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Abstract

We discuss all possible compactifications on flat three-dimensional spaces. In particular, various fields are studied on a
with opposite sides identified, after two of them are rotated byπ , and their spectra are obtained. The compactification
a general 7D supersymmetric theory in such a box is considered and the corresponding four-dimensional theory i
in relation to the boundary conditions chosen. The resulting spectrum, according to the allowed field boundary conditio
corresponds to partially or completely broken supersymmetry. We briefly discuss also the breaking of gauge symmetr
the proposed box compactification.
 2004 Elsevier B.V. All rights reserved.
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In almost all extensions beyond the Standard Mo
supersymmetry plays a central role. In particular,
perstring Theory[1], as well as related theories of e
tended objects[2], provide a framework for a quantu
theory of gravity. Nevertheless, since supersymm
is not a low-energy symmetry of Nature, and has to
broken, supersymmetry breaking should be a key
gredient of the final theory. This important issue is s
open. The tree-levelScherk–Schwarz Supersymme
Breaking(SSSB) mechanism[3–8] is one of the pro-
posals put forward, linking supersymmetry break
to compactification. The smallness of supersymm

E-mail address:alexandros.kehagias@cern.ch(A. Kehagias).
0370-2693/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physletb.2004.10.019
try breaking scale in comparison to the other sca
like the traditional unification or Planck scales, if
is to be associated with compactification, requires
presence of large extra dimensions[9,10]. Many mod-
els of this type have been proposed in the last
years[8] and, although, none is phenomenologica
waterproof, it is generally admitted that the pos
bility of extra dimensions at the TeV scale is ope
In SSSB one takes advantage of the R-symmetr
the supersymmetric theory to shift appropriately
masses of bosons and fermions lifting in this way
degeneracy and, thus, breaking supersymmetry. A
native ways of breaking supersymmetry include ga
ino condensation in the hidden sector[11] or, in brane
scenarios[12], bulk to brane and brane to brane sup
.
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symmetry breaking[13]. Supersymmetry may also b
broken by background fluxes[14,15]. In the case of
background magnetic fields, the occurring tadpole
which, will presumably be removed in the full qua
tum theory[14].

In the present Letter we elaborate on the poss
ity of breaking supersymmetry at the compactificat
process employing a novel compactification scheme
Gauge symmetry breaking as a result of compac
cation is also studied. Thus, as far as supersym
try breaking is concerned, although we work alo
the lines of SSSB, it should be stressed that th
is a fundamental difference with it, since in SSS
the boundary conditions for R-symmetry singlets, like
vectors, are always periodic, in contrast to ourbox
compactification, where they can be non-trivial eve
for R-singlets. In addition to that, the profile of o
supersymmetry breaking is always that of a vanish
supertrace, resembling spontaneous breaking, in con
trast to the SSSB patterns. We shall discuss our m
differences with SSSB later on. At the moment,
us recall that according to a theoretical proposal,
are living in a(4 + n)-dimensional space–time,n di-
mensions of which have been compactified to form
orientable compact spaceXn. By turning off all fields
except gravity, Einstein equations require the vacu
to be Ricci-flat and, thus, it is of the formM4 × Xn,
whereM4 is the four-dimensional Minkowski space
time. The internal manifoldXn is assumed to be
complete, connected and compact Ricci-flat manifold
like a Calabi–Yau space (in the case of String T
ory). Nevertheless, one may assume thatXn is flat
and not just Ricci-flat. In that case, the possible vac
are orientable compact euclidean space-forms. Th
most well studied case is that of ann-dimensional
torusT n. Other cases involve orbifolds ofT n by some
discrete group, which although are singular spa
strings can consistently propagate on them. These
of orbifolds can also be obtained as limiting cases
smooth Calabi–Yau space. In this case, all curva
of the Calabi–Yau space isconcentrated at the orb
ifold points. However, here we shall be interested
smooth, compact and flatn-dimensional spaces.

