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Abstract

We consider the problem of a scalar field, non-minimally coupled to gravity through a
−ξφ2R term, in the presence of a Brane. Exact solutions, for a wide range of values of
the coupling parameter ξ, for both φ-dependent and φ-independent Brane tension, are
derived and their behaviour is studied. In the case of a Randall-Sundrum geometry, a
class of the resulting scalar field solutions exhibits a folded-kink profile. We go beyond
the Randall-Sundrum geometry studying general warp factor solutions in the presence of
a kink scalar. Analytic and numerical results are provided for the case of a Brane or for
smooth geometries, where the scalar field acts as a thick Brane. It is shown that finite
geometries with warp factors that asymptotically decrease exponentially are realizable
for a wide range of parameter values. We also study graviton localization in our setup
and find that the localizing potential for gravitons with the characteristic volcano-like
profile develops a local maximum located at the origin for high values of the coupling ξ.
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1 Introduction

The idea of realizing our Universe as a defect in a higher dimensional spacetime, although
not new[1], has received a lot of attention in recent years in the framework of String
Theory where D-Branes [2], i.e. membranes on which the fundamental string fields satisfy
Dirichlet boundary conditions, play a significant role. In the framework of String/M-
theory[3] or the AdS/CFT correspondence[4], Brane models[5][6][7][8] have revealed new
possibilities for the resolution of the hierarchy problem of particle physics as well as
for the relation of gravity to the rest of fundamental interactions. In D-Brane models,
Standard Model fields are trapped on the Brane, while gravitons propagate in the full
higher dimensional space (Bulk). In an interesting case of a Brane Model with an infinite
extra dimension, gravitons are localized on the Brane due to the curvature of the extra
dimension[9]. A solution to the Einsten’s equations of motion with a flat metric on the
Brane and AdS5 geometry in the Bulk exists, provided the positive Brane-tension is
finely tuned versus a negative Bulk cosmological constant.

Although the Standard Model fields are assumed to be localized on the Brane, grav-
ity is not necessarily the only field propagating in the Bulk. A number of Brane models
with Bulk scalar fields have been constructed[10][11], either from a theoretical or phe-
nomenological viewpoint[12]. Actually, the Brane itself could be a defect substantiated
by a Bulk scalar field configuration (a “kink”)[13]. The presence of a Bulk scalar field
opens the possibility of a direct coupling of this field to the curvature scalar. A specific
form of this coupling corresponds to the gravitational term appearing in the so-called
tensor-scalar theory of gravity[14]. A Bulk scalar field non-minimally coupled through a
coupling of the form φ2R has also been considered in the Randall-Sundrum framework
and numerical solutions have been discussed[15].

In the present article we consider a 3-Brane embedded in 5D space endowed with a
Bulk scalar field φ, non-minimally coupled to gravity through a −ξ φ2R term. We inves-
tigate analytically the existence of solutions to the coupled system of equations of motion
for the metric and the scalar field in the framework of a metric ansatz Diag

(

eA(x5)ηµν , 1
)

.
In the case of the Randall-Sundrum form of the metric we derive analytically a complete
set of exact solutions for a range of values of the non-minimal coupling strength ξ, cor-
responding to specific choices of the scalar potential. Scalar fields, with or without non-
minimal coupling, are often introduced against a given Randall-Sundrum background
under the assumption that their effect on the background geometry will not be im-
portant. We do find exact non-singular scalar field solutions compatible with an exact
Randall-Sundrum background, taking into acount the full back-reaction of the field.

We show the existence of a class of solutions for a general warp function with an
asymptotic Randall-Sundrum AdS5 behaviour. In all these considerations we allow for
a field-dependent Brane-tension. Furthermore, we discuss the existence of smooth AdS5

solutions for which the role of the Brane is played by a “kink” configuration of the Bulk
scalar field itself. Both numerical and an approximate analytic treatment of the problem
is provided. In particular, we calculate the warp factors for smooth geometries in the
presence of the kink for different boundary values at the origin and obtain various solu-
tions. Although we concentrate on Z2 symmetric solutions, smooth asymmetric solutions
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are also possible. Through an analytical investigation we verify that for a wide range of
values of the parameters, we can get warp factors that decrease exponentially and thus
provide us with finite geometries. We also find analytical solutions for certain special
values of the parameters and different ranges of ξ. In the final section of this paper we
study graviton localization in our setup and check the form of the localizing potential
for gravitons with the characteristic volcano-like profile. We find that for ξ higher than
some specific value the potential develops a local maximum at the origin, which gradually
increases as we move towards higher values of the coupling parameter.

2 The Framework

Consider a general 5D theory of a real scalar field coupled to gravity. Allowing only for
terms linear in the Ricci scalar, we may write the general Action as

S =

∫

d5x
√
−G

{

f(φ)R − 1

2
(∇φ)2 − V (φ) −Lm

}

, (1)

where f(φ) is, for the moment, a general smooth positive-definite function of the scalar
field φ. GMN is the five-dimensional metric, not to be confused with the Einstein tensor.
In the case of a constant f , we have the Einstein Action. The last term corresponds to
φ-independent matter. Note that, the above Action can always be transformed through a
conformal transformation GMN → G̃MNf(φ)/2M3 into an Action where the Ricci scalar
enters in the Einstein fashion as (2M3)R. Nevertheless, a φ-dependence will arise in the
matter term giving a theory different than the one we would get in the absence of f(φ).

