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1 Introduction

There has been extensive discussion of the structure of fermion masses in F-theory [1]–

[6]. Two ways have been suggested to generate the masses and mixing angles of the

remaining two generations. In the first case all three families with the same Standard

Model representation content belong to a single matter curve [7]–[11]. By imposing a

monodromy, rank-one mass matrices can be obtained giving the third generation quarks

and charged leptons mass. Corrections coming from non-trivial flux configurations generate

the remaining entries of the mass matrices and have been shown to give rise to a promising

hierarchical mass structure. In this case, to ensure the initial rank-one structure, it is

important that there is a single intersection of the matter and Higgs curves in the up,

down quark and charged lepton sectors.

A second possibility [12, 13] is that some or all of the quark and lepton families are

assigned to different curves and the additional U(1) symmetries decending from the un-

derlying E(8) theory are then family symmetries that enforce a leading order rank one

structure after imposing a monodromy. Even in the absence of flux the remaining entries

of the mass matrices can be generated once the family symmetry is spontaneously broken by

vacuum expectation values for ‘familon’ fields. These appear through non-renormalisable

operators generated by the exchange of heavy fields, Kaluza-Klein modes or vectorlike

states, that acquire mass when the underlying GUT symmetry is broken. In this case there

is no constraint on the number of intersections of the matter and Higgs fields.

A particularly interesting aspect of F-theory is that the Yukawa couplings can be

determined from the local structure of the theory [14]–[17]. This is because the matter and

Higgs fields live on brane intersections and their wave functions are exponentially damped

in the direction orthogonal to the intersections. As a result the Yukawa couplings, that are

generated by the overlap of the matter and Higgs fields, are dominated by the region close

to the intersection point of the matter and Higgs curves. Of course the calculation of the

normalisation of the fields that enters in the physical Yukawa couplings requires non-local

information because it involves an integral along the matter curve where the wave function

is undamped. Assuming a very simple form for the normalisation it has been shown [8, 10]

that the typical magnitude of a Yukawa coupling is in reasonable agreement with that

required for the top quark.

In this paper we extend the calculation of Yukawa couplings to the case of F-theory

GUTs with fermion mass structure organised by the U(1) family symmetries. The calcula-

tion relies on the fact that the charges of the matter and Higgs fields are determined by the

underlying GUT because the charges determine the detailed form of the wave function. We

determine the general form of the Yukawa couplings for a general charge structure. Cal-

culation of the non-renormalisable operators determining the light quark masses and mix-

ings require the calculation of Yukawa couplings between the light states and the massive

Kaluza-Klein modes or massive vectorlike states that are integrated out when calculating

the dimension 5 terms. We discuss the determination of the wave functions for massive

states and use them to calculate these Yukawa couplings. Using this together with a very

symmetric choice for the massive spectrum and normalisations we illustrate the resulting
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structure by computing the full matrix of Yukawa couplings in a specific SU(5) model that

has been shown to have phenomenologically promising properties.

We consider in detail the phenomenological implications of the resulting structure.

Because the Yukawa couplings are correlated there can be strong cancellations in the de-

terminant and sub-determinants of the fermion mass matrices and this strongly affects

the possible mass structures. In addition we find that significant cancellations can occur

between the up and down quark contribution to mixing angles. Both these features go

beyond what is normally assumed in family symmetry models. We discuss how texture

zeros following from an underlying geometrical structure can lead to viable quark mass

structure.

We consider the neutrino mass structure in the illustrative model and show how it

may lead to the near bi-tri-maximal mixing found in neutrino oscillation experiments.

The extension to charged leptons is problematic in models with an SU(5) GUT structure

due to the degeneracy between down quarks and leptons and we consider two possible

resolutions of the problem. The first involves radiative threshold corrections to the down

quark mass matrix that, together with a strong cancellation in a sub-determinant of the

down quark mass matrix, can readily split the muon mass from the strange quark mass

while preserving the “good” SU(5) mass relations. The second involves flux splitting of

SU(5) representations. For the case such flux splitting splits the doublets from the triplets

in the Higgs sector the resulting non-degeneracy in the massive Higgs sector breaks the

quark lepton degeneracy in the non-renormalisable terms of the mass matrix. We present a

simple example of this mechanism. We also consider an example in which the flux splits the

matter representations so that down quarks and leptons may live on different matter curves

and we consider in detail how the method can be applied to the second generation only.

2 F-theory structure

In this section to facilitate our subsequent analysis and set up our notation, we review the

basic formalism following [2].1

In 10-dimensions the super Yang-Mills (YM) theory, consists of the gauge field and

the adjoint-valued fermion in the positive-chirality spinorial 16+ representation of SO(9, 1).

Under the reduction to R(7,1) these decompose to an eight-dimensional gauge field A, two

real scalars Φ8,9 (usually combined to ϕ/ϕ̄ = Φ8 ± ıΦ9) and two SO(7, 1) fermions Ψ±
conjugate to each other. Moreover, there is an R-symmetry of the eight-dimensional theory

emerging under the reduction SO(9, 1) → SO(7, 1) × U(1)R.

F-theory is described [2] by an eight-dimensional YM theory on R(3,1) × S (= R(7,1)),

where S is a four dimensional Kähler surface wrapped by the 7-brane and is supposed to

support a unified gauge group of ADE type denoted by GS .

We choose two complex coordinates z1, z2 to parametrise the surface S while we assume

that the canonical form is

ω =
ı

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) (2.1)

1For recent reviews in F-theory see [18, 19].
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To preserve N = 1 sypersymmetry in D=4 the YM theory must be topologically twisted [2]

since S has a non-trivial canonical bundle and spinors under local SO(4) rotations are not

well defined globally. Because we assume that the hypersurface S has a Kähler form, the

8-dimensional YM theory admits a unique topological twist on R(3,1)×S — specified by the

embedding of U(1)R into the invariant U(2) subgroup of SO(4) — which preserves N = 1

SUSY. Under the twisted theory, the scalars and fermions appear as forms. In particular,

the scalar ϕ transforms on S as a section Ω2
S ⊗ad(P ), where Ωp

S stands for the holomorphic

p-form and P the principal bundle in the adjoint representation

ϕ = ϕmn dz
m ∧ dzn (2.2)

and analogously for the conjugate ϕ̄. Similarly, the fermions appear as holomorphic (or

antiholomorphic) forms of type (p, 0) or (0, p) with p = 0, 1, 2. These are ηα transforming

as a section of ad(P ) (i.e., is a (0, 0) form), ψ̄α̇ = ψ̄α̇mdz
m as section of Ω1

S ⊗ ad(P ),

χα = χαmndz
m∧dzn as section of Ω2

S⊗ad(P ) and analogously for their complex conjugates.

At the d = 4, N = 1 level, the fields are organized as one gauge and two chiral multiplets

as follows

(Aµ, η), (Am̄, ψm̄), (φ12, χ12) (2.3)

and similarly for their complex conjugates.

The structure of the D=4 effective theory theory is derived from the D=8 effective

action. The equations of motion for the zero modes are derived by taking variations of the

action with respect to η, ψ, χ [2]. These are:

ω ∧ ∂Aψ +
ı

2
[ϕ̄, χ] = 0 (2.4)

∂̄Aχ− 2ı
√

2ω ∧ η − [ϕ,ψ] = 0 (2.5)

∂̄Aψ −
√

2[ϕ̄, η] = 0 (2.6)

Fields are located on matter curves Σ following the intersection of surfaces S and S′.
The number of zero modes on Σ is given by topological invariants and in this paper we

assume that the quark and lepton families belong to different curves. We use the description

of such fields introduced in [2, 8]. The D=8 theory on S has gauge group GΣ and it is

broken by turning on a background for the adjoint scalar ϕ with the form

〈ϕ〉 = m2 z Q (2.7)

where z is a complex coordinate of S and Q is a generator of the U(1) in GΣ that is

carried by the S′ brane. We have introduced mass parameters so that ϕ has the standard

dimension. It is expected to be of the order of the F-theory mass scale M∗. The locus

z1 = 0 defines the curve Σ. On it the gauge group is GΣ but this is broken to GS × U(1)

off the curve.

3 Yukawa couplings

3.1 Zero mode wavefunctions

Yukawa couplings occur at the intersection of three matter curves. To describe the inter-

acting fields at the intersection it is necessary to introduce a more general form for the

– 4 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
8

background for the adjoint scalar ϕ

〈ϕ〉 = m2(z1Q1 + z2Q2) (3.1)

where Q1, Q2 are the U(1) generators of the enhanced gauge symmetry at the intersection.

