couplings unify (α2 = α3) at
MS .

In the case of the configuration with only one abelian brane, the up or down right handed
quarks arise when both endpoints of an open string are attached to the color stack. In this
case, the terms Quc or Qdc carry a non-zero U(1)C charge while a typical SM Higgs field
is not charged under U(1)C . Therefore, the corresponding tree-level Yukawa term is not
allowed and the quark fields remain massless. It is worth noting that, as shown by one-
loop renormalization group analysis [8], m̃, at least in its minimal SM content, is fixed at
a relatively small scale ∼ 6 TeV. The corresponding –with respect to the MS ∼ 1016 GeV
prediction– P = 3 case, is free from these shortcomings, consequently, in what follows, we
are going to further elaborate on some interesting low energy implications of this setup.

Another category of brane configurations was found in a particular –with respect to the
U(1) alignments– case of the P = 2 abelian branes. This model corresponds to a specific U(1)
brane orientation and predicts an intermediate string scale MS ∼ 106 − 107 GeV. Finally,
two more cases in the P = 2 and P = 3 abelian brane scenarios result in a low MS , in the
TeV range. In the following, we shall give a detailed description of two promising cases with
three and two abelian branes respectively.

3.1 A representative case with U(3) × U(2) × U(1)3 gauge symmetry

This model possesses interesting characteristics and enough freedom to produce reliable phe-
nomenology. The hypercharge assignment corresponds to the solution a3 of Table 1. De-
pending on the orientations of the U(1) branes which are taken to be either parallel to U(3)
or to U(2) stack, we obtain four distinct cases. In particular, if we align the two U(1) branes
with the U(2) stack, we get kY = 1

6ξ + 3
2 , and one obtains non-abelian gauge unification

ξ = α2

α3
= 1 at a scale MS ≈ 1016 GeV. It is worth noting that this particular U(1) brane

alignment results to a U(1) normalization constant kY = 5
3 and sin2 θw(MS) = 3

8 . These
are undeniably interesting attributes reminiscent of the successful GUTs, while, in addition,
a sufficiently large mass for the right-handed neutrino arises to realize the see-saw mecha-
nism. Note also, that all other possible U(1) alignments of the P = 3 setup lead to a similar

6



unification scale, but with a weak dependence on the m̃ scale. Demanding the existence of
appropriate Yukawa couplings, the various signs are fixed and this configuration leads to the
charge assignments presented in Table 2. The field νc in particular included in the spectrum,
is a generic type of singlet which may arise from a string with endpoints attached on two
different U(1) branes, thus, the possible values of si=1,2,3 are equal to 0,±1. Once the two
branes where the corresponding string is attached are specified, the values of si, can be chosen
so that νc can be identified with a RH neutrino. The hypercharge operator is defined (see
Table 1) as follows:

Y =
1

6
Qc +

1

2

(

Q1 + Q′
1 + Q′′

1

)

· (8)

Taking into account the charge assignment of the SM states presented in Table 2, we can
derive the allowed tree-level Yukawa couplings for the charged fermions which are

λu Quc Hu + λd Qdc Hd + λl Lec Hd · (9)

The potential mass terms (9) do not discriminate between generations therefore some other
mechanism has to be invented in order to generate flavor mixing. This can be achieved in
the case of intersecting branes, where quarks and leptons as well as Higgs fields appear at the
intersections and are located at different positions in the compact extra dimensions [9],[17].
The six dimensional compact space is usually taken to be a six-dimensional factorizable torus
T 6 =

∏

i=1 3T 2
i while strings representing the matter fields are wrapped along the two 1-cycles

of each of the three torii. The number of fermion generations is related to the two distinct
numbers of brane wrappings around the two circles of the three torii. For example, for a string
with endpoints attached on two stacks a, b, (corresponding to a (Na, N̄b) representation) and
wrapping numbers (ni

a,m
i
a),(n

i
b,m

i
b), the number of intersections Iab =

∏

i=1 3(ni
am

i
b−ni

bm
i
a)

equals the number of chiral fermions at the intersection. In this scenario, the trilinear flavor
mixing Yukawa couplings of the form λijkf c

i fjhk arise from a string world-sheet stretching
between the three relevant brane stacks, while the coupling strengths are of the order λijk ∼
e−Aijk , where Aijk is the triangular area generated by the three vertices related to the fermions
f c

i , fj and the Higgs field hk. We note, however, that in the present model one might exploit
the fact that the three U(1) charges Q1, Q