The equations of motion resulting from (1) are

f(φ)

(

RMN − 1

2
GMNR

)

−∇M∇Nf(φ) +GMN∇2f(φ) =
1

2
T

(φ)
MN +

1

2
T

(m)
MN , (2)

∇2φ− dV

dφ
+R

df

dφ
= 0 , (3)

with

T
(φ)
MN = ∇Mφ∇Nφ−GMN

(

1

2
(∇φ)2 + V (φ)

)

(4)

the energy-momentum tensor of the scalar field φ and T
(m)
MN the energy-momentum tensor

of (other) matter.

At this point we shall restrict the metric GMN introducing the warped ansatz

GMN =





eA(y)ηµν 0

0 1



 , (5)

where xM = (xµ, x5) ≡ (xµ, y) and ηµν is the 4D Minkowski metric with signature
(−1, 1, 1, 1). We can always choose A(0) = 0.

2



The presence of a Brane introduces an extra term

−
∫

d5x
√
−Gσ(φ) δ(y) = −

∫

d4xσ(φ) δ(y) , (6)

where the Brane tension σ(φ) is, in general, φ-dependent. Introducing this term in the
Action, modifies TMN in Enstein’s equations as

δTMN = −Gµνδ
µ
Mδ

ν
N σ(φ) δ(y) = −ηµνδ

µ
Mδ

ν
N σ(φ) δ(y) .

In what follows we shall ignore the presence of (extra) matter beyond the Bulk scalar
field. Substituting this metric ansatz into the equations of motion and assuming that the
scalar field is just a function of the fifth coordinate, i.e. φ = φ(y), we obtain

3

2
f(Ȧ)2 + 2Ȧḟ =

1

4
(φ̇)2 − 1

2
V , (7)

3

2
fÄ+

3

2
f(Ȧ)2 +

3

2
ḟ Ȧ+ f̈ = −1

4
(φ̇)2 − 1

2
V − 1

2
σ(φ) δ(y) , (8)

φ̈+ 2Ȧφ̇− dV

dφ
+
df

dφ

(

−4Ä− 5(Ȧ)2
)

− dσ

dφ
δ(y) = 0 . (9)

The dot signifies differentiation with respect to the fifth coordinate y.

The Junction Relations at the point y = 0 where the Brane is located are

∆φ̇(0) ≡ φ̇(+0) − φ̇(−0) =
fσ′ − 4

3
σf ′

f + 8
3
(f ′)2

, (10)

∆Ȧ(0) ≡ Ȧ(+0) − Ȧ(−0) = −
( 1

3
σ + 2

3
f ′σ′

f + 8
3
(f ′)2

)

. (11)

The prime signifies differentiation with respect to φ. By σ and σ′ we indicate the values
at φ(0).

Among the above three equations of motion in the Bulk only two are independent.
They can be written as

V (φ) = −3fȦ2 − 3

2
fÄ− 7

2
Ȧḟ − f̈ , (12)

1

2
φ̇2 = −3

2
fÄ+

1

2
Ȧḟ − f̈ . (13)

Let us now restrict the coupling function f(φ) to be a function quadratic1 in φ.
Introducing a dimensionless parameter ξ and normalizing it appropriately, we may write

f(φ) = 2M3 − ξ

2
φ2 . (14)

1Even for a general coupling function, we may consider an expansion in even powers of the field
f(φ) ≈ f(0) + 1

2f ′(0)φ2 + · · · and retain the lowest non-trivial term. Such an expansion would be valid

for small field values (φ << (|2f(0)/f ′(0)|)1/2).
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The scale M is related to the 5D Newton’s constant G̃ as 2M3 = (16πG̃)−1. With this
choice, we have

ḟ = −ξφ̇φ , f̈ = −ξφ̇2 − ξφφ̈

and the equations of motion in the Bulk become

V (φ) = −3

2

(

2M3 − ξ

2
φ2

)

(

2Ȧ2 + Ä
)

+
7ξ

2
Ȧφ̇φ+ ξφ̈φ+ ξφ̇2 , (15)

1

2
φ̇2 = −3

2

(

2M3 − ξ

2
φ2

)

Ä− ξ

2
Ȧφ̇φ+ ξφ̈φ+ ξφ̇2 . (16)

The Junction Relations take the form

∆φ̇(0) =

(

2M3 − ξ
2
φ2(0)

)

σ′ + 4ξ
3
σφ(0)

2M3 − ξ
2

(

1 − 16
3
ξ
)

φ2(0)
, (17)

∆Ȧ(0) = −
(

1
3
σ − 2ξ

3
φ(0)σ′

2M3 − ξ
2

(

1 − 16
3
ξ
)

φ2(0)

)

. (18)

Again, σ and σ′ are the corresponding values at φ = φ(0). Note the simplification of the
denominator at the D = 5 conformal value2 ξc = 3/16.

