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Abstract

We discuss all possible compactifications on flat three-dilneas spaces. In particular, various fields are studied on a box
with opposite sides identified, after two of them are rotatedrbyand their spectra are obtained. The compactification of

a general 7D supersymmetric theory in such a box is considered and the corresponding four-dimensional theory is studied,

in relation to the boundary conditions chosen. The resultiregtspm, according to the allowed field boundary conditions,

corresponds to partially or completely broken supersymmetry. We briefly discuss also the breaking of gauge symmetries under

the proposed box compactification.
0 2004 Elsevier B.V. All rights reserved.

In almost all extensions beyond the Standard Model, try breaking scale in comparison to the other scales,
supersymmetry plays a central role. In particular, Su- like the traditional unification or Planck scales, if it
perstring Theory1], as well as related theories of ex- is to be associated with compactification, requires the
tended objectR?], provide a framework for a quantum presence of large extra dimensigf@sl0]. Many mod-
theory of gravity. Nevertheless, since supersymmetry els of this type have been proposed in the last few
is not a low-energy symmetry of Nature, and has to be years[8] and, although, none is phenomenologically
broken, supersymmetry breaking should be a key in- waterproof, it is generally admitted that the possi-
gredient of the final theory. This importantissue is still bility of extra dimensions at the TeV scale is open.
open. The tree-levebcherk—Schwarz Supersymmetry In SSSB one takes advantage of the R-symmetry of
Breaking(SSSB) mechanisi{8—8] is one of the pro-  the supersymmetric theory to shift appropriately the
posals put forward, linking supersymmetry breaking masses of bosons and fermions lifting in this way the
to compactification. The smallness of supersymme- degeneracy and, thus, breaking supersymmetry. Alter-

native ways of breaking supersymmetry include gaug-
ino condensation in the hidden secfbt] or, in brane
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i) ABCD=EFGH

symmetry breakingl3]. Supersymmetry may also be AEHD=BFGC

broken by background fluxgd4,15} In the case of D _ AEFB=DHGC

background magnetic fields, the occurring tadpoles of O A PHDBRGE

which, will presumably be removed in the full quan- _ AEFB=DHGC

tum theory[14]. H " EHDBRGC
In the present Letter we elaborate on the possibil- AEFB=DHGC

ity of breaking supersymmetry at the compactification ¢ v) :}{}}C{g:ggg

process employing a novebmpactification scheme. AEFB=GCDH

Gauge symmetry breaking as a result of compactifi- F

cation is also studied. Thus, as far as supersymme- N

try breaking is concerned, although we work along A D

the lines of SSSB, it should be stressed that there L S C v) ABCDEF=KLMNGH

M

is a fundamental difference with it, since in SSSB vi) ABCDEF=HKLMNG

the boundary conditions for Rggymetry singlets, like G

vectors, are always periodic, in contrast to dnax

compactificationwhere they can be non-trivial even H K

for R—smglets. In add'_tlon_ to that, the proflle Of_ Ol'_lr Fig. 1. Possible identification o3 which produce compact ori-

supersymmetry breaking is always that of a vanishing entaple three-spaces.

supertrace, resembling spanteous breaking, in con-

trast to the SSSB patterns. We shall discuss our main

differences with SSSB later on. At the moment, let ties by making identifications on possible fundamental

us recall that according to a theoretical proposal, we polyhedra inR3:

are living in a(4 + n)-dimensional space—time, di-

mensions of which have been compactified to form a (i) On a parallelepiped by identifying opposite sides;

orientable compact spac€'. By turning off all fields (i) On a parallelepiped by identifying opposite sides,

except gravity, Einstein equations require the vacuum one pair rotated byt ;

to be Ricci-flat and, thus, it is of the form* x X", (iif) On a parallelepiped by identifying opposite sides,

whereM* is the four-dimensional Minkowski space— one pair rotated by /2;

time. The internal manifold{” is assumed to be a (iv) On a parallelepiped by identifying opposite sides,

complete, connected and cpact Ricci-flat manifold all pairs rotated byr;

like a Calabi—Yau space (in the case of String The- (v) On a hexagonal prism by identifying opposite

ory). Nevertheless, one may assume tiétis flat sides, the top rotated byr23 with respect to the

and not just Ricci-flatin that case, the possible vacua bottom;

are orientable compact elidean space-forms. The (vi) On a hexagonal prism by identifying opposite

most well studied case is that of andimensional sides, the top rotated hby/3 with respect to the

torus7T". Other cases involve orbifolds @f* by some bottom.