Unfortunately, existing classifications[16] of ori-
entable compact euclidean space-forms do not go
yond 3D. In particular, in two dimensions, the only o
entable compact euclidean space-form is the torusT 2.
In three dimensions we have the following possib
Fig. 1. Possible identification onR3 which produce compact ori
entable three-spaces.

ties by making identifications on possible fundamen
polyhedra inR3:

(i) On a parallelepiped by identifying opposite side
(ii) On a parallelepiped by identifying opposite side

one pair rotated byπ ;
(iii) On a parallelepiped by identifying opposite side

one pair rotated byπ/2;
(iv) On a parallelepiped by identifying opposite side

all pairs rotated byπ ;
(v) On a hexagonal prism by identifying oppos

sides, the top rotated by 2π/3 with respect to the
bottom;

(vi) On a hexagonal prism by identifying oppos
sides, the top rotated byπ/3 with respect to the
bottom.

In addition to the above, there exist four no
compact orientable Euclidean space-forms, four n
compact and non-orientable and four compact
non-orientable Euclidean space-forms. This make
total of 18 distinct types of locally euclidean spaces
Of them, onlyR

3 is simply connected while the re
of the spaces are connected to the 17 crystallogra
groups. It should be noted that the non-orientable ca
are obtained by including “glide reflections”, i.e., a r
flection in a plane through the origin followed by
translation parallel to the plane.
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In what follows we will assume a 7D theory whic
is spontaneously compactified to 4D on a compact
smooth internal space. According to the above d
cussion then, any flat 7D vacuum will be of the for
M4 × X3, whereX3 is any of the spaces (i)–(vi). On
may easily recognize that (i) is justT 3 while the rest of
the cases are orbifolds ofT 3 by a freely acting isome
try.

To make the discussion concrete let us assume
the internal space is the 3D box which is obtained
ter having identified its opposite sides with one p
rotated byπ , i.e., the case (ii) onR3 with coordinates
(x, y, z) subject to the identifications

(x, y, z) ≈ (x + R1, y, z),

(x, y, z) ≈ (x, y + R2, z),

(1)(x, y, z) ≈ (−x,−y, z + R3).

So, we have the normal identifications under tran
tions in thex, y directions, while points in thez di-
rections are identified after aπ -rotation in the perpen
dicularx, y plane. We will call this spaceB3. Corre-
sponding efforts for compactifications on squares[17]
produce orbifold singularities.

There is aZ2 symmetry, which acts as on the coo
dinates as1

(2)g: (
x1, x2, x3) ≈ (−x1,−x2, x3 + R3

)
.

We observe thatg2 = 1 since

(3)g2: (
x1, x2, x3) ≈ (

x1, x2, x3 + 2R3
)
,

and(x, y, z), (x, y, z + 2R3) are identified. Thus,B3

is a double cover ofT 3.
After having defined the geometry, we are n

ready to study the behaviour of fields in the box
Eq. (1). It should be noted that we are mainly inte
ested in thek3-periodicity as the periodicity ink1, k2
are determined as usual by the identificationx ≈ x +
R1, y ≈ y + R2.

1. Scalar
A scalar fieldΦ is periodic onT 3 and onB3. It

should, therefore, satisfy

1 The spaceB3 may be viewed asT 3/Z2. It is not an orbifold as

Z2 acts freely onT 3 (there are no fixed points under the action
Z2).
Φ
(
x1, x2, x3) = αΦ

(−x1,−x2, x3 + R3
)

(4)= α2Φ
(
x1, x2, x3 + 2R3

)
so thatα2 = 1. Thus, onB3, a scalar field may hav
periodic or antiperiodic boundary conditions, i.e.,

(5)Φ
(
x1, x2, x3) = ±Φ

(−x1,−x2, x3 + R3
)
.

The eigenvalues of the scalar Laplace operator∇2 =
−∂i∂

i on B3 are as usualk2 = k2
1 + k2

2 + k2
3 and the

corresponding eigenstates cos(k1x
1)cos(k2x

2)eik3x
3
.

As x1, x2 are periodic with periodsR1,R2, respec-
tively, we will always have (for the first eigenstates)

k1 = 2πn1

R1
,

(6)k2 = 2πn2

R2
, n1, n2 = 0,1, . . . .