3 Randall-Sundrum Metric

In this section we shall make the definite choice of the warp function A(y) to be the
standard Randall-Sundrum warp function A(y) = −κ|y| and impose Z2 symmetry on
the scalar field (φ(−y) = φ(y), φ̇(+0) = −φ̇(−0)). Substituting, we obtain the equation
for φ(y) in the y > 0 Bulk

1

2
φ̇2 = κ

ξ

2
φ̇φ+ ξφ̈φ+ ξφ̇2 . (19)

The values on the Brane will have to obbey (1− 2ξ)φ̇2(0) = ξφ(0)
(

κφ̇(0) + 2φ̈(0)
)

φ(0).

Thus, the boundary value φ(0) = 0 is possible only with ξ = 1/2. We proceed distin-
guishing the two cases (φ(0) = 0 and φ(0) 6= 0).

3.1 Special case with φ(0) = 0

In this case, possible only for ξ = 1/2, we have the solution

φ(y) =
2φ̇(+0)

κ

(

1 − e−κ|y|/2
)

. (20)

The Junction Relations give

σ = 12κM3 , σ′ = 2φ̇(+0) . (21)

2The conformal value in D dimensions is ξ
(D)
c = (D−2)

4(D−1) . See ref.[16].
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Note that this solution is possible only with field-dependent Brane-tension. Note also
that the first is the standard Randall-Sundrum relation. This special solution has the
shape of a folded kink is plotted in Figure 1. Beyond a small region near the Brane it
reaches a constant value φ(±∞) = 2κ−1φ̇(+0) (Figure 1).
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Figure 1: Solutions for a field-independent Brane-tension and different values
of ξ.

The required positivity of the coupling function

f(φ) = 2M3 − ξ

2
φ2(y) = 2M3 − 2

(

φ̇(0)/κ
)2
(

1 − e−κ|y|/2
)2
> 0 (22)

imposes the boundary value constraint

(φ̇(0))2 < κ2M3 =⇒ (σ′)2 <
1

3
κσ . (23)

The scalar potential corresponding to this solution can be obtained to be

V (φ) = −2κσ − 1

8
σ′2 +

1

4
(κφ+ σ′)2 . (24)

In the expression above, we have made use of the Junction Relations. If we were to
start with a general quadratic potential V (φ) = Λ + C1φ + C2φ

2, the solution (20) and
A(y) = −κ|y| is possible for Λ = −2κσ + σ′2/8, C1 = κσ′/2 and C2 = κ2/4.

3.2 General case

In the general case φ(0) 6= 0, the equation of motion can be written as

1

2
(1 − 2ξ)

φ̇

φ
− κ

ξ

2
− ξ

φ̈

φ̇
= 0 (25)

and leads to the solution

φ(y) = φ(0)
[

1 + α(4 − ξ−1)
(

1 − e−κ|y|/2
) ]

2ξ
4ξ−1 , (26)
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where

α ≡ φ̇(+0)

κφ(0)
. (27)

The Junction Relations take the form

2καφ(0) =

(

2M3 − ξ
2
φ2(0)

)

σ′ + 4ξ
3
σφ(0)

2M3 − ξ
2

(

1 − 16
3
ξ
)

φ2(0)
, 2κ =

1
3
σ − 2ξ

3
φ(0)σ′

2M3 − ξ
2

(

1 − 16
3
ξ
)

φ2(0)
. (28)

These two constraints can be rewritten as

σ′ = 2κφ(0)(α− 4ξ) , σ = 6κ

(

2M3 − ξ

2
φ2(0)

)

+ 4ξκαφ2(0) . (29)

In order to study whether the positivity of the coupling function and the requirement of
a positive tension Brane (σ > 0) can be simultaneously satisfied, we consider the four
possible sign choices of the non-minimal coupling strength parameter ξ and the boundary
values parameter α.

They are satisfied3

1) If ξ > 0, α > 0, always.

2) If ξ < 0, α < 0, always.

3) If ξ < 0, α > 0, only if

0 < α <
3

4
+

3M3

|ξ|φ2(0)
. (30)

4) If ξ > 0, α < 0, only if

α > −3

4
+

3M3

ξφ2(0)
. (31)

3.2.1 Field-independent Brane-tension (σ′ = 0)

To simplify our analysis we may consider separately the case of field-idependent Brane
tension (σ′ = 0). In this case the Junction Relations simplify to

6κ =
σ

[

2M3 − ξ
2

(

1 − 16
3
ξ
)

φ2(0)
] (32)

and
α = 4ξ . (33)

Notice that the positivity of the Brane-tension is always satisfied, since 2M3−ξφ2(0)/2+
8ξ2φ2(0)/3 is positive if the coupling function is positive (2M3 − ξφ2/2 > 0).

The relation α = 4ξ simplifies the solution (26) to

φ(y) = φ(0)
[

1 + 4(4ξ − 1)
(

1 − e−κ|y|/2
) ]

2ξ
4ξ−1 . (34)

3We choose φ(0) > 0.
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For ξ > ξc = 3/16, the quantity in brackets 16(ξ−ξc)−16(ξ−ξc−1/4)e−κ|y|/2 is positive.