′
1 and Q′′

1 appear symmetrically in the hypercharge
definition. This allows for the possibility of having open strings with one end attached to
a certain non-abelian stack and the other endpoint attached to a different U(1) brane. In
this case, the corresponding SM states have the same SU(3) × SU(2) × U(1)Y quantum
numbers, although they are differently charged under the extra U(1)’s. The latter could act
as a family symmetry distinguishing between the various -‘flavor dependent’- Yukawa terms.
As an example, assume that in addition to the string representing the uc of Table (2), we
also add a string with one end attached to the U(3) stack and the other end to the first
U(1) brane with quantum numbers (3̄, 1;−1,−1, 0, 0, 0). This could also be interpreted as
a right-handed up-quark field (denoted here as u′c) belonging to a different family, however
another tree level term Qu′cHu is prevented by the U(1) symmetry. A mass term for this u′c

could be possible in the presence of a neutral scalar singlet (1, 1;−1, 1, 0) (represented by a
string with ends on the appropriate U(1) branes) so that a hierarchically suppressed mass

term of the form Qu′cHu
〈φ〉
MS

could arise. Similar terms can also be generated for the lepton
fields.
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SU(3) × SU(2) Q3 Q2 Q′
1 Q′

2 Q′
3

Q (3, 2) 1 ǫ1 0 0 0

uc (3̄, 1) −1 0 0 −1 0

Fermions dc (3̄, 1) −1 0 1 0 0

L (1, 2) 0 ǫ1 0 0 −1

ec (1, 1) 0 0 1 0 1

νc (1, 1) 0 0 s1 s2 s3

Hu (1, 2) 0 −ǫ1 0 1 0

Bosons Hd (1, 2) 0 −ǫ1 −1 0 0

Table 2: The quantum numbers of the SM matter fields for the N = 3 brane configuration.
The particular choice of signs are fixed by hypercharge and Yukawa couplings constraints.

Returning now to the minimal version of the present model, it can be easily checked that
the Lepton number is identified with the L = −Q′

3 charge of the above states, so that the
lepton doublet L and the singlet ec carry lepton numbers +1 and −1 respectively, while all
other states are neutral under Q′

3. Taking into account this definition of the Lepton number,
we deduce that there are only two possibilities to accommodate the right handed neutrino.
If we choose s1 = 0, s2 = −1, s3 = +1, we get a νc state with U(1) charges (0, 0, 0,−1, 1) and
zero hypercharge. Then a Yukawa coupling of the form

λl LHu νc (10)

is compatible with all U(1) symmetries, providing the neutrino with Dirac mass. This Dirac
mass term is naturally of the same order of magnitude as the corresponding mass terms for
charged lepton fields. Its suppression down to the present experimental limits, is achieved via
the see-saw mechanism, therefore a Majorana neutrino mass term Mνc νc νc with Mνc ∼ MS

is required. Unfortunately, a mass scale of this high order in not possible to get in the
perturbative superpotential. A non-perturbative origin for Mνc and in particular from String
Theory instanton effects was proposed in [18]. According to this approach, the operator

MS e−Sinst. νc νc (11)

which provides a Majorana mass to νc is found to be gauge invariant, while it violates the
B −L symmetry. The relevant instantons correspond to D2-branes which, when intersecting
with D6-brane stacks give rise to fermionic zero modes charged under particular U(1)’s. An
instanton induced effective interaction is generated by integrating over the instanton zero
modes. Fermion zero modes charged under the particular U(1) violate the corresponding
U(1) symmetry, therefore it is necessary to insert fields charged under the 4d symmetry. In
the case under consideration, a D2-brane when intersecting with the two D6 branes where
the string representing νc is attached, gives rise to a Majorana mass term of the form (11),
thus the see-saw mechanism is operative in this model.

It has been observed [7],[19] that in addition to the SM particle spectrum discussed
above, in several D-brane constructions, states which carry both lepton and quark quantum
numbers are unavoidable. Indeed, fields of the type D,U = (3/3̄, 1)(±1,0,0,0,1) and their
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complex conjugates obtained by strings attached on U(3) and the corresponding U(1) stacks,
are also possible. These representations have the quantum numbers of leptoquarks, i.e., they
are color triplets and carry lepton number L = ±1. Fortunately, couplings of the form D̄ QL
and D uc ec that might lead to baryon instability are not allowed because of U(1) symmetries.
Nevertheless, these states do contribute to the beta function coefficients and thus, can have a
significant impact on the determination of the string and Split Susy scales. In the following
sections, a more general analysis that will also include leptoquarks will be presented.

3.2 A case with U(3) × U(2) × U(1)2 gauge symmetry and low MS

We will now describe a model which admits a low unification scale4. We consider the case b2

of Table 1 where both U(1) branes are aligned to the U(3) stack. A rough estimate of the
unification scale at one loop order gives MS ∼ 105 × (mZ/m̃)1/3, and it can be checked (7)
that its highest value cannot exceed 105 GeV.