discrete group, which although are singular spaces,

strings can consistently propagate onthem. These kind  In addition to the above, there exist four non-

of orbifolds can also be obtained as limiting cases of compact orientable Euclidean space-forms, four non-

smooth Calabi—Yau space. In this case, all curvature compact and non-orientable and four compact and

of the Calabi-Yau space oncentrated at the orb- non-orientable Euclidean space-forms. This makes a

ifold points. However, here we shall be interested in total of 18 distinct types folocally euclidean spaces.

smooth, compact and flatdimensional spaces. Of them, onlyR3 is simply connected while the rest
Unfortunately, existing classificatiorj46] of ori- of the spaces are connected to the 17 crystallographic

entable compact euclidean space-forms do not go be-groups. It should be noted that the non-orientable cases

yond 3D. In particular, in two dimensions, the only ori- are obtained by including “glide reflections”, i.e., are-

entable compact euckn space-form is the tora&. flection in a plane through the origin followed by a

In three dimensions we have the following possibili- translation parallel to the plane.
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In what follows we will assume a 7D theory which @ (x*, x2, x3) = a® (—x1, —x% x3+ R3)
is spontqneously compactified t(_) 4D on a compact a_nd — o2 (xl’ x2 34 2R3) ()
smooth internal space. According to the above dis-
cussion then, any flat 7D vacuum will be of the form  so thata? = 1. Thus, onB2, a scalar field may have
M* x X3, whereX?3 is any of the spaces (i)—(vi). One  periodic or antiperiodi boundary conditions, i.e.,
may easily recognize that (i) is jus while the rest of
the cases are orbifolds @ by a freely acting isome-
try. The eigenvalues of the scalar Laplace oper&t®e

To make the discussion concrete let us assume that_j,5' on B3 are as usuat?® = k2 + k3 + k5 and the
the internal space is the 3D box which is obtained af-
ter having identified its opposite sides with one pair
rotated byr, i.e., the case (ii) o3 with coordinates
(x,y,z) subject to the identifications

cD(xl, x2, x?’) = :|:<1§(—x1, —x2, 33+ Rg). (5)

corresponding eigenstates dos:) coskox2)elks’,
As x1, x? are periodic with periodsRy, R», respec-
tively, we will always have (for the first eigenstates)

e — 2mnq
(x,y,2) ~ (x + Ra, y, 2), S
(nyyZ)%(Xy)J‘i‘RZyZ)y k2=2];n2’ nl,nz:o’l’._.. (6)
(x,y,2) ~ (—x,—y,z+ R3). (1) 2

) - On the other hand, the value &% depends on the
So, we have the normal identifications under transla- poundary conditiongs). In particular, we get

tions in thex, y directions, while points in the di-

rections are identified aftersa-rotation in the perpen- k§+) — %
dicularx, y plane. We will call this spac®3. Corre- R3
sponding efforts for compactifications on squdteg ) (2n3+ Dr
orts for compa =BT =01, )
produce orbifold singularities. R3

i T?erzjiss dZ, symmetry, which acts as on the coor- oy the periodic(+) and antiperiodiq—) choice, re-
inates

spectively.
g (¢ 2% 23 ~ (—xt, —x%, X3+ Ry). 2) 2. Fermion
) Similarly, for a fermion we should have
We observe thag? = 1 since
2.(,1 2 3 1.2 .3 lp(xl’xz’xg)
g% (xh, x5, x%) ~ (x7, x%, x° + 2R3), 3) — Bei9w (—xt, %, x% 4 Ro)
and(x, y,z), (x,y. z + 2R3) are identified. ThusB® — ﬁ2621¢0311/(x1,x2,x3,x3 +2Rs), (8)

is a double cover of 3. . o o .
After having defined the geometry, we are now whereos |2826'l Pauli matrix. For periodigZr on T° we

ready to study the behaviour of fields in the box of get thatg?e®?7s =1 so thatp = +1, ¢ = =. There-