Note that for the special value ξ = 1/2, if φ(y) is the solution, so is φ(y) + const..
Also, in the special case ξ = 1/4, the solution takes the form

φ(y) = φ(0) e2(1−e−κ|y|/2) . (35)

This is shown in Figure 1.

The requirement of the positivity of the coupling function, in the allowed range

ξc < ξ corresponds to the inequality 2M3 ≥ ξ
2
φ2(0) [1 + 4(4ξ − 1)]

4ξ
4ξ−1 . For the special

value ξ = 1/4, this corresponds to 2M3 ≥ e4

8
φ2(0).

For the conformal value ξc = 3/16, the solution reduces to an increasing exponential

φc(y) = φ(0)e
3

4
κ|y| . (36)

For values of the coupling parameter in the range 0 < ξ < ξc the quantity in
brackets vanishes at y0 = ± 2

κ
ln [1 + (ξc − ξ)−1], while the exponent is negative, i.e.

2ξ
4ξ−1

= − 2ξ

4(ξc−ξ)+ 1

4

< 0. Thus, in this range the solution is singular.

For ξ negative, the solution

φ(y) = φ(0)
[

4(1 + 4|ξ|)e−κ|y|/2 − (3 + 16|ξ|)
]

2|ξ|
4|ξ|+1 (37)

is characterized by an exponent between 0 and 1, while the expression in brackets vanishes
at y0 = ± 2

κ
ln [1 + (3 + 16|ξ|)−1]. Note that φ̇(y0) = −∞. As we shall promptly see, these

“solutions” are not acceptable since the scalar potential, possesing negative powers of
the scalar field, is singular.

The scalar potential corresponding to the solutions found can be immediately ob-
tained from equation (15). In order to do that it is usefull to obtain the derivatives of
the solution. They are

φ̇(y) = φ(y)

(

ξκ

4ξ − 1

)

[

(1 + 4(4ξ − 1))

(

φ(y)

φ(0)

)
1−4ξ
2ξ

− 1

]

(38)

and

φ̈(y) = −φ̇(y)

(

ξκ

4ξ − 1

)

[

(2ξ − 1)

2ξ
(1 + 4(4ξ − 1))

(

φ(y)

φ(0)

)
1−4ξ
2ξ

+ 1

]

. (39)

Substituting the above into (15) we obtain

V (φ) = −6κ2M3 + φ2

(

C1 + C2

(

φ

φ(0)

)
1−4ξ
2ξ

+ C3

(

φ

φ(0)

)
1−4ξ

ξ

)

, (40)

where

C1 =
ξκ2

2

(

3 + 7
ξ

4ξ − 1
+ 4

(

ξ

4ξ − 1

)2
)

, (41)
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C2 = −4ξκ2 (1 + 4(4ξ − 1))

(

ξ

4ξ − 1

)

, C3 =
C2

2

32ξ2κ2
. (42)

All powers are positive in the range 0 < ξ < 1
2
. In the special case ξ = 1/4, the scalar

potential includes logarithmic terms. It is

V (φ) = −6κ2M3 + ξκ2 φ2

[

−1

2
+

3

4
ln(φ/φ(0)) +

1

8
(ln(φ/φ(0)) )2

]

. (43)

For the special value ξ = 1/2, the scalar potential has the quadratic form

V (φ) = −6κ2M3 +
5

8
κ2
(

3φ2 − 8φφ(0) + 25φ2(0)
)

. (44)

For the limiting conformal value ξc = 3/16, all the above coefficients vanish and we

obtain a constant potential V = −6κ2M3. For negative values the appearing powers φ
1

2ξ

and φ
1

ξ
−2 are negative and, since the solution φ(y) vanishes at a finite point, the potential

is singular.

3.2.2 General case with field-dependent Brane-tension (σ′ 6= 0)

In order to investigate the behaviour of the scalar field solution (26), we first consider
the case α > 0. In this case we have a solution increasing near the origin, since κα =
φ̇(+0)/φ(0) > 0. The quantity in brackets is positive, provided α(4 − ξ−1) > −(1 −
e−κ|y|/2)−1. The lower limit of the right hand side is −1, which corresponds to the range
ξ > 1

4+α−1 . As examples, consider the cases ξ = α = 1 and ξ = α = 1/8. The first one
corresponds to a positive exponent 2/3, while the second corresponds to the exponent
−1/2. They are both shown in Figure 2.

-10 -5 5 10
y

1.5

2

2.5

3
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Ξ=Α=1�8

Figure 2: Solution profiles for a field-dependent Brane-tension.

For values of ξ below this bound there is a point for which the expression in brackets
vanishes and, since, the exponent is negative, there is a singularity. This point is y0 =
− 2

κ
ln [1 − ξ/α(1− 4ξ)]. For the special value ξ = α

4α+1
the singularity is pushed to

infinity and we obtain a purely exponential form for the solution, namely

φ(y) = φ(0) eκα|y| . (45)
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Before we move to consider negative values, let us mention again the special value
ξ = 1/4 which corresponds to

φ(y) = φ(0) e2α(1−e−κ|y|/2) . (46)

As we have remarked earlier, for ξ > 0 and α > 0, the positivity of the Brane-
tension (σ > 0) is always true. However, the requirement of a positive coupling
function introduces a constraint on the parameters. It is sufficient to have 2M3 >
ξ
2
φ2(0) [1 + α(4 − ξ−1)]

4ξ
4ξ−1 . For the special value ξ = 1/4, this constraint has the form

2M3 > e4α

8
φ2(0).

