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Catalysis of proton decay by cosmic strings at finite temperature 
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We determine the finite temperature corrections to elastic and inelastic cross sections for the scattering of fermions by cosmic 
strings. In particular, we obtain the proton decay catalysis cross section at finite temperature. We conclude that, as the temperature 
T approaches the temperature T¢ at which the phase transition takes place, model dependent zero temperature enhancement 
factors tend to 1. 

1. Introduction 

Cosmic strings [ 1 ] can be formed during phase 
transitions in the very early Universe. They can be 
separated into two distinct groups: those with abelian 
gauge fields excited in the string core [which arise 
from explicit U(1  ) symmetry breaking],  and those 
with non-abelian gauge fields excited in their cores. 

While the two types o f  string are gravitationally in- 
distinguishable, their microphysical interactions with 
matter allow one to discriminate between them, at 
least in principle. As we have recently [ 2 ] argued, in 
the latter case the fields excited in the core of  the string 
can lead to baryon decay through their interaction 
with baryonic matter. Although it was claimed [ 2] 
that the cross section for these processes was geomet- 
rical (determined by the string width of  order 
M~ra- ), it is nevertheless possible [ 3 ] to erase a sig- 
nificant fraction o f  a primordial  net baryon asym- 
metry in the Universe. 

More recently [4,5 ] it has been pointed out that 
the analysis of  ref. [2] was excessively naive. In ref. 
[ 2 ], we treated the fermion charges as integer multi- 
ples o f  the string flux, whereas in general [4] the 
charges will be fractional. Consequently [ 4 -6  ], fer- 
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mion-s t r ing  scatterings o f  Aharonov-Bohm (A-B)  
type [7,8] are possible, and can occur with a strong 
interaction cross section. 

This raises the possibility of  a cosmological disas- 
ter. I f  the large cross section persists to G U T  temper- 
atures, then the network of  cosmic strings present at 
early times could reduce the baryon asymmetry by 
many orders of  magnitude below the value required 
by nucleosynthesis. All non-abelian string models 
would then be immediately ruled out (with the prov- 
iso o f  hot-big-bang baryogenesis). 

This prospect, though appealing to some, rests on 
the zero temperature cross section persisting to the 
G U T  scale. In fact, as we show here, at sufficiently 
high temperatures T, the relevant scale is the finite 
temperature mass o f  the fermion, m (T) ~ T. Instead 
of  going as (1 GeV)-1 ,  the cross section per unit 
length o f  string goes as T -  1. At G U T  scale tempera- 
tures, the enhancement o f  the cross section reported 
in ref. [ 5 ] disappears. In fact, both elastic and inelas- 
tic scattering cross sections approach their geometri- 
cal values. 

2. The cross section at high temperatures 

We shall use the method of  ref. [ 2 ], modified for 
finite temperature, to obtain the cross section for fer- 
mions scattered by strings. The method consists o f  
two steps: we first use lowest order perturbation the- 

0370-2693/90/$ 03.50 © 1990 - Elsevier Science Publishers B.V. ( North-Holland ) 263 



Volume 248, number 3,4 PHYSICS LETTERS B 4 October 1990 

ory to compute the "naive" geometrical cross section 
d~/d/lgeom using free spinors. Then, we correct this 
result by an amplification factor A obtained by solv- 
ing the Dirac equation in the presence of the long 
range string gauge field. A is the ratio of the magni- 
tude of the resulting spinor divided by the magnitude 
of the free spinor, evaluated at the core radius of the 
string. The final cross section per unit length of string 
is 

dd g e o m  
da _A2~ (2.1) 
d l -  - -  ' 

where n is the number of incoming plus outgoing 
fermions. 

In a finite temperature analysis, the following points 
must be taken into account [ 9,10 ]: 

(a) The free spinors used in the derivation of the 
geometrical cross section must be replaced by free fi- 
nite temperature spinors up(p) [9 ]. These describe 
particles which propagate freely in the finite T heat 
bath and satisfy 

S-'(p,  fl)up(p)=O, (2.2) 

where S is the renormalized finite temperature prop- 
agator evaluated at one loop order (fl is the inverse 
temperature ). 

(b) In calculating the amplification factor A, the 
one loop renormalized T dependent effective Dirac 
equation [ 9] must be used. This takes into account 
that the long range string gauge fields are acting on 
particles in a thermal bath. In particular, the thermal 
bath gives the fermions a T dependent effective mass 
m (T) ~ T, for T larger than the bare fermion mass. 