Eq. (1). It should be noted that we are mainly inter- fore, the boundary conditions for fermion fields BA

ested in theks-periodicity as the periodicity i1, k2 are

are determined as usual by the identificatiory x + w(xL, x2 x3) = ke ™0 (—xt, =2 x3 4+ R3)  (9)

Ri,y~y+ R2.
and we get

1. Scalar

A scalar field® is periodic onT2 and onB3. It P = 2rtn3 + T
. 3 - 3
should, therefore, satisfy R3 R3
_ 27tny 0w

k) = —(@1 . 10
3 R T Rs( +03) (10)

1 The spaces? may be viewed ag3/Z,. Itis not an orbifold as

75 acts freely onT'3 (there are no fixed points under the action of ~Cl€arly, the “periodic”(+) condition makes the fer-
Zo). mion massive with mass? = 72/ R2. In contrast, the
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second, “antiperiodic{—), boundary condition, due
to the projection operatail + o3), makes the upper
component of massive, while its lower component
has a zero mode.

3. Vector
For a vectorA; we will have

A; (xl, x2, x3)
= y(eieh)l.jAj (xl, X2, X3+ R3)
= yz(eieh)lj(eieh’)];Ak(xl,xz,x3—I— 2R3), (12)

whereJz = diag(o?, 0) is the generator of rotations in
thex®, x? plane and so

yz(eiejg)lj(eiela)’; = sk, (12)

It is not difficult then to verify thad = 7 and
A,-(xl, x2, x?’) = :I:Rl-jAj(—xl, —x% x3+ Rg), (13)

whereR = diag(—1, —o3). Then, the eigenvalues for
the components od; should be

(2n3+ Dm - 2mn3
A, Ag KD =20 o . (14
1, A2 3 Rs 3 R3 ( )
2 _ 2n 1
Az kP = NS = ﬂ (15)

R3 3 R3

for the periodic(+) and antiperiodia—) boundary
conditions, respectively.

4. Symmetric two-tensor
For a symmetric two-tensdr;; we will have

/’l,‘j (xl, xz, x?’)
= :I:Riz R];h,-j (—xl, —x%, 34+ Rg). (16)
As a result, itskz eigenvalues will be

hij (i, j #3), h3s:
2nn3

) _ (@ns+ D
kg =——-—--—"— ks ' = , 17
3 R 3 R (17)
hiz (i #3):
27n3 o @n3+Drm
k(+) — , k( ) — , 18
3 R 3 TRy (18)

for the periodic(+) and antiperiodia—) boundary
conditions of Eq(16), respectively.
It is clear that the components;, A2 and Az of a

differentks. This is due to the fact that the box we are
employing here is a non-homogeneous space.

Let us now see how we can use the above to break
supersymmetry. We will consider a 7D supersymmet-
ric N = 1 theory[18,19]with a vector supermultiplet
which contains a vectaof )7, 3 scalars’, i =1, 2,3,
and one symplectic-Majorana spingt, a =1, 2. We
would like to see the theory when we dimensionally
reduce on the spadg®. The effective 4D theory then
contains the following fieldsA,,, A;, ¢, 1, 19), i.e.,

a vectorA,, 6 scalarsd! = (A;,¢'), 1 =1,...,6,

and 4 spinorsp4 = (34,14), A=1,...,4. This is
simply a vector multiplet of a 4DV = 4 theory. All
these fields depend on the interndl x2, x3 coordi-
nates so we need to expand in terms of harmonics
on B3, The harmonics for the latter are

1 -
Y{n1n2n3} = W Coqklxl) COE(kzxz)elk’x , (19)

wherek; = 2n;/R;, n; =0,1,...,andV the volume
of B3. Then, the expansion of the 4D fields is
A/LZA/L(X)Y{}’L}v A; =Ai(x)Y{n},

¢ =)y, A= 24(0) Y . (20)

We have, thus, a tower of massive states with the
masses of the vectors, scalars and fermions given by

M3 =K+ k3 +K5
27n1 2 27no 2 27 n3 2
= , 21
<R1)+<R2)+<R3> )
M2=M2=M?3. (22)
It can easily be checked that 31 = 0.