For negative values ξ < 0 (and still α > 0) the solution takes the form

φ(y) = φ(0)
[

1 + α(4 + |ξ|−1)(1 − e−κ|y|/2)
]

2|ξ|
4|ξ|+1 . (47)

Note that although the scalar potential has negative powers (φ−1/2|ξ| and φ−2−1/|ξ|),
there is no singularity, since the scalar field does not vanish anywhere. Note also that for
ξ < 0 and α > 0 the positivity of the Brane-tension introduces a constraint α < 3

4
+ 3M3

|ξ|φ2(0)
.

Let’s move now to consider the case α < 0. Writing the solution as

φ(y) = φ(0)
[

1 − |α|(4 − ξ−1)(1 − e−κ|y|/2)
]

2ξ
4ξ−1 , (48)

we see that for ξ > 1/4, the exponent is positive. For |α| < 1
4

the quantity in brackets
stays positive. However, for |α| > 1

4
it is necessary to limit the range of ξ to ξ < 1

4− 1

|α|

.

For the critical value ξ = |α|
4|α|−1

, the solution becomes a decreasing exponential, namely

φ(y) = φ(0) e−κ|α||y| (49)

As examples of the solution in the above range, let’s consider α = −1/8, ξ = 1 and
α = −1/2, ξ = 1/3, shown in Figure 3
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Figure 3: Field-dependent Brane-tension solutions with negative α.

For |α| > 1/4 and ξ outside of the above range, i.e. ξ > 1
4− 1

|α|

, we obtain solutions

that vanish at a finite distance from the Brane, namely |y0| = − 2
κ

ln [1 − ξ/|α|(4ξ − 1)].
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This, again, corresponds to a singular scalar potential due to the negative power φ1/ξ−2

that appears in it.

For values below 1/4 but positive, the solution takes the form

φ(y) = φ(0)
[

1 + |α|(ξ−1 − 4)(1 − e−κ|y|/2)
]− 2ξ

1−4ξ (50)

and gives a smooth decreasing profile, just as seen above.

Before we move to consider negative values of ξ, let’s consider the special case ξ =
1/4. In this case, we have

φ(y) = φ(0) e−2|α|(1−e−κ|y|/2) (51)

shown for α = −1 in Figure 4
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Figure 4: Profile of the solution for the special value ξ = 1

4
.

The positivity of the Brane-tension, for ξ > 0 and α < 0, as was found earlier,
introduces the constraint

−α > −3

4
+

3M3

ξφ2(0)
. (52)

On the other hand, the positivity of the coupling function, since φ(y) is a decreasing
function, is covered by 2M3 > ξ

2
φ2(0).

For negative values ξ < 0, the solution can be written as

φ(y) = φ(0) =
[

1 − |α|(|ξ|−1 + 4)(1 − e−κ|y|/2)
]

2|ξ|
4|ξ|+1 . (53)

It is easy to see that for |α| > 1/4, the scalar field vanishes at a finite distance from
the Brane, namely |y0| = − 2

κ
ln [1 − |ξ|/|α|(4|ξ|+ 1)]. This, again, amounts to a singular

scalar potential due to the negative powers φ−1/|ξ| and φ−(1/|ξ|+2).

The scalar potential has exactly the same form as in the σ′ = 0 case (α = 4ξ), the
only difference being a slight change in the coefficients C2 and C3 which become

C2 = −4ξκ2

(

1 +
α

ξ
(4ξ − 1)

)(

ξ

4ξ − 1

)

, C3 =
C2

2

32ξ2κ2
. (54)
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4 Beyond Randall-Sundrum

Let us consider again our original set of the two independent equations (12), (13) for
the specific choice of coupling function f(φ) = 2M3 − ξφ2/2. If we do not impose any
restriction on the scalar potential function V (φ), we can consider the first equation as an
equation that determines the scalar potential in terms of the functions φ(y) and A(y).
Concentrating on the second equation, we can view it as an equation for the warp factor,
giving a different A(y) for every different choice of φ(y) configuration. Motivated by the
form of the solutions found in the Randall-Sundrum case, we may start by introducing
a scalar field configuration in the form of a folded kink with Z2 symmetry4

φ(y) = φ0 tanh(a|y|) , (55)

where φ0 ≡ a−1φ̇(+0). For the positivity of the coupling function it would be sufficient
to require φ̇2(0) < 4M3a2/ξ.

Substituting (55) into the Junction Relations, we obtain, since φ(0) = 0,

Ȧ(+0) = − σ

12M3
, φ̇(+0) =

σ′

2
. (56)

Note that the positivity of the Brane-tension requires Ȧ(+0) < 0.