We may always choose the basis such that one matter curve, Σ1, corresponds to the locus

z1 = 0 and on it the group is enhanced to GΣ1
⊃ GS × U(1)1. The states living on this

curve are charged only under the first U(1). The second matter curve Σ2 corresponds to

the locus q1z1 + q2z2 = 0 where q1,2 are the charges of the states living on Σ2 and on it

the unbroken group is GΣ2
⊃ GS × U(1)a where U(1)a = (q1U(1)1 + q2U(1)2)/

√

q21 + q22.

The third matter curve, Σ3 has locus q′1z1 + q′2z2 = 0 where the charges q′1, q
′
2 cancel the

charges on the first two matter curves.

Matter fields have wave functions peaked along Σi and transform as bi-fundamentals

under GS ×U(1)i. The equations of motion for the zero modes with charges q1, q2 are given

by [1, 2, 8, 34]

∂1ψ1 + ∂2ψ2 −m2(q1z̄1 + q2z̄2)χ = 0 (3.2)

∂̄1χ−m2(q1 z1 + q2 z2)ψ1 = 0 (3.3)

∂̄2χ−m2(q1 z1 + q2 z2)ψ2 = 0 (3.4)

These are readily rotated to the canonical form by the rotations

w = cos θ z1 + sin θ z2 (3.5)

u = − sin θ z1 + cos θ z2 (3.6)

and

ψw = sin θ ψ2 + cos θ ψ1 (3.7)

ψu = cos θ ψ2 − sin θ ψ1 (3.8)

where tan θ = q2/q1 and q =
√

q21 + q22.

Eqs. (3.2)–(3.4) become

∂wψw + ∂uψu = m2q w̄ χ (3.9)

∂̄w̄χ = m2q w ψw (3.10)

∂̄ūχ = m2q uψu (3.11)

For localised solutions set ψu = 0, then ∂̄ūχ = 0 and the differential equations reduce to

∂wψw = m2q w̄ χ , ∂̄w̄χ = m2q w ψw (3.12)

These are solved taking χ ∝ e−λ|w|2 giving ∂̄w̄χ = −λwχ = m2qwψw, so

ψw = − λ

m2q
χ = − λ

m2q
e−λ|w|2. (3.13)
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The parameter λ is determined when ψ is substituted in the first equation above

∂wψw =
λ2

m2q
w̄ e−λ|w|2 = m2qw̄ χ

which implies λ = ±m2q ≡ ±m2
√

q21 + q22. Choosing the positive root the wave function is

ψw = e−m2q|w|2 = exp{−m2q |cos θz1 + sin θz2|2}

= e−m2 |q1z1+q2z2|
2

q (3.14)

i.e., the wave function exhibits a Gaussian profile and thus it falls off exponentially away

from the curve.

This discussion has been concerned with the dependence of the wave function on the

co-ordinates transverse to the matter curve. There is also an unknown dependence on the

longitudinal coordinate zL so ψ = ψwf(zL) where f(zL) is a holomorphic function. In what

follows we do not include the effect of f(zL) on the Yukawa couplings. This is the case if

f(zL) is constant or if the matter curve intersections occur at a single point (of enhanced

E(8) symmetry) so that only the value of f(zL) at this point is relevant. In both these

cases the effect of f(zL) can be absorbed in the wave-function normalisation factors. In

section 4.5.1 we comment on the changes that occur if this is not the case.

3.1.1 Normalisation of the wave-functions

Since the wave-functions are only localised in the direction transverse to the matter curves

the normalisation of the fields is inherently a non-local property.

Consider first the normalization of a wavefunction ψ ∝ e−m2q|z|2. The normalisation

is given by 1√
C

C = M4
∗

∫

S
|ψ|2dz ∧ dz̄ . (3.15)

This gives

C = π
M4

∗
m2q

R2 (3.16)

where the factor π M4
∗

m2q
comes from the (local) integration over transverse coordinates and

the factor R2 parameterises the (non-local) integral over the longitudinal coordinates. We

expect that m = O(M∗) and, for the case the wave function has no structure along the

longtitudinal direction, we have r = R where R is the curvature of the hypersurface S

with M2
∗R

2 ∼ αG. In our estimates of Yukawa couplings presented below we will use this

approximation and take the normalisation of the matter fields to be

1√
C

=
( q

π

) 1

2 1

M∗R
=

( q

π

) 1

2

a
1

4

G . (3.17)

It should be stressed however that this form assumes a very symmetric structure of the

compactification manifold and wave functions.
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3.2 Trilinear couplings

We are interested in determining the Yukawa couplings involving two matter fields either

quarks or leptons, and a Higgs field. In F-theory these couplings are computed in terms of

overlap integrals [20]

λij =
M4

∗
(2π)2

∫

S
ψiψjφ dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 (3.18)

where ψi, φ are the internal wave-functions of the relevant fermions and Higgs field of a

particular coupling. As we have discussed these wave-functions are strongly peaked along

the matter curve and so one can get an accurate estimate of the integral using only the

local form of the wave-functions close to the intersection point. For the calculations in

specific models it is useful to determine the overlap integrals in an arbitrary basis. In this

case, using eq. (3.14), the general form of the integral is

I =
M4

∗
(2π)2

∫

e−m2|xz1+yz2|2 e−m2|uz1+vz2|2 e−m2|az1+bz2|2 d2z1 d
2z2 (3.19)

where

x =
q1√
q
, y =

q2√
q
, u =

q′1√
q′
, v =

q′2√
q′
, a =

q′′1√
q′′
, b =

q′′2√
q′′

(3.20)

q =
√

q12 + q22 , q′ =

√

q′1
2 + q′2

2 , q′′ =

√

q′′1
2 + q′′2

2 (3.21)

By charge conservation, q′′i = −qi − q′i, i = 1, 2, giving

a = −q1 + q′1√
q′′

, b = −q2 + q′2√
q′′

The integral is readily performed giving

I =
M4

∗
m4

qq′q′′

q + q′ + q′′
1

(q1q
′
2 − q′1q2)

2
(3.22)

As before we expect M∗ ∼ m so, setting them equal, and using the normalisation of

eq. (3.17) the Yukawa coupling is

λ =
(2π)2

π3/2
(qq′q′′)1/2a

3/4
G I =

4

√

π a
3/2
G

q + q′ + q′′
(qq′q′′)3/2

(q1q′2 − q′1q2)
2

(3.23)

3.3 Yukawa couplings involving massive modes

In the previous section we determined the Yukawa couplings for zero modes. However, as

discussed below, we are also interested in the coupling of massless to massive modes as these

are involved in the generation of higher dimension operators and the latter are important

in determining the phenomenology of the effective low energy theory. The massive modes

of interest may be vectorlike states that gain mass at a stage of spontaneous breakdown or

they may be Kaluza Klein (KK) excitations.
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In the first case the mass will be determined by the scale of symmetry breaking. In the

case of KK modes, in general the explicit mass formula of the KK-modes is unknown. In a

Calabi-Yau manifold, they can be parametrised as m2

KK ∼ gK(t, S1)EK where S1 is the real

part of the dilaton field S = e−φ + ı C0, t is the 2-cycle volume, while the function g(t, S1)

determines the scale and EK is an unknown function of the moduli. For the two-cycle ti
2

transverse to the 7-brane we may assume g ∼ ti. In the presence of fluxes A, the mass

formula receives corrections of the form [21]

m2
KK ∼ 1

EK

1

tstr

(

1 + A2

t2str

) ∼ 1

EK

√
S1

t

(

1 − A2

t2
S1

)

In what follows we shall assume constant fluxes. The most important massive modes

are the lightest ones that have couplings to the matter sector because the corresponding

higher dimension operators they generate are the least suppressed. As pointed in [7] these

correspond to massless six-dimensional fields. On compactification to the six-dimensional

space the associated KK masses are of O(MGUT) and therefore much lighter than higher

string excitations. Since they reside on matter curves, whenever their corresponding charges

match those of the other fields in triple intersections, they can mediate the generation of

non-renormalizable operators that, through spontaneous symmetry breaking, lead to new

Yukawa couplings. In this picture, the mass of such a KK-mode can be viewed as a flux

term generated by a vev of a scalar corresponding to the higher dimensional background

gauge field.