The hypercharge assignments of the SM states Q(3, 1; 1,−1, 0, 0), uc(3̄, 1;−1, 0, 0, ǫ3),
dc(3̄,−1, 0, 1, 0), L(1, 2; 0,−1, 0, ǫ5) and ec(1, 1; 0, 0, 1, ǫ7) are consistent with the hypercharge
definition

Y =
2

3
Q3 +

1

2
Q2 + Q′

1 · (12)

The remaining coefficients ǫi = ±1 are correlated through the superpotential terms needed
to generate masses for quarks and lepton fields; the relevant Yukawa couplings are

W = λu Quc Hu + λd Qdc Hd + λl LHd ec (13)

and imply the relations ǫ3 = −ǫ9, ǫ5 = −ǫ7. We may define the baryon number to be
QB = 1

3 QC , whilst, for the given configuration, the lepton number can be a combination of
the form

QL = a

(

Q3 + Q2 + Q′
1 − ǫ3

1 + a

a
Q′

2

)

(14)

where a is a parameter to be specified. Demanding that the fermion and Higgs fields have
the appropriate lepton number one finds that a = −1

2 , ǫ3 = +1 thus

QL = −1

2
(Q2 + Q2 + Q′

1 + Q′
2) · (15)

Finally, taking into account all the constraints, it is found that the ǫ3,5,7,9 can be expressed
in terms of one parameter only ǫ3 = ǫ7 = −ǫ5 = −ǫ9 = +1, while the resulting charge
assignments are shown in Table 3.

Last, the model should also predict a sufficiently suppressed neutrino mass. This may be
achieved through a see-saw type mechanism which requires the presence of a right-handed
neutrino with both Dirac and Majonana masses. The existence of a Dirac mass term

λl LHu νc (16)

4For implications of low string scale models see ref.[16]
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SU(3) × SU(2) Q3 Q2 Q′
1 Q′

2

Q (3, 2) 1 −1 0 0

uc (3̄, 1) −1 0 0 1

Fermions dc (3̄, 1) −1 0 1 0

L (1, 2) 0 −1 0 −1

ec (1, 1) 0 0 1 1

Hu (1, 2) 0 1 0 −1

Bosons Hd (1, 2) 0 1 −1 0

Table 3: The quantum numbers of the SM mater fields for the N = 2 brane configuration.

is possible if the RH-neutrino is produced by a string with both ends attached to the same
U(1) (bulk) brane with U(1) charges (0, 0, 0, 2) which is part of a vector multiplet as described
in [5]. We also note that all dangerous Yukawa terms of the form

λ1 Qdc L + λ2 uc dc dc + λ3 LLec (17)

are forbidden by the U(1) symmetries, unless extra singlets generate them at higher order.
Such terms can also appear through instanton effects, as it is the case for the νc-mass term.

4 The two-loop Renormalization Group Analysis

The bottom up approach in analyzing SM like models derived from brane setups, reveals that
the number of the additional U(1) branes as well as their orientation with respect to the U(3)
and U(2) stacks have a significant impact on the determination of the string scale. Up till
now, the analysis was restricted to one-loop order. Several issues related to measurements
at experimentally accessible energies however, require a more refined analysis for the various
mass scales of the theory. In this section, we will proceed to a two-loop renormalization group
calculation in order to get a more accurate value for the string scale as a function of the Split
Susy mass, while, in the next section, these new results will be used to determine sensitive
quantities such as branching ratios for flavor violating processes for which strict experimental
bounds exist.

In the present approach, apart from the electroweak scale MZ , we assume the existence
of two additional mass scales, the string MS and the Split Susy m̃ scales. The string scale is
defined through the gauge couplings relation

1

α1
=

n1

α3
+

n2

α2
(18)

subject to the ‘naturality’ condition α2 ≤ α3 at MS . This condition ensures that the couplings
α2, α3 do not meet at a scale lower than the one defined by (18). If α2 = α3 is realized prior
to the condition (18), the scale MS is then defined at the point where these two couplings
meet. For a given D-brane configuration, n1 and n2 are expressed in terms of the particular
values of ki, k

′
i in (5), and their values are given in the last column of Table 1.

In order to define m̃, we assume for simplicity that all scalars acquire a common mass at
a scale between the string and the electroweak scale. This scale is identified with m̃, below
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which only gauginos and higgsinos survive from the SUSY spectrum. All viable models in
the context described previously will be considered. We will start with models containing
the MSSM spectrum, however, our analysis will be extended to include exotic states like
leptoquarks, which do arise in certain D-brane constructions.