In the y > 0 bulk, we have φ̇ = aφ0( 1−φ2/φ2
0), φ̈ = −2a2φ( 1−φ2/φ2

0). Substituting
these into the equation of motion, we can write it in the form

3

2
φ0

(

2M3 − ξ

2
φ2

)

X ′(φ) +
ξ

2
φ0φX(φ) + 2aξφ2 + aφ2

0

(

1

2
− ξ

)(

1 − φ2

φ2
0

)

= 0 , (57)

where X ≡ Ȧ(y) and Ä = Ẋ = φ̇X ′(φ). This differential equation can be integrated to
give

X(φ) = C0

(

1 − ξφ2

4M3

)1/3

+φ

{

C1

(

1 − ξφ2

4M3

)1/3

2F1(1/2, 1/3, 3/2, ξφ
2/4M3) + C2

}

,

(58)
where C1 and C2 are given by

C1 = − a

φ0

[

ξ−1 − 6 +
φ2

0

12M3
(2ξ − 1)

]

, C2 =
a

φ0

[

ξ−1 − 6 +
φ2

0

4M3
(2ξ − 1)

]

(59)

and the integration constant C0 = Ȧ(+0) = −σ/12M3 should be negative in order to
have a positive Brane-tension.

The metric warp factor will be given by eA(y) = exp
[ ∫

dyX(φ)
]

. Near the Brane,
i.e. for y → 0 or φ→ 0, we have

eA(y) ≈ exp
[

− σ

12M3
y + O(y2)

]

, (60)

4Ȧ(+0) = −Ȧ(−0), φ̇(+0) = −φ̇(−0).

11



which is a pure Randall-Sundrum behaviour.

In the asymptotic region ( y → ∞ =⇒ φ ∼ φ0 = a−1φ̇(0) ), we have

eA(y) = exp

[

(aφ0)
−1

∫

dφ

(1 − φ2/φ2
0)
X(φ)

]

≈

exp

[

1

2aφ0

∫

dφ

(1 − φ/φ0)
(X(φ0) + (φ− φ0)X

′(φ0) + · · · )
]

≈ e−κ y g(y) , (61)

with κ ≡ −X(φ0) and

g(y) ≡ 2−
1

2a
X(φ0) exp

[

−φ0

2a
X ′(φ0) +

1

2a
(X(φ0) + 2φ0X

′(φ0) ) e−2ay + · · ·
]

. (62)

Thus, in the asymptotic region we have a behaviour exponentially close to a Randall-
Sundrum behaviour, provided the parameter κ is positive. This parameter is

κ =
σ

2M3

(

1 − ξφ2
0

4M3

)1/3

− a f(ξ, φ2
0/M

3) , (63)

where we have introduced a function f(ξ, x) defined by

f(ξ, x) ≡
(

6 − ξ−1 − x2

12
(2ξ − 1)

)

(

1 − x2/4
)1/3

2F1(1/2, 1/3, 3/2, ξx2/4)

+ ξ−1 − 6 +
x2

4
(2ξ − 1) . (64)

The coupling function is positive if ξφ2
0 < 4M3. The positivity of κ can always be satisfied

with a large enough Brane-tension parameter σ. Nevertheless, we can be more concrete
by making a choice of φ̇(+0). We can take φ2

0 = M3. Then, the positivity of the coupling
function restricts the values of ξ to ξ < 4. The function f(ξ, 1) is negative for negative
for all allowed values of ξ. Thus, the warp factor will always be decreasing. The plot of
this function of ξ is shown in Figure 5.

We can construct numerical solutions for the function A(y) and study the profile of
the warp factor eA(y) for different values of the parameters of the model. In this case, the
brane tension determines the value of the derivative of A(y) at y = 0, so it fixes one of the
two initial conditions needed for the numerical evaluation. The derivative of the brane
tension with respect to the field, σ′, is proportional to aφ0. Thus, changing it corresponds
to a new value for φ̇(0). Note that, although we have restricted ourselves on Z2-symmetric
solutions, asymmetric solutions are also possible. The profile of characteristic solutions
is plotted in Figure 6.

We see that, in general, the warp factor resembles the Randall-Sundrum decreasing
exponential. Yet, for a range of values in the parameter space we get solutions which
deviate slightly from this form. As the brane tension becomes smaller and ξ takes higher
positive values, the warp factor exhibits a peak close to the Brane, before it starts
decreasing again. This peak is amplified as we approach the value of ξ for which the
coupling function f(φ) tends to zero.

12
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Figure 5: A graph of the function f(ξ, 1) plotted for all values of ξ. THe function
maintains a negative value.
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Figure 6: The warp factor for different choices of A′(0), a, ξ and φ0 in units of
2M3.

5 Smooth Spaces

As we saw in the last example, the presence of the Brane was not essential to obtain a
localized warp factor. In this section we shall consider solutions A(y) when the “Brane”

is the scalar field configuration itself. Such an example is well known in the ξ = 0 case.
Introducing a standard kink (φ = φ0 tanh(ay)) into the ξ = 0 equation of motion, we
obtain in the Z2 symmetric case (Ȧ(0) = 0)

eA(y) = (cosh(ay))−γ e−
γ
4

tanh2(ay) , (65)

with γ = φ2
0/9M

3.