On the other hand, the value ofk3 depends on the
boundary conditions(5). In particular, we get

k
(+)
3 = 2πn3

R3
,

(7)k
(−)
3 = (2n3 + 1)π

R3
, n3 = 0,1, . . . ,

for the periodic(+) and antiperiodic(−) choice, re-
spectively.

2. Fermion
Similarly, for a fermionΨ we should have

Ψ
(
x1, x2, x3)
= βeiφσ3Ψ

(−x1,−x2, x3 + R3
)

(8)= β2e2iφσ3Ψ
(
x1, x2, x3, x3 + 2R3

)
,

whereσ3 is a Pauli matrix. For periodicΨ on T 3 we
get thatβ2e2iφσ3 = 1 so thatβ = ±1, φ = π . There-
fore, the boundary conditions for fermion fields onB3

are

(9)Ψ
(
x1, x2, x3) = ±eiπσ3Ψ

(−x1,−x2, x3 + R3
)

and we get

k
(+)
3 = 2πn3

R3
+ π

R3
σ3,

(10)k
(−)
3 = 2πn3

R3
+ π

R3
(1+ σ3).

Clearly, the “periodic”(+) condition makes the fer
mion massive with massm2 = π2/R2

3. In contrast, the
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second, “antiperiodic”(−), boundary condition, du
to the projection operator(1 + σ3), makes the uppe
component ofΨ massive, while its lower compone
has a zero mode.

3. Vector
For a vectorAi we will have

Ai

(
x1, x2, x3)
= γ

(
eiθJ3

)j
i
Aj

(
x1, x2, x3 + R3

)
(11)= γ 2(eiθJ3

)j
i

(
eiθJ3

)k

j
Ak

(
x1, x2, x3 + 2R3

)
,

whereJ3 = diag(σ2,0) is the generator of rotations i
thex1, x2 plane and so

(12)γ 2(eiθJ3
)j

i

(
eiθJ3

)k

j
= δk

i .

It is not difficult then to verify thatθ = π and

(13)Ai

(
x1, x2, x3) = ±R

j

i Aj

(−x1,−x2, x3 + R3
)
,

whereR = diag(−1,−σ3). Then, the eigenvalues fo
the components ofAi should be

(14)A1,A2: k
(+)
3 = (2n3 + 1)π

R3
, k

(−)
3 = 2πn3

R3
,

(15)A3: k
(+)
3 = 2πn3

R3
, k

(−)
3 = (2n3 + 1)π

R3
,

for the periodic(+) and antiperiodic(−) boundary
conditions, respectively.

4. Symmetric two-tensor
For a symmetric two-tensorhij we will have

hij

(
x1, x2, x3)

(16)= ±R�
i R

k
j hij

(−x1,−x2, x3 + R3
)
.

As a result, itsk3 eigenvalues will be

hij (i, j �= 3), h33:
(17)k

(+)
3 = (2n3 + 1)π

R3
, k

(−)
3 = 2πn3

R3
,

hi3 (i �= 3):
(18)k

(+)
3 = 2πn3

R3
, k

(−)
3 = (2n3 + 1)π

R3
,

for the periodic(+) and antiperiodic(−) boundary
conditions of Eq.(16), respectively.

It is clear that the componentsA1,A2 andA3 of a
vectorAM , as well as the components of a tensor, h
differentk3. This is due to the fact that the box we a
employing here is a non-homogeneous space.

Let us now see how we can use the above to br
supersymmetry. We will consider a 7D supersymm
ric N = 1 theory[18,19]with a vector supermultiple
which contains a vectorAM , 3 scalarsφi, i = 1,2,3,
and one symplectic-Majorana spinorλa, a = 1,2. We
would like to see the theory when we dimensiona
reduce on the spaceB3. The effective 4D theory the
contains the following fields(Aµ,Ai,φ

i , λa
1, λa

2), i.e.,
a vectorAµ, 6 scalarsΦI = (Ai,φ

i), I = 1, . . . ,6,
and 4 spinorsΨ A = (λa

1, λa
2), A = 1, . . . ,4. This is

simply a vector multiplet of a 4DN = 4 theory. All
these fields depend on the internalx1, x2, x3 coordi-
nates so we need to expand in terms of harmo
onB3. The harmonics for the latter are

(19)Y{n1n2n3} = 1√
V

cos
(
k1x

1)cos
(
k2x

2)eikix
i

,

whereki = 2πni/Ri, ni = 0,1, . . . , andV the volume
of B3. Then, the expansion of the 4D fields is

Aµ = Aµ(x)Y{n}, Ai = Ai(x)Y{n},
(20)φ = φ(x)Y{n}, λa = λa(x)Y{n}.