For the box (ii) we are considering, depending on
the boundary conditions, we have a basis

()
3

(®)
Yoy =k
as in(19), but with k3 = kéi), respectively. For in-
stance, we may take for the bosons

Ap=AYSY. Ara= A1)y,

Az=AsYy). o =o'y (23)
The corresponding mass spectrum is then presented in
Table 1

For the 7D spinors we recall that iBQ7) D

vectorA s, as well as the components of a tensor, have SUp (2) x SUg(2) x SU(2), we have8 = (2,1; 2) +
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Table 1 Table 3
(+)2 (27n1\2 27no\2 27n3\2 1 2 (—)2 [27nq1\2 27n9\2 n3my2
Ap MG =k +I5+k3"° ( 7o)+ (72) 7+ (R52) xp ME=k+i5+kg ( 7))+ (2) + (R
2 2 (=)2 (27n1\2 27np\2 27n3\2 1 2 (—)2 [2wnq1\2 27n9\2 (2n3+1D)m\2

Al,2 M :kl+k2+k3 ( Rll) +( R22) +( R33) XR M _kl+k2+k ( Rll) +( R22) +( %?3 )

2 2 (—)2 (2mn1\2 2wno\2 (2n3+1)m\2 2 (—)2 2mni\2 2mno\2 (2n3+1)m\2

A3 M =k +k2+k3 ( Rll) +( R22) +( %?3 ) XL _kl+k2+k ( Rll) +( R22) +( %?3 )

i 2 (52 (27n1\2 | (27nno\2 | ((2nz+D)m\2 2 (—)2 (27n1\2 |, (27n9\2 , ((2n3+D)m\2
¢ =+ kS +ky ° () + (2) "+ (%) KR ME=K+K+ky " () + (F2) + (%)
Table 2

1 MZ _k2+k2+k(_)2 (271n1)2+(271nz)2+(u)2 Table 4
A MFTRTRTES R R2 R3 Ay ME iR iR AS2 (B 2 2tnpn2  (2ugtDma2
xb MZ =2 a2 a2 (2 (Znp)2 y (2nng)2 " =k +ks+kg () + (FR2) + (T )
e e a a Ao M=+ +k5? (Fd)” o+ (Fg?)” + (B2
X2 M2 =k2+k2+k(_)2 (271n1)2+(271nz)2+((2n3+1)7r )2 1,2 = 2 3 R R, R3
L o 1 2 3 Ry Ry R3 n k2+k +k( )2 (2n111)2+(27'm2)2+((2113-0-1)71)2

2 MZ =k2+k2+k(_)2 (27T"1)2+(277"2)2+((2”3+1)7T )2 3 2 3 Ry Ry R3
R F 1 2 £l R R2 R3 i 2 (=)2 (27n1\2 2nnp\2 (2nz+m\2

¢ =k +k5 + k3 (FF) + (R + ()

(1,2;2). As aresult, a 7D spindris decomposed into
two left- and two right-handed 4D spinors. We may
take We see that frorifables 1, 3hat the massless spec-

o o trumis a vector,,, two scalarsA; » and a left-handed
A= () @€Y, + xg()®0%Y,,) . a=12 4D spinor, which is not-supersymmetric. Thus, adopt-
(24) ing the expansion in Eq25), we have completely
break supersymmetry

wheree?, 6¢ are two-component spinors ang , are
4D spinors. The mass spectrum of the 4D spinor is
presented ifable 2 N=4=N=0.