The 2-loop renormalization group equations for the gauge couplings are given by

dαi

dt
=

2biα
2
i

4π
+

2α2
i

(4π)2





3
∑

j=1

bijαj −
∑

k=u,d,e

dk
i

4π
Tr
(

hk†hk
)

− dW
i (α̃u + α̃d) − dB

i

(

α̃′
u + α̃′

d

)





(19)
where α̃u, α̃d, α̃′

u and α̃′
d stand for the gaugino couplings appearing in the Split Susy La-

grangian, αi (i = 1, 2, 3) are the gauge couplings and hk (k = u, d, e) are the Yukawa couplings.
Below m̃ the coefficients of Eq.19 are given by [15]

bi =

(

15

2
,−7

6
,−5

)

, bij =





104
9 6 44

3
2 106

3 12
11
6

9
2 22





du
i =

(

17

6
,
3

2
, 2

)

, dd
i =

(

5

6
,
3

2
, 2

)

, de
i =

(

5

2
,
1

2
, 0

)

,

dW
i =

(

3

4
,
11

4
, 0

)

, dB
i =

(

1

4
,
1

4
, 0

)

·

(20)

Above m̃ we have the usual MSSM spectrum and the coefficients are:

bi = (11, 1,−3) , bij =





199
9 9 88

3
3 25 24
11
3 9 14





du
i =

(

26

3
, 6, 4

)

, dd
i =

(

14

3
, 6, 4

)

, de
i = (6, 2, 0) , dW = 0, dB = 0 ·

(21)

The proper treatment of the two loop RGE’s for gauge couplings, require also the inclusion
of the one-loop running for the Yukawa couplings. Thus, the Yukawa coupling RGE’s below
m̃ are given by

dhu

dt
=

hu

4π

(

−3

3
∑

i=1

cu
i αi +

1

4π

3

2
hu†hu − 1

4π

3

2
hd†hd +

1

4π
T

)

(22)

dhd

dt
=

hd

4π

(

−3

3
∑

i=1

cd
i αi −

1

4π

3

2
hu†hu +

1

4π

3

2
hd†hd +

1

4π
T

)

(23)

dhe

dt
=

he

4π

(

−3

3
∑

i=1

ce
iαi +

1

4π

3

2
he†he +

1

4π
T

)

(24)

where

1

4π
T =

1

4π
Tr
(

3hu†hu + 3hd†hd + 3he†he
)

+
3

2
(α̃u + α̃d) +

1

2

(

α̃′
u + α̃′

d

)

cu
i =

(

17

36
,
3

4
,
8

3

)

, cd
i =

(

5

36
,
3

4
,
8

3

)

, ce
i =

(

3

4
,
3

4
, 0

)

·
(25)
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Above m̃ scale the RGE’s are (now hk is replaced by λk)

dλu

dt
=

λu

4π

(

−2
3
∑

i=1

cu
i αi +

1

4π
λu†λu + λd′λu +

1

4π
3Tr(λu†λu)

)

(26)

dλd

dt
=

λd

4π

(

−2

3
∑

i=1

cd
i αi +

1

4π
3λu†λu +

1

4π
Tr(3λd†λd + λe†λe)

)

(27)

dλe

dt
=

λe

4π

(

−2

3
∑

i=1

ce
i αi +

1

4π
3λe†λe +

1

4π
Tr(3λd†λd + λe†λe)

)

(28)

where

cu
i =

(

13

18
,
3

2
,
8

3

)

, cd
i =

(

7

18
,
3

2
,
8

3

)

, ce
i =

(

3

2
,
3

2
, 0

)

· (29)

Finally, the gaugino coupling RGE’s are

dα̃u

dt
=

2α̃u

4π

(

−3

3
∑

i=1

Ciαi +
5

4
α̃u − 1

2
α̃d +

1

4
α̃′

u

)

+
2

4π

√

α̃uα̃dα̃′
uα̃′

d +
2α̃u

(4π)2
T (30)

dα̃′
u

dt
=

2α̃′
u

4π

(

−3
3
∑

i=1

C ′
iαi +

3

4
α̃′

u +
3

2
α̃′

d +
3

4
α̃u

)

+ 3
2

4π

√

α̃uα̃dα̃′
uα̃′

d +
2α̃′

u

(4π)2
T (31)

dα̃d

dt
=

2α̃d

4π

(

−3
3
∑

i=1

Ciαi +
5

4
α̃d −

1

2
α̃u +

1

4
α̃′

d

)

+
2

4π

√

α̃uα̃dα̃′
uα̃′

d +
2α̃d

(4π)2
T (32)

dα̃′
d

dt
=

2α̃′
d

4π

(

−3
3
∑

i=1

C ′
iαi +

3

4
α̃′

d +
3

2
α̃′

u +
3

4
α̃d

)