We have, thus, a tower of massive states with
masses of the vectors, scalars and fermions given

M2
V = k2

1 + k2
2 + k2

3

(21)=
(

2πn1

R1

)2

+
(

2πn2

R2

)2

+
(

2πn3

R3

)2

,

(22)M2
S = M2

F = M2
V .

It can easily be checked that StrM2 = 0.
For the box (ii) we are considering, depending

the boundary conditions, we have a basis

Y
(±)
{n} ⇒ k

(±)
3

as in (19), but with k3 = k
(±)
3 , respectively. For in-

stance, we may take for the bosons

Aµ = Aµ(x)Y
(+)
{n} , A1,2 = A1,2(x)Y

(−)
{n} ,

(23)A3 = A3(x)Y
(−)
{n} , φi = φi(x)Y

(−)
{n} .

The corresponding mass spectrum is then present
Table 1.

For the 7D spinors we recall that inSO(7) ⊃
SUL(2) × SUR(2) × SU(2), we have8 = (2,1; 2) +
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Table 1

Aµ M2
V

= k2
1 + k2

2 + k
(+)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( 2πn3
R3

)2

A1,2 M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( 2πn3
R3

)2

A3 M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

φi M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

Table 2

χ1
L

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( n3π
R3

)2

χ1
R M2

F = k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( 2πn3
R3

)2

χ2
L

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

χ2
R

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

(1,2; 2). As a result, a 7D spinorλ is decomposed into
two left- and two right-handed 4D spinors. We m
take

(24)

λ = χα
L(x) ⊗ εαY

(−)
{n} + χα

R(x) ⊗ θαY
(−)
{n} , α = 1,2,

whereεa, θa are two-component spinors andχa
1,2 are

4D spinors. The mass spectrum of the 4D spino
presented inTable 2.

Thus, from Tables 1, 2we see that we getone
massless vector, two massless scalars and two m
less fermions of opposite chirality, all corresponding
to ni = 0. On the other hand,four scalars and two
spinors of opposite chirality do not have zero mod.
The massless spectrum in 4D is then a vector o
N = 2 theory. As a result, compactification on th
particular box with the above boundary conditio
leads to the supersymmetry breaking

N = 4 ⇒ N = 2.

Note that the profile of the breaking is that of spo
taneous supersymmetry breaking, since the super
still vanishes.

A complete supersymmetry breaking can be a
achieved by assuming the following expansion of
7D spinor

(25)

λ = χα
L(x) ⊗ εαY

(−)
{n} + χα

R(x) ⊗ θαY
(+)
{n} , α = 1,2.

In this case the spectrum of the 4D spinors is prese
in Table 3.
-

Table 3

χ1
L

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( n3π
R3

)2

χ1
R

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

χ2
L

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

χ2
R

M2
F

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

Table 4

Aµ M2
V

= k2
1 + k2

2 + k
(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

A1,2 M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( 2πn3
R3

)2

A3 M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

φi M2
S = k2

1 + k2
2 + k

(−)2
3

( 2πn1
R1

)2 + ( 2πn2
R2

)2 + ( (2n3+1)π
R3

)2

We see that fromTables 1, 3that the massless spe
trum is a vectorAµ, two scalarsA1,2 and a left-handed
4D spinor, which is not-supersymmetric. Thus, ado
ing the expansion in Eq.(25), we have completely
break supersymmetry

N = 4⇒ N = 0.

We can also breakN = 4 to N = 1 by consider-
ing different boundary conditions for the bosons of
7D multiplet as well. For example, let us take

Aµ = Aµ(x)Y
(+)
{n} , A1,2 = A1,2(x)Y

(−)
{n} ,

(26)A3 = A3(x)Y
(−)
{n} , φi = φi(x)Y

(−)
{n} .