Then, it is straightforward to determine the wavefunction of a massive state, ψn, for

the case that the mass, M , is generated by the vev of some internal gauge field An. The

relevant equation is modified, so that

(∂1 − ıA1)ψ1 −m2q1z̄1χ = 0

∂̄1̄χ−m2q1 z1ψ1 = 0

ψ1 admits a solution

ψ1 ∼ exp

[(

M2 −
√

M4 + q21m
4

)

|z1|2
]

∼ exp

[(

−q1m2 +M2

(

1 − M2

2q1m2

)

|z1|2
)]

Defining

ρ =
M2

q1m2
< 1 , ξ ≈ 1 − ρ+

1

2
ρ2 , (3.24)

the wave function has the form ψ1 ∼ e−q1m2ξ|z1|2, ξ < 1.

3.3.1 The coupling involving massive modes

It is now straightforward to determine the Yukawa coupling involving this state and two

zero modes by replacing the mass parameter m2 of one exponent in the trilinear coupling

2
ti is connected to the overall volume V = tiτi, where τi is the corresponding 4-cycle related to the

Kähler moduli Ti = τi + ıbi.

– 8 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
8

by m2ξ. This gives

λ =
(2π)2

π3/2
(qq′q′′ξ)1/2a

3/4
G I = 4 (πqq′q′′ξ)1/2a

3/4
G Iξ

Iξ =
qq′q′′

(q + q′)ξ + q′′
1

(q1q′2 − q′1q2)
2

(3.25)

and so

λ(ξ) =
4

√

πξa
3/2
G

(q + q′)ξ + q′′
(qq′q′′)3/2

(q1q′2 − q′1q2)
2
. (3.26)

To generalise for more than one KK-modes with different masses we introduce ξ, ξ′, ξ′′

parameters in (3.20) as follows

x =
√

ξ
q1√
q
, y =

√

ξ
q2√
q
, u =

√

ξ′
q′1√
q′
, v =

√

ξ′
q′2√
q′
, a =

√

ξ′′
q′′1√
q′′
, b =

√

ξ′′
q′′2√
q′′

(3.27)

This is essentially equivalent to the replacements

q → q

ξ
, q′ → q′

ξ′
, q′′ → q′′

ξ′′

so that the generalization of our integral (3.25) is

Iξ =
qq′q′′

ξ′ξ′′q + ξξ′′q′ + ξξ′q′′
1

(q1q
′
2 − q′1q2)

2
.

For two KK-modes and one zero mode we have (setting ξ′′ = 1)

Iξ =
qq′q′′

ξ′q + ξq′ + ξξ′q′′
1

(q1q
′
2 − q′1q2)

2
.

4 Quark and lepton masses and mixing angles in a semi-realistic SU(5)×

U(1)3 model

4.1 The model

In [12] and [13] semi-realistic F-theory GUT models, capable of generating reasonable

structure for quark and lepton masses were constructed. The models assign families to dif-

ferent matter curves and as a result the Abelian factors left after imposing the monodromy

necessary to get near-rank-one structure for quarks and charged leptons become family

symmetries. They are spontaneously broken by familon vevs and are able to control the

hierarchy even for the case the Yukawa couplings arise from multiple intersections. Here

we construct a variant of the model constructed in [12] that, in addition to realistic quark

and charged lepton mass matrices, can give near tri-bi maximal mixing in the neutrino

sector via the see-saw mechanism. The model starts with the same field and representa-

tion content as given in [12] but has a different pattern of spontaneous symmetry breaking

corresponding to a different set of vevs for the familon fields that is favoured through D-

and F-flatness conditions. Another difference is that now neutrino masses are generated
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Field SU(5) × SU(5)⊥ Representation SU(5)⊥ component R-parity

Q3, U
c
3 , l

c
3 (10, 5) t1,2 −

Q2, U
c
2 , l

c
2 (10, 5) t4 −

Q1, U
c
1 , l

c
1 (10, 5) t3 −

Dc
3, L3 (5, 10) t1,2 + t4 −

Dc
2, L2 (5, 10) t1,2 + t3 −

Dc
1, L1 (5, 10) t3 + t4 −
Hu

(

5, 10
)

−t1 − t2 +

Hd

(

5, 10
)

t3 + t5 +

θij (1, 24) ti − tj +

θ′ij (1, 24) ti − tj −

Table 1. Field representation content under SU(5) × SU(5)⊥ and R-parity.

through the (SM singlet) Majorana mass that automatically arises when the monodromy

is imposed. Finally we consider a different flux choice to solve doublet triplet splitting that

has the advantage of a much reduced set of vectorlike exotic states than the example given

in [32].

The starting point is the SU(5)×SU(5)⊥ ⊂ E8 group. We label the weights of SU(5)⊥
by ti, i = 1, . . . , 5. To get rank 1 matrices in the family symmetry limit we impose

a monodromy group Z2 relating t1 ↔ t2. The matter fields tranform as bi-fundamentals

under the gauge group associated with the intersecting branes generating the matter curve.

To avoid D = 4 baryon and lepton number violating terms [13, 22–25] it is necessary to

include an R-parity. In [23] it was shown that this can arise if the Calabi-Yau manifold has

a Z2 symmetry provided the flux also respects the symmetry. We assign the quarks and

Higgs fields to the curves as shown in table 1. We assign the quarks and Higgs fields to

the curves as shown in table 1. Due to the monodromy the fields with component labeled

t1,2 can either be represented by t1 or t2. R parity even SU(5) singlets θij belonging to

the (1, 24) representation will play the role of familon fields while R parity odd singlets

θ′ij have the appropriate quantum numbers to provide right-handed neutrino states. D=5

operators that can generate nucleon decay have the form 10.10.10.5̄ are forbidden because,

c.f. table 1, they require a field transforming as t5.

4.2 The µ-term and doublet triplet splitting

In the MSSM a µ term, µHuHd, in the superpotential is necessary to have to give mass

to the Higgsinos. However, in the symmetry limit, the µ term is forbidden because there

is no familon carrying t5 component. There are two ways that a µ term can be generated

when the symmetry is broken spontaneously.

The first is through a D-term coupling HuHdθ14θ43θ
†
51. Here θ14,43 are familon fields

needed to generate an acceptable quark mass matrix (see next section). The field θ51 should

get an F-term breaking supersymmetry and generating the µ term via the Giudice-Masiero

mechanism [26]. However its A-component should have a zero or very small vev to avoid

introducing large nucleon decay terms.
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The second possibility is that a µ term is generated via the term λHuHdθ14θ43θ15. For

the case θ15 acquires a large vev it is necessary for the coupling λ to be very small to get an

acceptably small µ term. This can happen if one or more of the couplings responsible for the

higher dimension involve fields which do not intersect because then there is an exponential

suppression of the coupling due to the fall-off of the wavefunction in a direction transverse

to the matter curve [14]. It has been argued in [15] that the suppression of a vertex due

to this effect is ≤ O(10−7) that by itself would not be sufficient. However for the case of

a higher dimension operator, such as the one here, several vertices are involved so two or

more may be geometrically suppressed allowing for a suppression sufficient to give a µ term

of electroweak breaking order as is necessary.

An associated problem in a GUT model is the need to split the Higgs multiplets Hu and

Hd. These transform as 5 and 5̄ representations under SU(5) and contain colour triplets

as well as the electroweak Higgs doublets needed to spontaneously break the electoweak

symmetry. If light, the colour triplets spoil gauge coupling unification. In addition they can

mediate rapid proton decay through dimension 5 operators. For these reasons they must be

eliminated or given a large mass while leaving the doublet components light. There are two

mechanisms to do this. One involves hypercharge flux that can split multiplets; an example

of this will be given in section 5. The second possibility, when the compactification involves

a Calabi Yau manifold, is through discrete Wilson line breaking. Unlike flux breaking, it

projects out the colour triplet zero mode states and so has no massive states to spoil gauge

unification.

4.3 Quark mass matrices

After identifying the monodromy group the residual gauge group structure is SU(5)×U(1)3.