+ 3
2

4π

√

α̃uα̃dα̃′
uα̃′

d +
2α̃′

d

(4π)2
T (33)

where

Ci =

(

1

4
,
11

4
, 0

)

, C ′
i =

(

1

4
,
3

4
, 0

)

·

The matching conditions at m̃ are

α̃u = α2 sin2 β, α̃d = α2 cos2 β

α̃′
u = α1 sin2 β, α̃d = α1 cos2 β

hu = λu∗ sin β, hd,e = λd,e∗ cos β

(34)

where tan β is the ratio of the two vev’s.
In solving the two-loop RGE’s for the gauge couplings (αi, i = 1, 2, 3), gaugino couplings

(αu, αd, α
′
u, α′

d) and the Yukawa couplings λu and hu, we followed the bottom-up approach
beginning at the scale MZ where the initial conditions for the gauge and the Yukawa couplings
are well known experimentally5. The missing initial conditions for the gaugino couplings at
MZ can be determined as follows. First, we construct an exact power series solution for
the relevant RGE’s. Then, we approximate the truncated power series by means of Pade
approximants. The sought initial conditions can be found by solving (34). Finally, we

5We have taken into account the running of the Yukawa coupling from mtop to MZ
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Figure 2: The MS scale,(a), and the sum n1 + n2, (b), as a function of log10 m̃ for the case
where α3 = α2 at MS . The bands correspond to the strong coupling experimental error at
MZ . The solid lines correspond to 2-loop running while the dotted ones to 1-loop.

numerically (re)solved the whole system requiring the matching at m̃ to be valid within
an error of less than 1%. In the actual running the error was less than 0.4 % .

We begin by first considering the case of SU(3) and SU(2) gauge couplings unification
i.e., when ξ = 1. In this case, kY = n1 + n2 = αs

α1
where αs is the unified gauge coupling

at MS . It can be checked that several models in Table (1) predict the standard SU(5)
normalization kY = 5/3. In Fig.(2) we plot MS , in (a) and the sum n1 + n2, in (b), as
functions of m̃. The band delimits the α3(MZ) experimental uncertainty. The solid lines
correspond to the 2-loop running while the dotted ones to the 1-loop running. In (b) we also
show the line n1 + n2 = 5/3. This figure confirms that the condition a3 = a2 is satisfied
for MS ∼ 1016GeV, irrespectively of the number of U(1) branes added in the configuration,
provided that the specific setup ensures that kY = 5

3 .
The MS scale found here is expected to be higher than the corresponding unification scale

of the MSSM. This is due to the presence, in the split case and below m̃, of extra degrees
of freedom (gauginos and higgsinos) which modify the β functions. The width of the band
which corresponds to the strong coupling experimental error at MZ corresponds almost to a
factor of 2 in the MS scale. This is not at all surprising, since simple calculations in 1-loop
approximation show that

ln MS = ln m̃ +

(

1

α2(MZ)
− 1

α3(MZ)

)

2π

bS
2 − bS

3

− bSP
2 − bSP

3

bS
2 − bS

3

(ln m̃ − ln MZ)

where the superscript S (SP)to the b-coefficients corresponds to the Susy (Split Susy) case.
The difference in ln MS , due to the strong coupling error and for constant m is given by

∆strongMS

MS
= ∆strong

(

1

α2(MZ)
− 1

α3(MZ)

)

2π

bS
2 − bS

3

=∼ 0.666
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The correlation of the string and Split Susy scales for different values of kY , can be seen
in Fig.(3) where, we plot MS as a function of kY . It can be readily seen that the MS value
is not very sensitive to the value of kY .

Next, relaxing the requirement of SU(3) and SU(2) gauge coupling unification, we calcu-
late MS for all models that satisfy the relation n1 + n2 = 5/3 as a function of m̃. Since the
equality of α2 and α3 at MS is no longer required, different models evolve differently. The
results are depicted in Fig.(4). It is interesting to realize that all the curves have one common
point. In other words, there exists a singled out m̃ value that gives the same Mstring for all
models in this class. This is expected as we have seen in our first approach and in Fig.(3):
If we choose a specific m̃ scale we can satisfy Eq.(18) at a scale MS with the additional
requirement that at this scale α3 = α2. All models corresponding to a given n1 + n2 behave
similarly. This behavior is independent of 1-loop or 2-loop running, although these special
points are different (see Fig.(4(b)). Notice also the big difference (6 orders of magnitude) in
the value of m̃ between the corresponding meeting point of 1- and 2-loop running although
the difference in MS is much smaller. This point is also made clear in Fig.(2b), where the
curves meet the 5/3 value at very low m̃.