Thus, fromTables 1, 2we see that we gebne .
massless vector, two massless scalars and two mass- We can also break/ = 4 to \V =1 by consider-

less fermions of opposite chiralitall corresponding ing different boundary conditions for the bosons of the

to n; = 0. On the other handpur scalars and two 7D multiplet as well. For example, let us take
spinors of opposite chirality do not have zero mades

The massless spectrum in 4D is then a vector of a Ax = A/L(X)Y Ar2= Al,Z(X)Y{ng)»
N =2 theory. As a result, compactification on this ; ; =)
particular box with the above boundary conditions A3_A3(X)Y{n} ' ¢ =¢ (O, (26)

leads to the supersymmetry breaking Then, the mass spectrum for thB dields is presented

N=4=N=2. in Table 4 .
The massless sector then for th® 4ields ex-
Note that the profile of the breaking is that of spon- panded as in Eqg25), (26)is given in Tables 3, 4
taneous supersymmetry breaking, since the supertracéand consists of two scalar; » and one left-handed
still vanishes. spinor. This is the massless representation of a chiral
A complete supersymmetry breaking can be also a7 —1 supersymmetry.

achieved by assuming the fO”OWing eXpanSion of the We may also Study the effective 4D theory after

7D spinor the DR overB, = T3/Z,. Consider a 7D supersym-

o v (=) o v (4) _ metric theory which contains a vectdry, 3 scalars
A=A ) @y + XD @7, a=12 ¢', i =1,2,3, and one symplectic-Majorana spinor
(25) A%, a =1,2, all in the adjoint representation of a

In this case the spectrum of the 4D spinors is presentedsemisimple group G. After DR o with normal
in Table 3 boundary conditions to 4D, the effective action turns
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out to be
1 1, -
Seffzfd“fo(—ZFwF“” — SHyD,
1 ooy caile] ij a
+ Sugad ¢ +id [, (0a) "]
+ik 3, (02)" 0]+ J 1o 0p1[0" . o]
KK
+ Z Enl.‘.n4>’
l’ll':].

where by XX~ we collectively denote all mas-
sive Kaluza—Klein contributions. In addition, we have
combined the 3 dginal scalarsp’ and the 3 scalars
(Ag, As, Ag) originating from the DR ofd ; in ¢, =
(@i, Az+i).

Now let us consider the&, = 73/Z, compactifi-
cation. This amounts in shifting certain modes from

(27)
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give masses to certain fields such that supersymme-
try may be broken. In &' compactification, one may
impose the condition

D (x",y+27L) =120 P (x1), (31)

where Q¢4 is the R-charge of the fieldb. This leads

to splitting of the O masses of the various fields
according to theirR-charge. Fermions and bosons,
having differentQ¢, obtain different contributions
to their masses and supersymmetry is broken. This
looks much like our boundary conditiorf§) or (8).
However, as gauge field$,, are alwaysR-singlets,
(vectors never carryR-charge, except when thg-
symmetry is gauged), it is not possible to acquire
modified boundary conditions. Vector fields, as well
as higher-rank tensors, ha¥gy, =0 and obey peri-
odic boundary conditions undeanslations in the ex-
tra dimension. This should be contrasted to our case,
where, due to the rotation in the y plane involved,

the massless to the massive sector of the 4D theory.vectors, as well as higher-rank tensors, do not neces-

With an expansion of the forri(23), (24) the 4D the-

sarily obey periodic boundary conditions, as we have

ory turns out to be as above but with an additional mass already seen. As a result, in spite of their similarities,

term

1
S = Seft + / d*x ST MoppoP. (28)

box compactification and SSSB are different. It should
also be noted that the profile of obox compactifi-
cationis that of spontaneous breaking with a vanish-
ing supertrace, a feature not shared by SSSB as the

The existence of the mass term clearly breaks susy. jatter breaks global supersymmetry explicitly where
Indeed, there are interactions missing from the 4D ef- the mass-square supertrace is not necessarily zero. We

fective theory(28)on B> = T'3/Z,. Written in N = 1
language, the superpotential is

i,j k=123,
(29)

where we have defin@; = Azy; +i¢;. Then clearly,
the interactions froma2w /9 ®2x

1 ik i
W=:—3€' D DD+ M;j;jd' DY,

IAM P (30)

are missing from the effective actidi28). Depend-
ing on the form of the mass term {28), the N/ =4
supersymmetry can either break A6 = 1,0. Thus,
the B, = T3/Z, compactification of the 7DV = 2
theory is described by an effective 4D theory with non-
supersymmetric interactions among the fields.