The structure of the mass matrices depends on the choice of familon fields which acquire

vevs to spontaneously break the symmetry. Identifying θ14 and θ43 as two familons3 the

quark mass matrices have the form [12]

Md =







θ2
14θ

2
43 θ14θ

2
43 θ14θ43

θ2
14θ43 θ14θ43 θ14
θ14θ43 θ43 1






vb , Mu =







θ2
14θ

2
43 θ

2
14θ43 θ14θ43

θ2
14θ43 θ2

14 θ14
θ14θ43 θ14 1






vu (4.1)

where vd,u are the down and up Higgs vevs and θij refers to the familon vevs. Here we have

suppressed the couplings of O(1); they will be estimated in the next section. We have also

suppressed the masses of the messenger fields associated with the higher dimension terms.

4.3.1 Renormalisable couplings

In the model under consideration, in the family symmetry limit, both up and down quark

mass matrices are rank one in good agreement with the observed hierarchical mass matrix

structure. To determine these masses it is necessary to determine the top and bottom

Yukawa couplings corresponding to the coefficients of the {33} entries of Md and Mu.

3It is shown in the appendix that this choice is consistent with F- and D- flatness.
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Figure 1. Tree level graphs for the top and bottom Yukawa couplings λt,b
33

.

We start with the top Yukawa coupling. The relevant graph is depicted in figure 1 where

under the monodromy t1 ↔ t2 the corresponding two tenplets 10t1 , 10t2 are identified with

the third generation 103. The properties of all SM fields are presented in table 1. For the

fields involved in a given triple intersection corresponding to a particular Yukawa coupling

one combination of the charge operators has zero eigenvalue for the three fields involved.

We proceed by identifying the U(1) charges of the fields involved in the intersection.

The generators of the U(1)s are given by the four diagonal generators, Qi, of SU(5)⊥. It

is convenient to introduce the basis column vectors |ti >j = δij , i, j = 1, . . . 5. The charges

of a given field appearing in table 1 are then given by acting with Qi on the combination

of |ti > that appear in the table.

For a given Yukawa coupling the fields involved will have zero eigenvalue for two

combinations of the charge generators. We proceed by identifying them and then forming

the orthogonal charge operators Q1, Q2. The charges of these fields under these operators

are then readily found and used in computing the Yukawa couplings from eq. (3.26).

Consider first the calculation of the bottom quark Yukawa coupling. The interacting

fields have weights t1,2, t1,2 + t4 and t3 + t5. We first calculate the Yukawa couplings in

the covering theory and then project them in the quotient space. In the covering theory

the bottom quark Yukawa couplings correspond to the couplings of fields with weights

t1, t2 + t4, t3 + t5 and t2, t1 + t4, t3 + t5. To calculate the coupling involving the first set

we choose the orthogonal basis for the Qi given by

Q1 =
1√
6
{2,−1, 0,−1, 0}

Q2 =
1√
30

{2, 2,−3, 2,−3}

Q3 =
1√
2
{0, 0, 1, 0,−1}

Q4 =
1√
2
{0, 1, 0,−1, 0} (4.2)

The states are annihilated by Q3 and Q4 so the general form of the background for

the adjoint scalar is given by eq. (3.1) with charges

{q1, q2} =

{

√

2

3
,

√

2

15

}

, {q′1, q′2} =

{

−
√

2

3
, 2

√

2

15

}

(4.3)

The Yukawa coupling is calculated by substituting eq. (4.3) in eq. (3.23). This gives

λ ≈ 0.29 . (4.4)
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One may readily check that the Yukawa coupling associated with the second weight struc-

ture is the same.

In the quotient theory the bottom Yukawa coupling is given by two terms with weight

structure given by t1/
√

2, (t2 + t4)/
√

2, t3 + t5 and t2/
√

2, (t1 + t4)/
√

2, t3 + t5 and so the

bottom Yukawa coupling is given by the mean of the two couplings in the covering theory

λb
33 = λ ≈ 0.29 . (4.5)

For the case of the top quark Yukawa coupling the relevant coupling in the covering

theory is t1, t2 and −t1 − t2. The appropriate basis is given by

Q1 =
1√
30

{3, 3,−2,−2,−2}

Q2 =
1√
2
{1,−1, 0, 0, 0}

Q3 =
1√
2
{0, 0, 1, 0,−1}

Q4 =
1

2
{0, 0, 1,−2, 1} (4.6)

Again the states are annihilated by Q3 and Q4 so the general form of the background for

the adjoint scalar is given by eq. (3.1) with charges

{q1, q2} =

{

√

3

10
,

1√
2

}

, {q′1, q′2} =

{

√

3

10
,− 1√

2

}

(4.7)

The Yukawa coupling is calculated by substituting (4.7) in eq. (3.23), giving

λ′ ≈ 0.31

In the quotient theory the top Yukawa coupling is given by fields with weight structure

(t1 + t2)/
√

2, (t1 + t2)/
√

2 and −t1 − t2 so

λu
33 = λ′ ≈ 0.31 . (4.8)

One sees that the magnitude of the top and bottom couplings are quite similar cor-

responding to the large tan β regime, where tan β = vu
vb

. This result is sensitive to the

normalisations of the fields which involve non-local information and so is sensitive to our

assumption that the effective radii of the up and down matter curves are the same. If the

couplings are indeed similar there will be significant tanβ enhanced threshold corrections

to the down quark mass matrix entries [27, 28] that can affect the relations between the

down quarks and charged leptons [29]. Indeed, as discussed below, these could explain the

difference between the muon and strange quark masses at the unification scale.

4.3.2 Higher dimension couplings

As may be seen from eq. (4.1) the remaining terms in the quark mass matrices come

from higher dimension operators involving the familon fields. These terms are generated
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Figure 2. The two graphs generating the λd
23 down quark Yukawa coupling.

by the exchange of massive messenger states that may either be vector-like states in the

zero mode sector that acquire mass through spontaneous symmetry breaking or Kaluza-

Klein states. In this section we will use the results of section 3.3 to determine these

non-renormalisable terms. Of course a full calculation would require detailed knowledge

of the massive spectra and this is beyond the scope of this paper. Here we make the

(over)simplifying assumption that the multiplet and mass structure of massive modes is the

same for all matter curves. This may be expected to be the case for the KK spectra for the

homogeneous compactification assumed above when determining the field renormalisations.

In any case it serves to illustrate the nature of the contributions that generate the non-

renormalisable operators.

4.3.3 Calculation of the down-quark Yukawa matrix

We start with a particular example, the λd
23 down quark Yukawa coupling. This can be

generated in the covering theory by the graphs shown in figure 2.

Consider the first vertex of the first graph and the two orthogonal charge operators

Q3 =
1√
6
{0, 2,−1, 0,−1} , Q4 =

1√
2
{0, 0, 1, 0,−1}

These have zero eigenvalues when acting on any of the states in the first vertex. The

remaining two operators may be chosen as

Q1 =
1√
2
{1, 0, 0,−1, 0} , Q2 =

1√
30

{3,−2,−2, 3,−2}

The first vertex of figure 2 is the SU(5) 10.10.1 coupling. The external fields have

weights t1 − t4, t4 with the associated charge structure

{q1, q2} =

{

− 1√
2
,

√

3

10

}

, {q′1, q′2} =
{√

2, 0
}

(4.9)

This gives the Yukawa coupling λ1 = 1.31
√

ξ
0.89+2.31ξ . For the case ξ = 1, λ1 = 0.409. Repeating

this it is straightforward to compute all the allowed SU(5) couplings. These are tabulated

in table 2 for the case ξ = 1.
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SU(5) structure U(1)4⊥ label Yukawa

10 · 10 · 5 ti, tj ,−ti − tj 0.31

10 · 5̄ · 5̄ ti, tj + tk, tm + tn 0.295

10 · 10 · 1 −ti, tj , tj − ti 0.409

5 · 5 · 1 ti + tj,−tj − tk, tk − ti 0.286

1 · 1 · 1 ti − tj , tj − tk, tk − ti 0.244

Table 2. The Yukawa integrals for triple intersections and their SU(5) × SU(1)4
⊥

structure for the

case ξ = 1.

Figure 3. Graphs generating the λd
12

down Yukawa coupling. Mass insertions in KK-mode lines

are not shown to avoid clutter.

Using this one readily computes the graphs of figure 2 giving λ23 = 0.295(0.409 +

0.286)θ14vb = 0.205θ14vb for the case ξ = 1. In this we have suppressed the mediator mass

scale, M , i.e. θ14 ≡ θ14

M .