In Fig.(5) we show for the sake of completeness, the corresponding graph for two more
models, namely (8/3,1) and (14/3,1). The values for both MS and m̃ are now found to be
much smaller than before.

5 Mirrors

As mentioned previously, D-brane constructions include states with the quantum numbers
of leptoquarks. Such cases have already been analyzed in the context of CFT-orientifolds
models. Here, we will pick up the 32 models presented in [19] which also have the advantage
of inducing neutrino Majorana masses through instanton effects. The extra particles of these
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Figure 3: The MS scale as a function of n1 + n2. The two curves correspond to the a3(MZ)
experimental uncertainty. Curves of constant m̃ are shown for the values 102.7, 108 and 1013

GeV.
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models consist of mirror states having the same quantum numbers (under the SM gauge
group) as the standard ones, with the exception of singlet neutrinos and d-like leptoquarks, i.e.
states with the quantum numbers of d-quarks carrying both lepton and baryon number. Four
brane-stack configurations are considered in the above construction, two of them carrying the
SU(3) and the SU(2), with 2 more providing either a U(1) and an O(2), or two U(1) factors.
A similar analysis can also be carried out for the five brane-stack scenario discussed in the
present work.
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The above 32 models correspond to only 12 distinct spectra with the exotic states shown
in Table 4. The doublet and the singlet quarks are denoted by Q, U and D respectively, the
doublet and the singlet leptons are L and E, N are the right-handed neutrinos, Y stands for
the leptoquarks and finally, H represents the Higgs. Note that in these models the minimum
number of RH neutrinos required is 3 (to avoid the cubic anomaly) however, since these are
singlets under the SM gauge group do not contribute to the running of the couplings.

We will now repeat the renormalization group analysis for these models, including also the
exotic states. Starting again from the known initial values of the three SM couplings at MZ ,
we determine, for each of the above models, the pair (m̃,MS) subject to the “unification”
condition (18) at MS . Above m̃ we have the complete MSSM spectrum enriched by the
extra mirrors appearing in Table 4. Below m̃, we have Split Susy containing extra quarks,
leptons, leptoquarks and higgsinos, while we keep one Higgs doublet only as in the original
Split scenario. Since our group is the SM one, no extra gauginos appear.

In Fig.6 we plot the one-loop results for the 12 models together with the case of no extra
mirrors (thick line) and for (n1, n2) equal to(14/3,1) and (8/3,1) respectively. The allowed
region lies above the m̃ = MS line. The emerging picture seems to favor higher MS values
as compared to the minimal cases discussed previously. Notice that in models 9 and 10, m̃ is
almost fixed (106.5 and 107.5) while Mstring varies along the whole (acceptable) range.

Some comments are here in order. In Fig.6(a), the depicted models can be grouped in
three distinctive classes: (i) In the low MS class, the higher m̃ the lower MS . (ii) In the class
with high MS the tendency is reversed. (iii) The third class has almost constant m̃ while MS

varies along the whole (acceptable) range. In Fig.6(b), the majority of the models show that
MS is less sensitive against the variation of m̃. This rather peculiar behavior can be easily
explained if we recall Eq.(7) written in the form

ln

[

MS

MZ

]

= a ln

[

m̃

MZ

]

+ b ·

In models of the first class a < 0. In class (ii) a > 0 and MS increases with m̃. Finally, for

model Q U D L E N Y H

1 0 0 0 0 2 3 2 16

2 0 0 0 0 2 3 6 16

3 0 0 0 2 2 3 6 8

4 0 0 0 2 2 3 6 24

5 0 0 0 6 2 3 2 8

6 0 0 0 6 2 3 2 24

7 2 0 0 0 2 3 2 16

8 2 0 0 0 2 3 6 16

9 4 0 0 2 2 3 2 8

10 4 0 0 2 2 3 2 24

11 4 0 0 6 2 3 6 8

12 4 0 0 6 2 3 6 24

Table 4: The twelve possible configurations of extra mirror content
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models in (iii) a is very large and MS is almost independent of m̃.

6 The lepton flavor violating process µ → eγ

One of the most important flavor violating rare processes present in all models with flavor
mixing in the Yukawa sector, is the decay of the muon to an electron-photon pair. In or-
dinary supersymmetric theories, this exotic process is usually suppressed by powers of the
supersymmetry breaking scale which is of the order of 1 TeV at the most [20],[21]. If the
scalar partners involved in the process are non-universal, hard violations of the lepton number
conservation that exceed the present experimental limits are expected. Even in the case of
universal masses at the unification scale, renormalization effects result to mass splitting and
important mixing effects at low energies. Although there is a certain degree of ambiguity due
to the unknown mixing details in lepton and slepton mass matrices in the calculation of the
branching ratios, a significant portion of the universal gaugino mass–universal scalar mass
parameter space (m1/2,m0) is excluded in ordinary supersymmetric models. In the present
analysis, we examine the conditions for accessibility of this interesting decay in the context
of the D-brane constructions discussed above.