Then, the mass spectrum for the 4D fields is presented
in Table 4.

The massless sector then for the 4D fields ex-
panded as in Eqs.(25), (26) is given in Tables 3, 4
and consists of two scalarsA1,2 and one left-hande
spinor. This is the massless representation of a ch
N = 1 supersymmetry.

We may also study the effective 4D theory af
the DR overB2 = T 3/Z2. Consider a 7D supersym
metric theory which contains a vectorAM , 3 scalars
φi, i = 1,2,3, and one symplectic-Majorana spin
λa, a = 1,2, all in the adjoint representation of
semisimple group G. After DR onT 3 with normal
boundary conditions to 4D, the effective action tu
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Seff =
∫

d4x Tr

(
−1

4
FµνF

µν − 1

2
λ̄iγ µDµλi

+ 1

2
∂µϕα∂µϕα + iλi

[
λj , (σα)ij ϕa

]
+ iλ̄i

[
λ̄j ,

(
σ ∗

α

)ij
ϕa

] + 1

4
[ϕα,ϕβ ][ϕα,ϕβ

]
(27)+

∑
ni=1

LKK
n1...n4

)
,

where by LKK
n1...n4

we collectively denote all mas
sive Kaluza–Klein contributions. In addition, we ha
combined the 3 original scalarsφi and the 3 scalar
(A4,A5,A6) originating from the DR ofAM in ϕα =
(φi ,A3+i).

Now let us consider theB2 = T 3/Z2 compactifi-
cation. This amounts in shifting certain modes fro
the massless to the massive sector of the 4D the
With an expansion of the form(23), (24), the 4D the-
ory turns out to be as above but with an additional m
term

(28)S
(1)
eff = Seff +

∫
d4x

1

2
TrMαβϕaϕβ.

The existence of the mass term clearly breaks s
Indeed, there are interactions missing from the 4D
fective theory(28) on B2 = T 3/Z2. Written inN = 1
language, the superpotential is

(29)

W = 1

3
εijkΦiΦjΦk + MijΦ

iΦj , i, j, k = 1,2,3,

where we have defineΦi = A3+i + iφi . Then clearly,
the interactions fromλ∂2W/∂Φ2λ

(30)λλMΦ

are missing from the effective action(28). Depend-
ing on the form of the mass term in(28), theN = 4
supersymmetry can either break toN = 1,0. Thus,
the B2 = T 3/Z2 compactification of the 7DN = 2
theory is described by an effective 4D theory with no
supersymmetric interactions among the fields.

At this point let us compare supersymmetry bre
ing described above to the one obtained through
Scherk–Schwarz mechanism. According to the latter
employing theR-symmetry of the theory, one ma
give masses to certain fields such that supersym
try may be broken. In aS1 compactification, one ma
impose the condition

(31)Φ(xµ,y + 2πL) = e2πiQΦΦ
(
xµ

)
,

whereQΦ is theR-charge of the fieldΦ. This leads
to splitting of the 4D masses of the various field
according to theirR-charge. Fermions and boson
having differentQΦ , obtain different contribution
to their masses and supersymmetry is broken. T
looks much like our boundary conditions(5) or (8).
However, as gauge fieldsAM are alwaysR-singlets,
(vectors never carryR-charge, except when theR-
symmetry is gauged), it is not possible to acqu
modified boundary conditions. Vector fields, as w
as higher-rank tensors, haveQΦ = 0 and obey peri-
odic boundary conditions under translations in the ex
tra dimension. This should be contrasted to our c
where, due to the rotation in thex, y plane involved,
vectors, as well as higher-rank tensors, do not ne
sarily obey periodic boundary conditions, as we h
already seen. As a result, in spite of their similariti
box compactification and SSSB are different. It sho
also be noted that the profile of ourbox compactifi-
cation is that of spontaneous breaking with a vani
ing supertrace, a feature not shared by SSSB as
latter breaks global supersymmetry explicitly whe
the mass-square supertrace is not necessarily zero
have also to stress that there is no way to make all c
ponents of a vector periodic due to non-homogen
of the box, which is manifest exactly in the differe
k3-periodicity of theAM components.