The remaining entries of the matrix may be computed in a similar manner. Repre-

sentative graphs are shown in figures 2 and 3. The complete mass matrix for ξ = 1 is

given by

Md =







0.12 θ2
14θ

2
43 0.11 θ14θ

2
43 0.18 θ14 θ43

0.14 θ2
14θ43 0.16 θ14θ43 0.20 θ14

0.09 θ14θ43 0.17 θ43 0.29






(4.10)

Of course this result is very sensitive to our assumption that the multiplet and mass

structure of massive modes is the same for all matter curves but it is nonetheless interesting

to consider the implications of such a form. The results for individual matrix elements

are also sensitive to the non-local structure of the compactification manifold through the

normalisation factors. However the determinant and sub-determinants of the matrix are

sensitive to these normalisations only through an overall factor and it is interesting to

ask whether there is a substantial cancellation in these terms that is independent of the

normalisation and that will significantly affect the eigenvalues of the matrix.
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Figure 4. Graphs generating the λu
22 up Yukawa coupling.

4.3.4 Phenomenological implications

From eq. (4.10) we have Det(Md) = 3 × 10−4(θ14θ43)
2 and Det(M23

d ) = 10−2θ14θ43 where

the latter refers to the 2 × 2 submatrix for the second and third generations that deter-

mines the product msmb. For comparison if we impose the texture zeros in the (1, 1) and

(2, 2) positions, that would follow if the matter curves determining these elements do not

intersect, we find Det(Md) = 3 × 10−3(θ14θ43)
2 and Det(M23

d ) = 3.6 × 10−2θ14θ43. One

sees that there are cancellations in the determinants of eq. (4.10). This has a significant

implication for the mass matrix structure because the hierarchy of masses will not just be

determined by the expansion in powers of the familon fields but also by the cancellation in

the determinant and sub-determinant. As a result the familon vevs need to be chosen much

larger than the case with no cancellation. Since the model was built assuming no such can-

cellation one might expect the resulting structure will have problems; in particular in the

original model the strong hierarchy in the up quark masses relies on small familon vevs. To

avoid this we modify the model slightly by assuming texture zeros in the (1, 1) and (2, 2)

positions thus avoiding the troublesome cancellations. With this and the choice θ14 = 0.07

and θ43 = 0.6 we have ms/mb = 0.36 θ14θ43 = 0.07, md/mb = 3× 10−3(θ14θ43)
3 = 5× 10−4

and V d
cb ≈ 0.05 in good agreement with the measured values continued to the unification

scale. However the down quark contribution to V d
us is large V d

us = 0.5 so that there must

be a significant cancellation with the contribution from the up quark sector. To address

this possibility we must determine the structure of the up quark mass sector.

4.3.5 Calculation of the up-quark Yukawa matrix

We have already calculated the tree-level coupling λt
33 ≈ 0.31. The remaining couplings

are calculated in a manner similar to that for the down quark. Examples of the relevant

graphs are depicted in figures 4 and 5. The resulting up-quark mass matrix is

Mu =







0.09 θ2
14θ

2
43 0.22 θ2

14θ43 0.16 θ14θ43
0.22 θ2

14θ43 0.18 θ2
14 0.22 θ14

0.16 θ14θ43 0.22 θ14 0.31






(4.11)
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Figure 5. Graphs generating the λu
12

up Yukawa coupling. Mass insertions in KK-mode lines are

not shown to avoid clutter.

4.3.6 Further phenomenological considerations

We found that in the case of the down quark mass matrix there are significant cancellations

in the determinant and subdeterminants that are independent of the normalisation of the

fields. The same is true in the up quark case. From eq. (4.11) we have Det(Mu) =

3×10−3θ4
14θ

2
43 and Det(M23

u ) = 8.10−2θ2
14 where the latter refers to the 2×2 submatrix for

the second and third generations that determines the product mcmt. For comparison if we

impose the texture zeros in the (1, 1) and (2, 2) positions, that would follow if the matter

curves determining these elements do not intersect, we find Det(Mu) = 8× 10−4θ4
14θ

2
43 and

Det(M23
u ) = 4.6 × 10−2θ14θ43. These do not change as much as for the down quark mass

matrix but the result is misleading because the (1, 1) matrix element is already very small,

explaining the small difference between these cases. However the value of the determinant

is small due to a cancellation of individual terms of O(10−2), demonstrating again that the

F-theory structure of the Yukawa couplings does lead to significant cancellations that can

have important phenomenological effects.

Knowing the up and down quark mass matrices we can compute the masses and mixing

angles in terms of the two familon expectation values. For definiteness we choose to have

texture zeros in the (1,1) and (2,2) entries of both the up and down quark mass matrices (the

general structure is similar if we do not have texture zeros in the up matrix). Keeping the

same values for the familon vevs as were used in section 4.3.4, we find mc/mt = 3.9×10−3,

mu/mt = 10−4, Vcb = 10−3 and Vus = 0.12. Of these only the value of mc agrees with the

measured value at the Planck scale. The value of mu is a factor of 10 too large while the

mixing angles are too small as a result of significant cancellations between the up and down

sectors. However, due to the strong cancellation in Det(Mu), the associated up quark mass

is very sensitive to small corrections. Indeed changing Mu(3, 3) from 0.31 to 0.33 brings

mc into good agreement with experiment (corrections of this magnitude are expected from

radiative threshold corrections [27, 28]). Similarly it is straightforward to bring the mixing

angles into good agreement with experiment by spoiling the precise cancellation between the

up and down mixing angles. Changing Md(3, 2) from 0.17 to 0.1 and Md(2, 3) from 0.21 to

0.35 gives Vcb = 0.042 in excellent agreement with experiment. Changes of this magnitude

are expected from the tan β enhanced threshold corrections [27, 28]. Similarly one may

get an acceptable value for Vus by changing Md(1, 2) from 0.1 to 0.2. Since the radiative
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corrections to this element do not involve the large third generation Yukawa coupling they

are very small so a change of this magnitude must come from another source; for example,

c.f. figures 3 and 5, if the θKK
13 , θKK

32 messenger masses are a factor of 2 different from the

other messenger masses.

In conclusion the structure of couplings found in F-theory raises interesting possibil-

ities for generating realistic masses and mixings. In particular because the magnitude of

the couplings in various elements of the mass matrix are correlated there can be signif-

icant cancellations between terms and this can play an important role in generating the

hierarchical mass structure. This is to be contrasted from the “bottom-up” Abelian family

symmetry models of fermion masses in which the O(1) couplings are not determined and

which assume significant cancellations do not occur. Similarly the mixing angles in the F-

theory model involve significant cancellations between the up and the down sectors. For the

particular model considered here we have shown that small corrections to the Yukawa cou-

plings determined assuming a very symmetric structure for the compactification manifold

can give an excellent fit to all the quark masses and mixing angles.

4.3.7 Charged leptons

A major problem with the SU(5) model discussed here is the difficulty in obtaining a

lepton mass matrix of a different form from the down quark mass matrix. While the

relation mb = mτ may be acceptable at the GUT scale [29] the relations ms = mµ and

md = me are not. We are aware of two possible resolutions to the problem. The first is

that the GUT group is broken by flux raising the possibility that the flux may split the

SU(5) representations so that down quarks and leptons may live on different matter curves.

However this possibility was apparently excluded by Dudas and Palti [12] who extended the

no-go theorem of [30] to the case the families live on different matter curves. Recently they

have suggested ways to evade this theorem [32] at the same time solving the doublet-triplet

splitting problem. In the next section we present a simpler example of this mechanism.

We also discuss how the method can be applied to splitting the down quarks and leptons

in the second generation only. In both cases the “good” relation mb = mτ is preserved

while the “bad” relation mµ = ms can be avoided. However the remaining “good” relation

Det[Md] = Det[Ml] is also not guaranteed by the underlying GUT symmetry.

The second possibility is that radiative threshold corrections spoil the “bad” mass

relations while preserving both the “good” mass relations. That this is a possibility follows

from two features of the F-theory mass matrices. The first is the near equality of the top

and the bottom Yukawa couplings. This means that radiative corrections to the down quark

Yukawa couplings involving the third generation will be large. In particular there are large

threshold “corrections” [27, 28] coupling the bottom quarks to the up Higgs conjugate field

via an intermediate tc state, resulting in a tan β enhanced contribution to the mass matrix.

There is no such contribution to the lepton mass matrix because the singlet neutrino states,

νc are heavy. The second feature is the possibility of cancellation in the sub-determinants of

the Yukawa matrix that we discussed above. To illustrate this we return to the down quark

mass matrix of eq. (4.10) which has the (2,3) subdeterminant Det(M23
d ) = 10−2θ14θ43.