Smooth solutions of the Bulk equations of motion are also present for ξ 6= 0. It is
not difficult to see that the metric choice

eA(y) = (cosh(ay))−γ , (66)

corresponds to the same scalar field solution φ(y) = φ0 tanh(ay) with

γ = 2
(

ξ−1 − 6
)

, φ0 = a−1φ̇(0) = (2M3)1/2

√

6(1 − 6ξ)

ξ(1− 2ξ)
. (67)
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This solution exists for 0 < ξ < 1/6 and only for the above specially chosen value of φ0.

The curvature scalar of this space is R = 4a2γ
(

1 − (1 + 5γ/4)φ2

φ2
0

)

. Note the asymptotic

AdS value R(∞) = −20a2(ξ−1 − 6)2. The scalar potential corresponding to this solution
is a quartic function of the scalar field with tuned ξ-dependent coefficients. Note that
this solution is a particular case of (58). The above choice of φ0, together with the choice
C0 = 0, corresponds to

C1 = 0 , C2 = − 2a√
12M3

√

ξ−1(1 − 2ξ)(1 − 6ξ) . (68)

It is interesting that the same metric choice corresponds also to the solution

φ(y) = φ(0) (cosh(ay))−1 (69)

with φ2(0) = 12M3(ξ−1 − 6)/(3 − 16ξ) defined in the same ξ-range.

Another intersting solution for the metric is defined by the choice φ0 = 2
√

ξ−1M3,
for which (58) gives

Ȧ = 2a tanh(ay)

{

−2 +
1

3
(8 − ξ−1) cosh−2/3(ay) 2F1(1/2, 1/3, 3/2, tanh2(ay))

}

. (70)

Integrating, we obtain

A(y) = −4 ln(cosh(ay)) +
1

3
(8 − ξ−1) tanh2(ay)FPFQ

(

{1, 1, 7/6}, {3/2, 2}, tanh2(ay)
)

,

(71)
The warp factor eA is plotted in Figure 7 for ξ = 1/4 and for ξ = 1/9.
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Figure 7: Warp factors for φ(y) = φ(0) (cosh(ay))−1, ξ < 1/2.
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For larger ξ the behaviour does not change drastically. Note though that for values
ξ > 1/2 the warp factor develops a maximum beyond the origin. In Figure 8 we plot the
cases ξ = 1 and ξ = ∞
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Figure 8: Warp factors for φ(y) = φ(0) (cosh(ay))−1, ξ > 1/2.

As already seen, the equation of motion for a kink-like scalar cannot be solved an-
alytically for general boundary conditions. It is however possible to obtain numerical
solutions. We expect to find a set of Z2-symmetric solutions for eA(y) that reduce to the
known ξ = 0 solution mentioned in [13]. As an example, we consider numerical solutions
of the warp factor equation, imposing the boundary values A(0) = 1, A′(0) = 0 and tak-
ing different values for φ0. The resulting warp factors for ξ = −2 and ξ = 0.8 are shown
in Figure 9. We have taken φ0 = a = 1 in units of 2M3. For this choice of boundary
values and units, ξ = 2 corresponds to the limiting value for which the function f(φ)
becomes zero at the origin, so higher values of ξ are forbidden. Notice the peak beyond
the origin in the second plot.
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Figure 9: Smooth numerical solutions.

6 Graviton Localization

It would be interesting to check if gravity is localized in the geometries we calculated and
especially those that deviate from the original Randall-Sundrum. Let us quickly provide
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a general argument and then study some specific examples. We consider a perturbation

δGMN = δµ
Mδ

ν
Nhµν (x, y) , δφ = 0 , (72)

for the gauge h5M = 0. Imposing transversality ( hµ
µ = ∂µh

µν = 0 ), we obtain to first
order,

(

− d2

dy2
− e−A(y)∂2 + Ä (y) + Ȧ2 (y)

)

hµν = 0 , (73)

where ∂2 = ηµν∂
µ∂ν . Notice that this result is independent of the coupling function

f(φ)). If we introduce a trial solution of the form of a product hµν ∝ eip·xψ(y), we get a
Schroedinger-like equation

(

− d2

dy2
+ Ä(y) + Ȧ2(y)

)

ψ(y) = m2e−A(y)ψ(y) , (74)

where we have introduced the mass m2 = −p2. In order to study the spectrum of this
equation, it is more convenient to transform it into a conventional Schroedinger equation.
In order to eliminate the exponential, we may introduce the transformation

d

dy
= e−A/2 d

dz
, ψ(y) = eA/4 ψ . (75)

The resulting equation is
(

− d2

dz2
+ U(z)

)

ψ = m2ψ , (76)

with the potential

U(z) =
3

4

d2A

dz2
+

9

16

(

dA

dz

)2

. (77)

Note that this equation can be put into the form
(

− d

dz
− 3

4

dA

dz

)(

d

dz
− 3

4

dA

dz

)

ψ = m2ψ . (78)

This is supersymmetric Quantum Mechanics and the transformed graviton wavefunction
(zero mode) corresponds to the supersymmetric ground state. This form also excludes the
existence of tachyon modes. The zero mode is just ψ0(y) = NeA(y) and it is normalizable.
We also have to know if there is a gap between the zero mode and the continuum of
eigenstates. For this, we have to know the behaviour of the potential U(z). Although
for most of the cases above the change of variable z =

∫

dy e−A(y)/2 is not analytically
integrable, we may draw some conclusions with the help of the asymptotic behaviour
(61). Since, for y → ∞, we may have

z =

∫

dy e−A/2 ≈
∫

dy eκy/2 (g(y))−1/2 (79)

or z ∝ eκy/2. As a result,
lim
y→∞

U(z) ∝ eA → 0 . (80)
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Therefore, the continuous spectrum starts from zero mass and there is no gap.