Although in this Letter the emphasis has been gi
to the breaking of supersymmetry, box compactifi
tion can equally well lead to gauge symmetry bre
ing. This may be discussed independently from
persymmetry and, thus, we will consider, for exa
ple, an SU(5) gauge theory in 7D. After compac
ifying on B3, we may expand the 7D gauge fiel
AI

M, I = 1, . . . ,24, in terms of theB3 harmonics as
we did above. We can exploit our freedom to cho
the boundary conditions and take

AI
µ = AI

µ(x)Y
(+)
{n} for I in SU(3) × SU(2) × U(1),

(32)AI
µ = AI

µ(x)Y
(−)
{n} otherwise.

Then, clearly, the fieldsAi
µ(x) have a massless mod

identified with the usual 4D gauge bosons, while
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)
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cl.
the restX,Y bosons are massive. However, we a
get the scalarsAI

m which we should make massive b

choosingAI
m = AI

m(x)Y
(−)
{n} .

Similarly for a Higgs in the fundamentalHA, A =
1, . . . ,5, we may take

HA = HA(x)Y
(+)
{n} for A in SU(2),

(33)HA = HA(x)Y
(−)
{n} otherwise.

The above expansions at this stage look rather ad
The following can serve as a hint of how they cou
arise. Assume that theZ2 symmetry acts also in th
gauge sector as

(34)Z2 ⊂ U(1) ⊂ SU(5): g5 = −5, g24 = +24,

for the fundamental (5) and adjoint (24) of SU(5). In
other words, we embedZ2 in the U(1) subgroup of
SU(5) ⊃ SU(3) × SU(2) × U(1) and we assign pe
riodic and antiperiodicZ2-“parity” to the adjoint and
fundamental reps, respectively. Then, in the branch

5 = (2,3)3 + (1,3)−2,

(35)

24 = (1,1)0 + (3,1)0 + (1,8)0 + (2,3)−5 + (2, 3̄)5,

we have to choose periodic(+), or antiperiodic(−)

boundary conditions according to their(U(1) mod 2)-
charge. Thus, for a Higgs in the fundamental,
triplet will have antiperiodic boundary conditions an
thus, it will have no massless mode, while the doub
will be periodic and will have a massless mode. In c
trast, for the adjoint, the(2,3)−5 and(2, 3̄)5 will have
no massless mode, as they have odd(U(1) mod 2)-
charge and theZ2-“parity” of the adjoint is+1.

The recent activity on theories and models charac
terized with large extra dimensions provides a fram
work that can accommodate a connection betw
the phenomenologically required small supersymme
try breaking and compactification. In the present L
ter we analyzed the basic features of a novel co
pactification scheme on a flat three-dimensional to
where opposite sides are identified after two of th
have undergone a rotation byπ . Although the scheme
superficially resembles orbifold compactification it
not an orbifold compactification, since it does not
volve any fixed points. Starting with a supersymme
theory, the chosen boundary conditions for com
nent fields can be such that lead to a compacti
.

theory with reduced or completely broken supersy
metry. Examples of boundary conditions that, for a
theory, lead toN = 4 → N = 2, N = 1, N = 0 break-
ings were worked out. It remains to be seen in
ture work whether this framework can be used for
construction of realistic models. The spectrum pro
of the supersymmetry breaking scheme discusse
analogous to the one associated with spontaneou
persymmetry breaking, characterized by a vanish
supertrace. We should also stress once more the
ference of the present scheme to the Scherk–Sch
supersymmetry breaking scheme in which compon
fields acquire non-trivial boundary conditions throu
their differentR-symmetry charges. In this schem
vector fields cannot be affected. In contrast, here
compactification scheme allows for non-trivial gau
field boundary conditions. Although, we did not elab
orate much on gauge symmetry breaking, it is cl
that box compactification can naturally serve as a w
to break gauge symmetries as well in ways analog
to the ones employed in orbifold theories[20]. An in-
triguing question not touched by the present first sh
presentation of box compactification is that of the
bitrariness of the chosen boundary conditions. T
answer is linked to the quantum dynamics that w
ultimately discriminate between the various availa
compactification solutions.
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