Even a small threshold correction to the mass matrix can change this sub-determinant

– 18 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
8

Figure 6. A representative graph for the neutrino Yukawa coupling.

significantly. For example a reduction of M33
d by 15% reduces Det(M23

d ) by a factor of 3

and a tan β enhanced correction of this size is to be expected. Such a reduction will imply

that mµ = 3ms at the unification scale in excellent agreement with the measured masses

once the RG corrections are included. The 15% reduction in Det(M23
d ) impliesmτ = 1.15mb

so the GUT relation is not changed much and is in reasonable agreement with the measured

values. However the change in M33
d does change Det(Md) significantly spoiling a “good”

relation. To avoid this we can require a texture zero in M11
d without affecting the (2, 3)

sector. This avoids significant cancellation in Det(Md) with the result that it is only

reduced by 15% by the 15% reduction in M33
d . This implies that me = md/3, again

in excellent agreement with experiment. This example illustrates the possibility of using

threshold corrections to avoid the “bad” SU(5) relation for the second generation quark and

lepton masses. However it cannot be applied to the particular model studied here because

it relies on the strong cancellation in a sub-determinant that in this particular model is

inconsistent with the quark mass hierarchy; the model above avoided the cancellation by

imposing texture zeros.

4.3.8 Neutrino masses

We turn now to a discussion of the neutrino masses in this model. As pointed out in [31]

in models with a monodromy there will be Standard Model singlet states with Majorana

mass and these may generate Majorana mass for the doublet neutrinos via the see-saw

mechanism. For the model introduced here the states θ′ij have the quantum numbers to

be right-handed neutrinos. Due to the monodromy θ′12 and θ′21 are identified so, in the

covering theory, the superpotential term MMθ
′
12θ

′
21 that is allowed by all the symmetries,

is a Majorana mass in the quotient theory. Taking into account contributions from graphs

as in figure 6, we can see that this state couples to the doublet neutrinos via the terms

(L3θ14 + L2θ14θ43 + L1θ
2
14θ43)Huθ

′
12 and, through the see-saw mechanism, will generate a

Majorana mass for the combination

L3〈θ14〉 + L2〈θ14〉〈θ43〉 + L1〈θ14〉2〈θ43〉 .

However this combination does not correspond to the near bi-maximal mixing observed for

the (heaviest) atmospheric neutrino and moreover doesn’t indicate how the solar neutrino

acquires a mass.

To address these questions we consider the case that there are additional vectorlike

pairs of RH neutrino states, θ′14, θ
′
41 and θ′13, θ

′
31 with mass MD. These may be part of a
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tower of Kaluza Klein states or zero mode pairs that acquire a mass when SU(5) is broken.

In addition there is a mass mixing term given by θ′14θ
′
31〈θ43〉. For 〈θ43〉 ≪ MD the mass

eigenstates are θ′a,b = (θ′41 ± θ′31)/
√

2 with mass M2
a,b = M2

D ±MD〈θ43〉. The states θ′a,b

acquire Majorana mass via their mixing with θ′12 through a see-saw mechanism involving

the couplings (θ′41〈θ14〉 + θ′31〈θ43θ14〉)θ′12. This in turn generates a Majorana mass for a

combination of the light LH neutrinos. However if two combinations of LH neutrino states

are to acquire Majorana mass it is necessary that there should be two primary Majorana

mass terms and these states should couple to different combinations of the LH neutrino

states. Provided there is more than one θ′12 KK state on the matter curve the first condition

will be satisfied. Because the KK wavefunctions are not holomorphic the coupling of the LH

neutrinos to these KK states will be different [31], but comparable, satisfying the second

condition. As a result both θa and θb acquire Majorana masses of O(〈θ14〉2/MM ). For the

case that the Majorana mass MM is large this term is smaller than MD.

The coupling of θa,b to the light neutrinos is via the terms
(

L3θ
′
14 + L2θ

′
13 + L1(〈θ43θ14〉θ′14 + 〈θ14〉θ′13)

)

Hu

The LH neutrinos now acquire Majorana masses via the see-saw mechanism by coupling

to the messenger states θ′a,b and for small MD these can be dominant.

4.4 Bi-maximal mixing

The atmospheric neutrino state is the heaviest and its mass will be generated by the

exchange of the lightest RH neutrino, θ′a, so the atmospheric state is

ν@ ≈ 1√
2

[

ν3 − ν2 +
√

2〈θ14〉(〈θ43〉 − 1)ν1

]

(4.12)

with mass

m@ =
〈hu〉2

M2
D −MD〈θ43〉

〈θ14〉2√
2MM

. (4.13)

As one may see the state is nearly maximally mixed between νµ and ντ in good agreement

with experiment.

4.5 Tri-maximal mixing

The exchange of the next lightest RH neutrino state generates ν⊙, the next heaviest LH

neutrino. Here it is the state θ′b giving

ν⊙ ≈ 1

N

[

ν3 + ν2 +
√

2〈θ14〉(1 + 〈θ43〉)ν1

]

(4.14)

with mass

m@ =
〈hu〉2

M2
D +MD〈θ43〉

√
3〈θ14〉2
2MM

. (4.15)

The mixing between all three neutrinos is large but not clearly tri-maximal with the νe

component somewhat smaller than the experimental measurement. However it is sensitive

to the mass of the messenger states responsible for the higher dimension terms (〈θ14,43〉 ≡
〈θ14,43〉/Mmessenger). It only requires a small difference in messenger mass between the

quark mass sector and the neutrino see-saw sector to allow for tri-maximal mixing here.
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4.5.1 CP violation

So far we have considered the case that the Yukawa couplings and the associated mass

matrices are real. However it is important to identify the possible origin of the CP violating

phase. An obvious possibility is that the familon fields have complex vevs. As may be seen

from the appendix their phases are not determined by the D-terms. They can be induced

by the soft supersymmetry breaking terms. However it is straightforward to check that,

in the case of the model considered above with just two familon fields contributing to the

mass matrices, the resultant phases appearing in eqs. (4.1) can be eliminated by a phase

redefinition of the fermion fields. This is no longer true when the threshold effects are

included. As discussed above these can be large because the model is at large tanβ but

even so it is unlikely that the CP violation is near maximal as is observed. It is possible

that the relative magnitude of the CP violation coming from threshold effects is enhanced

in the case there are significant cancellations between the different terms in the mass matrix

but this is not the case for the model considered because of the texture zeros that were

assumed to avoid such cancellations.

There are two other possible sources of CP violation. The first is due to flux effects. In

the next section we consider the case that flux causes the Higgs doublet triplet splitting. In

this case two of the SU(2) singlet up quarks and charge leptons belong to a single up quark

and charged lepton matter curve respectively. As a result some of the Yukawa couplings

vanish in the absence of flux. When flux is switched on these couplings can acquire phases

that cannot be removed by field redefinition and thus generate CP violation. These phases

can be of O(1) even though the flux effects are small because they are associated with

couplings whose magnitudes also vanish in the absence of flux.

The second possibility follows from the fact, noted in section 3.1, that the solution to

the 8D equs involves an arbitrary holomorphic function f(zL) of the longtitudinal coordi-

nate along the matter curve. For the case that the fields live on different matter curves and

the hierarchy is organised by the family symmetry there is no need for the intersections of

the matter curves to occur at the same point. This is to be contrasted with the case that

the three families live on the same matter curve where the intersections should be close

together to avoid large mixing angles due to the mismatch of the up and down sectors.

Given this, the value of f(zL) associated with the intersection point of a given up quark

Yukawa coupling can be different from the value associated with the intersection point

associated with the equivalent down quark Yukawa coupling. The difference between these

factors can introduce a phase difference between these couplings that cannot be absorbed

by a redefinition of the fermion fields and can be the source of CP violation. Of course

it can also introduce a difference in the magnitude of the Yukawa couplings and this will

change the estimate of the Yukawa coupling presented above.