In Split Susy, the scale of the slepton masses is set by the m̃ scale which is considered
to be much higher than the TeV ordinary Susy scale. The renormalization group analysis
of the generic D-brane constructions has shown however, that in several cases the m̃ can be
as low as a few TeV. Graphs for µ → eγ are mediated by the above scalars. It is worth
exploring whether in some of the above models, these exotic reactions could be observed in
future experiments. The branching ratio of the µ → eγ process is given by [20, 21]

BR(µ → eγ) =
48π3α

G2
F

(

|AL
2 |2 + |AR

2 |2
)
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where
AL

2 = A
(n)L
2 + A

(c)L
2 and AR

2 = A
(n)R
2 + A

(c)R
2 ·

The superscript n (c) of the amplitudes A corresponds to the neutralino (chargino) exchange
contribution and L (R) to the left (right) handed incoming lepton. The amplitudes are given
by the relations

A
(n)L
2 =

1

32π2

1

m̃2
l̃X

[

N
L(l)
1AXN

L(l)∗
2AX f1(r) + N

L(l)
1AXN

R(l)∗
2AX

Mχ̃0
A

mµ
f2(r)

]

(35)

A
(c)L
2 = − 1

32π2

1

m̃2
ν̃X

[

C
L(l)
1AXC

L(l)∗
2AX f3(r

′) + C
L(l)
1AXC

R(l)∗
2AX

Mχ̃−

A

mµ
f4(r

′)

]

(36)

A
(n)R
2 = A

(n)L
2 |L↔R and A

(c)R
2 = A

(c)L
2 |L↔R · (37)

We are working with the mass eigenstates so, all matrices rotating from the weak to the mass
eigenstates are moved to the vertices. The neutral amplitude involves the neutralinos and the
charged sleptons with corresponding masses Mχ̃0

A
(A = 1, ..., 4) and m̃l̃X

(X = 1, ..., 6) while
mµ is the mass of the decaying muon. The charged amplitude involves the charginos and
sneutrinos with corresponding masses Mχ̃−

A
(A = 1, 2) and m̃ν̃X

(X = 1, 2, 3). The matrices

N
L(l)
iAX and N

R(l)
iAX involve both the neutralino and the slepton rotating matrices (i = 1 for the

electron and i = 2 for the muon) and are given by

N
R(l)
iAX = − g2√

2

{

[−(ON )A2 − (ON )A1 tan θW ]U l
Xi +

mi

mW cos β
(ON )A3U

l
X(i+3)

}

N
L(l)
iAX = − g2√

2

{

mi

mW cos β
(ON )A3U

l
Xi + 2(ON )A1 tan θW U l

X(i+3)

}

·

The matrices ON rotate the neutralinos while U l rotate the charged sleptons. Finally, mi is
the lepton mass (m1 = me, m2 = mµ).

The matrices C
L(l)
iAX and C

L(l)
iAX (again i = 1 for the electron and i = 2 for the muon) involve

both the chargino (OL and OR) and the sneutrino (Uν) rotating matrices and they are given
by

C
R(l)
iAX = −g2(OR)A1U

ν
Xi

C
L(l)
iAX = g2

mi√
2mW cos β

(OL)A2U
ν
Xi ·
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Finally, the f functions appearing in Eqs.(35) and (36) are

f1(r) =
1

6(1 − r)4
(1 − 6r + 3r2 + 2r3 − 6r2 ln(r))

f2(r) =
1

(1 − r)3
(1 − r2 + 2r ln(r))

f3(r
′) =

1

6(1 − r′)4
(2 + 3r′ − 6r′2 + r′3 + 6r′ ln(r′))

f4(r
′) =

1

(1 − r)3
(−3 + 4r′ − r′2 − 2 ln(r′))

where, r =
M2

χ̃0
A

m̃2
l̃X

and r′ =
M2

χ̃−

A

m̃2
ν̃X

·

In estimating the µ → eγ branching ratio and in order not to complicate our analysis
we have ignored the neutralino and the chargino mixing6 (i.e. the OL, OR and ON matrices
are the identity matrix) and have dropped terms proportional to the mass of the leptons.
Therefore, we are left with the U l and Uν matrices.