At this point let us compare supersymmetry break- 47 _
ing described above to the one obtained through the *

Scherk—Schwarz mechamis According to the latter,
employing the R-symmetry of the theory, one may

have also to stress that there is no way to make all com-
ponents of a vector periodic due to hon-homogeneity
of the box, which is manifest exactly in the different
ks-periodicity of theA ,; components.

Although in this Letter the emphasis has been given
to the breaking of supersymmetry, box compactifica-
tion can equally well lead to gauge symmetry break-
ing. This may be discussed independently from su-
persymmetry and, thus, we will consider, for exam-
ple, anSU(5) gauge theory in 7D. After compact-
ifying on B3, we may expand the 7D gauge fields
Al 1=1,...,24,in terms of theB3 harmonics as
we did above. We can exploit our freedom to choose
the boundary conditions and take
Al =almyy
— AL(x)Y{(,l_}) otherwise

for 7 in SU3) x SU(2) x U(1),
(32)

Then, clearly, the fields\il(x) have a massless mode,
identified with the usual 4D gauge bosons, while all
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the restX, Y bosons are massive. However, we also theory with reduced or completely broken supersym-
get the scalard!, which we should make massive by metry. Examples of boundary conditions that, for a 7D
choosingA! = Arln(x)Y{(;;})' theory, leadtoV =4 — N =2, N =1, N =0 break-
Similarly for a Higgs in the fundamental 4, A = ings were worked o_ut. It remains to be seen in fu-
1,...,5, we may take ture work whether this framework can be used for the
construction of realistic models. The spectrum profile
) of the supersymmetry breaking scheme discussed is
A A ) i analogous to the one associated with spontaneous su-
H®=H"(x)Y,," otherwise (33) persymmetry breaking, characterized by a vanishing

The above expansions at this stage look rather ad hoc.Supertrace. We should also stress once more the dif-
The following can serve as a hint of how they could ference of the present scheme to the Scherk—-Schwarz

arise. Assume that th&, symmetry acts also in the ~Supersymmetry breaking scheme in which component
gauge sector as fields acquire non-trivial boundary conditions through
their different R-symmetry charges. In this scheme
vector fields cannot be affected. In contrast, here the
compactification scheme allows for non-trivial gauge
field boundary conditions. lhough, we did not elab-
orate much on gauge symmetry breaking, it is clear
that box compactification can naturally serve as a way
to break gauge symmetries as well in ways analogous
to the ones employed in orbifold theorigd]. An in-
triguing question not touched by the present first short
presentation of box compactification is that of the ar-
bitrariness of the chosen boundary conditions. The
answer is linked to the quantum dynamics that will
ultimately discriminate between the various available
compactification solutions.

HA=HAx)YS for Ain SU(2),

ZoCU1) CSUB): g5=-5 g24=-+24, (34)

for the fundamentals) and adjoint 24) of SU(5). In
other words, we embefd; in the U (1) subgroup of
SUB) D SUR) x SU2) x U(1) and we assign pe-
riodic and antiperiodi@,-“parity” to the adjoint and
fundamental reps, respectively. Then, in the branching

5 = (2, 3)3 + (1, 3)72’
24=(1, 1o+ (3, Do+ (L 8o+ (23) 5+ (2 s,

(35)
we have to choose periodig-), or antiperiodic(—)
boundary conditions according to thél/ (1) mod 2-
charge. Thus, for a Higgs in the fundamental, the
triplet will have antiperiodic boundary conditions and,
th_us, it WI|! hgve no massless mode, while the doublet References
will be periodic and will have a massless mode. In con-
trast, for the adjoint, thé2, 3)_s and(2, 3)5 will have
no massless mode, as they have @ddl) mod 2-
charge and th&,-“parity” of the adjoint is+1.
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