5 Fluxes — doublet triplet splitting and distinguishing between down

quarks and leptons

In this section we explore the use of fluxes to derive different textures of the down and

lepton mass matrices and to split doublets from triplets in the Higgs sector. This is based
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Field U(1)i homology U(1)Y -flux U(1)-flux

10(1) = 103 t1,2 η − 2c1 − χ −N M101

10(2) = 101 t3 −c1 + χ7 N7 M102

10(3) = 102 t4 −c1 + χ8 N8 M103

10(4) = 10′2 t5 −c1 + χ9 N9 M104

5(0) = 5hu −t1 − t2 −c1 + χ N M5hu

5(1) = 52 −t1,2 − t3 η − 2c1 − χ −N M51

5(2) = 53 −t1,2 − t4 η − 2c1 − χ −N M52

5(3) = 5x −t1,2 − t5 η − 2c1 − χ −N M53

5(4) = 51 −t3 − t4 −c1 + χ− χ9 N −N9 M54

5(5) = 5hd
−t3 − t5 −c1 + χ− χ8 N −N8 M5hd

5(6) = 5y −t4 − t5 −c1 + χ− χ7 N −N7 M56

Table 3. Field representation content under SU(5)×U(1)ti
, their homology class and flux restric-

tions. For convenience, only the properties of 10, 5 are shown. 10, 5 are characterized by opposite

values of ti → −ti etc. Note that the fluxes satisfy N = N7 +N8 +N9 and
∑

i M10i
+

∑

j M5j
= 0

while χ = χ7 + χ8 + χ9.

on the fact that fluxes may split the SU(5) representations and break the quark-lepton

degeneracy in the Kaluza Klein states. An example of this was given in [32] in which there

are a large number of vector-like exotic states that have to be given mass by familon vevs.

Here we give an example with the minimum number of vector-like states capable of

generating doublet-triplet splitting. It necessarily requires that the right-handed electron

be in a different representation from the down quark, thus allowing them to have different

masses. In this example the difference between the muon and strange quark masses must

be due to the non-degeneracy of the KK states. The only GUT relation that persists in

this case is that relating the bottom quark to the tau lepton.

We also give an example in which the second family is split so that the muon and

strange quark belong to different representations and as a result they need not be degen-

erate. In this case the GUT relation for the the ratio of the electron to the down quark

mass is preserved up to the O(1) couplings. We determine this ratio for the very symmetric

compactification discussed above.

The starting point for model building is given in table 3 adapted from [32]. The first

two columns give the field content under SU(5) × U(1)ti for the case of Z2 monodromy.

The third column gives the Dudas Palti determination of the homology classes where c1
is the first Chern class of the tangent bundle of GUT surface SGUT and η = 6c1 − t with

−t being the first Chern class of the normal bundle to SGUT. The χi are unspecified and

χ = χ7 + χ8 + χ9.

When U(1)Y hypercharge flux is turned on the SU(5) multiplets can be split to Stan-

dard Model multiplets

10 → (3, 2) 1

6

+ (3̄, 1)− 2

3

+ (1, 1)1

5 → (3, 1)− 1

3

+ (1, 2) 1

2

(5.1)
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Given a restriction to a curve of the U(1)Y hypercharge flux given by an integer NY

and the U(1)ti flux given by an integer M10,5 the resulting spectrum is

n(3,2) 1
6

− n(3̄,2)
− 1

6

= M10 (5.2)

n(3̄,1)
− 2

3

− n(3,1) 2
3

= M10 −NY (5.3)

n(1,1)1 − n(1,1)−1
= M10 +NY (5.4)

and

n(3,1)
− 1

3

− n(3̄,1) 1
3

= M5 (5.5)

n(1,2) 1
2

− n(1,2)
− 1

2

= M5 +NY (5.6)

Depending on the particular flux properties, different 10’s and 5’s have also different

M10,M5. Due to anomaly cancelation these are constrained by
∑

i

M10i +
∑

j

M5j = 0 (5.7)

5.1 A simple model for doublet-triplet splitting

To obtain the three complete families of table 1 we need M101,2,3 = 1, M51,2,4 = −1 and

N = 0. Turning to the Higgs structure we need M50
= 1. It is possible to have a split 5̄hu

with only the doublet massless mode by choosing M55
= 0 and N8 = 1 giving

n(3,1)−1/3
− n(3,1)1/3

= M55
= 0

n(1,2)1/2
− n(1,2)−1/2

= M55
+N −N8 = −1 .

Next we satisfy the trace conditions by choosing M56
= −1, N7 = −1 so that 5̄6 has

only a colour triplet component:

n(3,1)−1/3
− n(3,1)1/3

= M56
= −1

n(1,2)1/2
− n(1,2)−1/2

= M56
+N −N7 = 0 .

To complete the doublet triplet splitting we can give a mass mT = 〈θ15〉〈θ14〉/M to the

anti-triplet in 5hu by coupling it to this triplet via the superpotential term θ15θ145hu5y/M .

Now the only light Higgs fields are the doublets in 5hu and 5̄hd
as desired.

However from table 1 one may see that the 102,3 representations will be affected by

the N7,8 flux. The 102 representation is split according to

n(3,2)1/6
− n(3,2)−1/6

= M102
= 1

n(3,1)−2/3
− n(3,1)2/3

= M102
−N7 = 2

n(1,1)1 − n(1,1)−1
= M102

+N7 = 0

and the 103 representation is split according to

n(3,2)1/6
− n(3,2)−1/6

= M103
= 1

n(3,1)−2/3
− n(3,1)2/3

= M103
−N8 = 0

n(1,1)1 − n(1,1)−1
= M103

+N8 = 2 .
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The result of this is that the up quark and lepton mass matrices change and now have

the form

Mu =







ε1θ
2
14θ

2
43 ε2θ

2
14θ43 ε3θ14θ43

θ2
14θ

2
43 θ2

14θ43 θ14θ43
θ14θ43 θ14 1







and

Ml =







ε′1θ
2
14θ43 ε

′
2θ14θ43 ε

′
3θ14

θ2
14θ43 θ14θ43 θ14
θ14θ43 θ43 1







where ǫi, ǫ
′
i are (small) coefficients generated by flux because now 2 up quark and 2 lepton

fields live on the same quark and lepton curves respectively so only one field has a Yukawa

coupling to a given state in the absence of flux.

The change in Mu enhances the hierarchy in the up quark mass matrix as it is the

smaller row that is duplicated. As a result it should be easier to fit the observed spectrum

without requiring cancellations in the determinant and sub-determinants. The change in

Ml affects me so it can be different from md but not, to first order, mµ. However the effect

of the flux on the matter curve 5(5) = 5hd
not only splits the zero mode multiplet but

also removes the KK excitation degeneracy. As a result the higher dimension operators

in the (2, 3) block of Md and Ml will have different messenger masses and so mµ can be

different from ms. In this case only the (3, 3) element is unaffected by flux because, coming

from a renormalisable term, only it is insensitive to the KK mass spectrum. This means

that the GUT relation mb = mτ is preserved, up to the threshold corrections discussed in

section 4.3.7.

There are two potential problems associated with this method of doublet triplet split-

ting. The first is the fact that residual heavy colour triplet state of mass mT affects the

gauge coupling unification. However, as shown in [30, 35, 36] the effect of these states is to

compensate for the flux correction to the usual SU(5) predictions so that for a particular

choice of the colour triplet mass (dependent on the flux strength) the MSSM form of gauge

coupling unification is obtained. If the colour triplet mass is less than this the corrections

act to reduce the residual discrepancy between the predicted and observed strong coupling

thus actually improving the agreement over the MSSM [37].

The second potential problem arises from the need for a large vev for the familon

field θ15 to generate a mass for the colour triplet component in 5hu . One must check

that it does not introduce D=5 nucleon decay operators and this in fact is the case due

to t5 conservation because θ15 only has a negative t5 component. This is in contrast to

the example given in [32]. As noted in section 4.2 a vev for θ15 generates a µ term via

the operator λHuHdθ14θ43θ15. Provided the fields involved in generating this term do not

intersect the coefficient λ can be small and the term can provide the needed origin for the

µ term.

5.2 Splitting the second family

Our second example has M101,2,3 = 1, M51,2,4 = −1 as before. In addition N9 = 1 = −N8.