Next, we may check the profile of the localization potential U(z) for various values
of ξ. For ξ = 1

8
, we have A(y) = −4ln(cosh(ay)). In this case, the integration can

be done analytically and the transformed coordinate is z = 1
4a

sinh (2ay) + y
2
. For ξ =

0, the warp function becomes A (y) = −4
9

(

4 ln (cosh (ay)) + tanh2 (ay)
)

. We can only
proceed numerically to perform the change of coordinates and calculate the potential.
The resulting profiles are depicted in Figure 10. The localizing potential has the familiar
volcano-like shape we also encounter in standard Randall-Sundrum.
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Figure 10: Localizing potentials for various values of ξ.

It turns out that the volcano-like profile of the potential is not maintained for all
values of ξ. For the boundary value and unit choices made for the smooth numerical
solutions of section 5 depicted in Figure 9, we find that at the value ξ = (

√
193−9)/16 ≈

0.306 the global minimum at the origin y = 0 changes into a local maximum. Thus, as we
move towards higher ξ’s, a central spike is developed. For ξ = 1/2 the potential becomes
zero on the Brane, while as ξ goes to infinity the potential at that point approaches
unity. The corresponding graphs are shown in Figure 10.

7 Conclusions

In the present article we investigated the existence of solutions for a non-minimally
coupled Bulk scalar field in a warped Brane-world framework. For a scalar field coupling
to gravity of the form −1

2
ξφ2R, we derived a set of non-singular solutions for a wide range

of the coupling parameter ξ. We demonstrated the compatibility of the usual Randall-
Sundrum warp factor with the presence of a non-trivial scalar field for a suitably chosen
scalar potential. This was done for either a scalar field-dependent or independent Brane-
tension. The profile of the scalar field solution in the field-independent Brane-tension case
is that of a folded-kink ( tanh(a|y|) ). The scalar field acquires its minimum value on the
brane, approaching a constant value as we move towards infinity in the y-direction. The
conformal value of the coupling parameter ξc separates the above mentioned solutions
from singular “solutions”. Thus, for the Randall-Sundrum warp factor, non-singular
scalar field solutions exist only for ξ > ξc and they are, in general, of the above folded-
kink shape. For negative values of the coupling parameter ξ the scalar field “solutions”
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found correspond to a scalar potential with negative powers of the scalar field and,
therefore, singular. A field-dependent Brane-tension allows for a more diverse range of
behaviour including scalar field solutions which exponentially decrease at infinity.

Guided by the scalar field set of solutions with a folded kink type of profile, we
investigated the existence of general warp factor solutions that are different from the
exact Randall-Sundrum case but still localized. Thus, assuming a scalar field solution
of the form tanh(a|y|), we derived corresponding warp factor solutions which we ana-
lyzed semi-analytically and numerically. Our analytical treatment further showed that
for a wide range of values in the parameter space of the model we get finite geometries
which are well-behaved for large y, as long as the Brane tension we introduce is large
enough. Furthermore, we considered smooth warp factor solutions in which the role of
the Brane is played by the scalar field itself. In this setup we considered some special
solutions and proceeded to study numerically general finite geometries. We concentrated
on Z2-symmetric solutions, although asymmetric ones are also possible. We considered a
class of solutions which asymptotically reduce to decreasing exponentials of the Randall-
Sundrum type. These solutions exist for a coupling parameter ξ within a range of values.
For a subset of these localized solutions the warp factor is not a monotonous decreasing
function but exhibits a second maximum close to but beyond the origin and subsequently
decreases. We have also derived analytically special exact solutions existing for special
choices of boundary values and for a range of the coupling parameter. For these solu-
tions, the same warp factor corresponds to either a kink scalar solution or the solution
φ = φ(0) (cosh(ay))−1.

Finally we considered the localization of gravitons near the brane. Although, the
Schroedinger-like equation for gravitational perturbations is the same as in the minimal
case, the warp factor detailed profile depends on the coupling parameter and the details of
the localized spectrum should depend on it. Of course, again the spectrum has no mass
gap and does not contain any tachyonic modes. The form of the localizing (volcano)
potential depends on the detailed profile of the warp factor. It was studied numerically
in a number of cases but also analytically in special cases. For a particular choice of
boundary scalar field value and the special coupling parameter value ξ = 1

8
, the localizing

potential has the typical ξ = 0 volcano profile. Nevertheless, for values of ξ larger than a
certain value, the localizing potential develops a spike at the origin, that increases along
with ξ. For ξ = 1

2
the spike reaches zero, while it tends to one for very large values of ξ.

This behaviour is currently being studied and will be the subject of a future publication.
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