The 6 × 6 charged slepton matrix is given by

(

m2
LL m2

LR

m2
RL m2

RR

)

(38)

where each entry is a 3 × 3 matrix with an obvious notation and [22]

m2
LL = (m̃δ

l̃
)2 + δm2

N + m2
l + M2

Z

(

1

2
− sin2 θW

)

cos 2β (39)

m2
RR = (m̃δ

ẽR
)2 + m2

l − M2
Z sin2 θW cos 2β (40)

m2
RL = (Aδ

e + δAe + µ tan β)ml (41)

m2
LR = m2†

RL · (42)

The superscript δ denotes the diagonal part of the corresponding 3 × 3 matrix and we have
assumed universal soft masses, so that (m̃δ

l̃
)2 = (m̃δ

ẽR
)2 = Diagonal(m0,m0,m0) where in

our case, m0 = m̃. Also, Aδ
e = Diagonal(A0, A0, A0)) with A0 = −1.5m0. The terms δm2

N

and δAe stand for the off-diagonal matrices which arise because of the non-diagonal Yukawa
coupling λD (in the basis where the lepton matrix is diagonal) appearing in the term which
gives mass to the neutrino through the superpotential term N cλDlH2 and in the trilinear
coupling of the potential correspondingly. The sneutrino reduced 3× 3 matrix ([22]) is given
by

m̃2
ν̃ = (m̃δ

l̃
)2 + δm2

N +
1

2
M2

Z cos 2β · (43)

The off diagonal matrices δm2
N and δAe are evaluated in [22] for the region of tanβ =

3 − 14. Having determined the mass matrices for the charged sleptons and the sneutrino,
we can find the matrices U l and Uν which rotate to the corresponding mass eigenstates and

6 Actually, an explicit calculation for the models under consideration, shows that inclusion of the neutralino
and chargino mixing matrices modifies the branching ratio by less that 10%.
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Figure 7: The (logarithm of the) branching ratio of µ → eγ as a function of m̃ for tan β = 3
and 14 and for µ = 200, 400, 600, 800 GeV.

therefore, proceed to the evaluation of the desired branching ratio. In Fig.(7) we show the
BR as a function of m̃ for the above region of tan β and for µ = 200 − 800 GeV. We clearly
see that for the present experimental BR bound (10−12), µ → eγ could be observed in models
allowing m̃ around 1.5 TeV (for the evaluation of the BR we have assumed a universal gaugino
mass of 200 GeV, since we run our RGE’s with the Split Susy regime active down to the
weak scale).

From the renormalization group analysis of the previous section, we can check that for a
wide class of D-brane constructions, the Split-supersymmetric scale ranges from 1 TeV up to
values as high as 1013 GeV. The above reaction could in principle be observed in the present
day experiments for the lower marginal values of the Split Susy scale as it can also be seen
from Fig. 2 and 3. However, if we stick to cases where we have a3 = a2 unification at MS , the
U(1)Y normalization constant kY is found to be around the standard value 5

3 . Then, from
Fig. 3 we observe that m̃ ∼ 108 GeV therefore, the branching ratio is significantly suppressed
and lies far beyond the capabilities of even future experiments.

On the other hand, the observability prospects of this reaction are different in models
implying low string scale, since the Split scale m̃ cannot be higher that m̃ ≤ MS ∼ 5 TeV.
For m̃ ∼ 5 TeV, the µ → eγ branching ratio is BRµ→eγ ∼ 10−14, a number that could
in principle be checked in future experiments. Thus, for this particular class of D-brane
constructions, muon number violating reactions can probe the whole m̃-region.

7 Conclusions

D-branes brought profound changes in our approach to model building. In the present work,
we presented the simplest D-brane extensions of the Standard Model based on configurations
with gauge symmetry of the form U(3) × U(2) × U(1)P with P ≤ 3. Exploring the different
brane-stack orientations in the higher dimensional space as well as the various hypercharge
embeddings consistent with the SM particle spectrum, we managed to obtain a complete
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classification of the SM variants that arise in this context. We addressed several phenomeno-
logical issues affecting the viability of these constructions. These issues were examined in the
context of split supersymmetric spectrum which has been shown to be a natural possibility in
a wide class of D-brane constructions. This way, we extended previous investigations on the
correlation between the string scale and the split supersymmetry breaking scale, incorporat-
ing two-loop effects. The calculations show a significant change on the split supersymmetry
breaking scale as compared to the one-loop results, while, the string scale for several inter-
esting cases is only moderately affected. The analysis was further extended to non-minimal
cases that include leptoquark and mirror states. Yukawa terms providing masses to the SM
fields were calculated, while the problem of incorporating the right handed neutrino mass
through instanton effects was also mentioned. Finally, we presented a detailed discussion
on the possible observability of the µ → eγ flavor violating decay in the present and future
experiments.

The work is partially supported by the EU Grant MRTN-CT-2004-503369.
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