These choices are consistent with the restrictions discussed above. Concentrating first on
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the two 10’s that are affected by these non-trivial fluxes, we get the following solutions for

the multiplicities of the various 10, 5 components:

10(3)(t4) = 102 :















n(3,2) 1
6

− n(3̄,2)
− 1

6

= 1 → 1 ×Q

n(3̄,1)
− 2

3

− n(3,1) 2
3

= 2 → 2 × uc

n(1,1)1 − n(1,1)−1
= 0 → 0 × ec

(5.8)

10(4)(t5) = 10′2 :















n(3,2) 1
6

− n(3̄,2)
− 1

6

= 0 → 0 ×Q

n(3̄,1)
− 2

3

− n(3,1) 2
3

= −1 → 1 × ūc

n(1,1)1 − n(1,1)−1
= 1 → 1 × ec

(5.9)

We observe that eqs. (5.8), (5.9) split the second generation into two distinct tenplets,

however the cost to pay is the presence of an additional uc, ūc pair. We can give mass to

this extra-pair through the coupling

Wnr ⊃ 1

M
10

′
2 · 102 · 〈θ51θ14〉 =

M2
θ

M
ūc uc

An analogous splitting occurs in the fiveplets 5̄(4) = 5̄1 and 5̄(5) = 5̄hd
. Choosing

M54
= −1,M5hd

= 0 and, given the values N8,9 above, we get

5(4)(−t3 − t4) = 51 :







n(3,1)
− 2

3

− n(3̄,1) 2
3

= −1 → 1 × dc ∈ 5̄(4)

n(1,2) 1
2

− n(1,2)
− 1

2

= −2 → 2 × ℓ ∈ 5̄(4) (5.10)

5(5)(−t3 − t5) = 5hd
:







n(3,1)
− 1

3

− n(3̄,1) 1
3

= 0 → 0 × D̄c
h

n(1,2) 1
2

− n(1,2)
− 1

2

= 1 → 1 × ℓ̄ ∈ 5(5) (5.11)

We can interpret this as follows: the curve accommodating the down-Higgs fiveplet has an

excess of an anti-doublet ℓ̄ which can form one massive state with one of the two ℓ’s of

5̄(4)-curve

Wnr ⊃ 1

M
5
(4) · 5(5) · 〈θ51θ14〉 =

M2
θ

M
ℓ̄ ℓ

The remaining massless chiral state ℓ ∈ 51 is part of curve 5(4) accommodating the first

family and, together with the down quark dc ∈ 51 constitute a complete anti-fiveplet.

This splitting of the second family differentiates the lepton mass matrix relative to

down quark mass matrix. The substitution 10t4 → 10t5 for the RH lepton of second

generation (µc) gives a lepton mass matrix of the form

Mℓ =







θ2
14θ

2
43 θ15θ14θ43 θ14 θ43

θ2
14θ43 θ15θ43 θ14
θ14θ43 θ15 0.29






(5.12)

Comparing with the form of the down quark mass matrix given in eq. (4.10) one sees that,

as in the last example, the GUT relation mb = mτ is preserved. However the muon mass

is proportional to θ15θ43 whereas the strange quark is proportional to θ14θ43 so the masses

at the GUT scale need not obey the (bad) GUT mass relation.
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This example does not achieve doublet-triplet splitting by flux and requires that it

be achieved through discrete Wilson line breaking of SU(5). If this is possible it has

the advantage of not having additional massive colour triplet states that can spoil gauge

coupling unification. However there is a problem is associated with the dimension 5 nucleon

decay operators. These have the structure 10.10.10.5̄ and are forbidden before the familon

field θ51 acquires a vev because, c.f. table 1 there is no 10 or 5̄ field involving t5. However

operators of the form θ51Q3Q3Q2L
c
2/M

2 are allowed and potentially cause the proton decay

rate to exceed the observed bound. As discussed in [32] these operators do not arise if the

strong version of R-conservation is applied because they are not generated by KK mediator

graphs.

6 Summary

Although the calculation of fermion masses and mixing remains an elusive goal, F-theory

offers some new insights because the trilinear couplings in the superpotential associated

with the intersection of three matter fields depend on local details only and thus can be

reliable calculated even if the global structure of the theory is not known. In this paper

we have derived the general form for the trilinear couplings involving zero modes alone or

involving both zero modes and massive modes. The resulting Yukawa couplings are found

to be simple analytic functions of the matter field Abelian charges and the GUT-value of

the unified gauge coupling constant raised to a fractional power.

To illustrate the implications of such couplings we considered a particular model with

a SU(5)⊗SU(5)⊥ gauge symmetry and three families living on different matter curves with

a Z2 monodromy to allow for an hierarchy of fermion masses and a Z2 R-symmetry to avoid

rapid proton decay. The gauge symmetry of the resulting model is SU(5) ⊗ U(1)3 where

the U(1) factors play the role of family symmetries. The hierarchy of fermion masses and

mixings is then generated through an expansion in the familon vevs breaking the symmetry.

The masses and mixing of the lighter families occur through operators involving the familon

fields with dimension greater than four. The calculation of the coefficients of these operators

requires knowledge of the massive messenger sector and in calculating these we assumed a

very symmetric structure for the representations of these fields and for the global structure

of the compactification manifold.

The resulting structure shows some interesting features not normally considered in

family symmetry models. In particular the determinants and subdeterminants of the mass

matrices are anomalously small due to a cancellation between terms indicating correlation

between the calculated O(1) coefficients of the mass matrix elements. The mixing angles

are also subject to large cancellations between the up and down quark contributions. In

the absence of a theory of the O(1) couplings this possibility is usually ignored as, it

requires “fine tuning”. In F-theory models such cancellations do occur and opens up new

possibilities for model building.

In the case of the trial model the structure of the model was chosen assuming no

such cancellations and to avoid them two texture zeros were assumed corresponding to the

non-intersection of the relevant matter fields. Taking account of threshold corrections and
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varying the two relevant familon vevs the model allows for an excellent fit of all quark masses

and mixing angles with the exception of the up quark mass. Fitting the latter requires a

modest difference in the messenger masses associated with the operators generating the up

quark mass matrix elements.

In theories with a monodromy Majorana masses are generated for singlet states with

the quantum numbers of right-handed neutrinos [31]. In the trial model we showed that,

via the see-saw mechanism, these generate light neutrino masses with small mass differences

caused by flux effects. Near tri-bi-maximal mixing readily arises providing a structure in

good agreement with that found in neutrino oscillation.

Finally we considered the question how to modify the SU(5) “bad” relations connecting

down quark masses and leptons. For the case that there are significant cancellations in the

down quark mass matrix determinants, threshold corrections can generate the difference

between the muon mass and the strange quark mass while preserving the “good” SU(5)

mass relations for the first and the third families. For the case of the trial model considered

here this explanation is not possible and one must rely on flux effects to do the job. We

derived a simple example of a flux choice that generates doublet-triplet splitting leaving

only the required Higgs doublets in the light spectrum. The effect on the massive sector

then spoils the GUT predictions for the light generations that obtain their mass from

non-renormalisable operators sensitive to the structure of the massive sector. We also

constructed an example in which the second generation is split so that the second generation

down quarks and leptons belong to different matter curves. Again this preserves the good

GUT mass relation for the heavy family but corrects both the good and the bad relations

for the first and second families.

In conclusion we have considered the detailed spontaneously broken family symmetry

structure emerging from F theory for the case that the three families live on separate matter

curves. Assuming that the compactification and flux structure leads to R-symmetry and

choosing an appropriate multiplet structure we showed that the resulting model can fit

all the observed quark, charged lepton and neutrino mass and mixing angle structure. It

remains to be seen whether a global version exists with this structure.
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A The familon potential in SU(5) × U(1)3

In order to generate the µ term and the fermion masses discussed above it is necessary to

generate vevs for the familon fields θ14, θ15 and θ43. In fact it is the expectation that three

familon fields should acquire vevs because, after imposing the monodromy, there are three

U(1) gauge bosons and satisfying D-flatness for them typically requires three charged fields

to acquire vevs. To see this, consider the basis in the covering theory given in eq. (4.6).
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The U(1) gauge boson associated with Q2 is projected out by the monodromy and the

D-flatness conditions for the remaining three U(1) gauge bosons are

|〈θ14〉|2 + |〈θ15〉|2 + ξ1 = 0

− |〈θ43〉|2 − |〈θ15〉|2 + ξ3 = 0

−2 |〈θ14〉|2 − 3 |〈θ43〉|2 + |〈θ15〉|2 + ξ4 = 0

where the ξi are the anomalous contributions to the U(1)s in this basis. For ξ1 negative, ξ3
positive and ξ4 < 3ξ3 − 2ξ1 there is a D-flat direction along which the three familon fields

acquire vevs. Provided there is no θ31 zero mode this set of vevs is also F-flat.
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