(c) The density of final states used in the deter- 
mination of the cross section is modified by the heat 
bath 

f d3 p d3p 
~ f ~ [1--nF, p(Ep) ], (2.3) 

where nF, p(Ep) is the Fermi-Dirac distribution at 
temperature fl-1 for energy Ep. This takes into ac- 
count the states already occupied by fermions of the 
heat bath. Note, however, that since we are still inter- 
ested in single-particle scattering, we do not take a 
Boltzmann average over initial states. 

(d) Finally, the modifications of the string config- 

uration at high temperature must be taken into 
account. 

There are technical complications when working 
with finite temperature spinors due to the fact that 
the heat bath breaks the Lorentz invariance. The one 
loop renormalized finite temperature propagator is 
given by 

S - ' ( p ,  fl) = ~ - ~  

= ( l - A ) E y o - ( 1 - B ) p . y - m ( 1 - C ) ,  (2.4) 

where A, B and C are p and fl dependent constants 
whose explicit form is given in ref. [8] (in which our 
mC is denoted by C). Since A ~ B, Lorentz invari- 
ance is broken. The pole ofS(p,  fl) occurs when 

1~2--/~/2-~--0 o r  E2--p2=m2hys(p2, fl ). (2.5) 

Evaluating m2hys(p 2, fl) explicitly to one loop order, 
we find 

m2phys(p 2, T)=mZ+]anT2+AmZ(p z, T), (2.6) 

where A m2(p2, T) contains all the p2 dependence and 
mo is the T = 0  mass of the fermions. At high temper- 
atures T>> mo, the dominant term on the right hand 
side of (2.6) is the term proportional to T 2, as can 
be seen by inspection of the explicit expressions for 
Am Z(p2, T). Hence, for an order of magnitude anal- 
ysis of the cross section at high T, it will be sufficient 
to treat the finite T spinors as ordinary free spinors 
with mass 

mphys( T) ~ol l/ZT. (2.7) 

Now we can turn to the computation of the geo- 
metrical cross section, following the procedure of ref. 
[ 2 ]. For concreteness, we consider the fermions in- 
teracting with the "shifted" Higgs field ~ which is ex- 
cited in the string core and can mediate baryon num- 
ber violating processes. In terms of the original Higgs 
field ~, ~ is given by 

~ = M ( T ) -  [~[, (2.8) 

where M ( T )  is the T dependent minimum of the one 
loop finite temperature effective potential Vr, eff(~) 
for~: 

VT, eff(~) = ~).[~2--M(T) 2 ] 2. (2.9) 

In terms of the scale Tc of grand unified symmetry 
breaking, 
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M(T)2 =M2=o[1- (~---~)2]. (2.10) 

The cross section is evaluated to lowest order in 
perturbation theory, in which the scattering ampli- 
tude d is given by 

d :  ( ~ ' ,  S' I fd4x~i/~,s), (2.11) 

where I~u) and I ~u' ) are the initial and final fermion 
states, and Is) and Is ' )  the corresponding string 
states. Neglecting back reaction, I s ' ) =  Is). The in- 
teraction lagrangian is 

~i =g~0~u. (2.12) 

Since the shifted Higgs field is non-vanishing only 
within a distance w~ M -  1 of the center of the string, 
the integral over space and time reduces essentially 
to w 2 times the integral over the world-sheet of the 
string. At T=  0, the resulting cross section obtained 
by integrating 1~¢12 over the available phase space 
for final states is 

d 2 (2.13) _d_~ T= o ~ g  mo M~-=o " 

This result can be understood by dimensional analy- 
sis. The mo is a remnant of the spinor sums which 
give m 2, and the phase space factors which give E -  1 

(or m ff ~ at low energies). Furthermore, d is propor- 
tional to Mr=oW2=o ~MT~=o, the first factor coming 
from the amplitude of q~ in the core, the second from 
integrating over the string cross section. This ex- 
plains the Mr=o dependency of the result. 

We now can immediately generalize the result to 
T~0.  At high temperature, mo is replaced by 
mphy~(T) both in the spin sums and in the phase space 
factors [assuming low energies E ~  mphys(T) ]. From 
point (d) in the general discussion at the beginning 
of this section it follows that the finite temperature 
corrections to the string configuration must also be 
taken into account. This means replacing Mr=o by 
M ( T )  and Wr=o by w(T).  Since w(T) --- M ( T )  - 1, we 
obtain the finite T geometrical scattering cross sec- 
tion per unit length 

mphys (T) T 
r,~om~g2 M(T) 2 ~gZM(T) -------5" (2.14) 

The T dependence of M ( T )  is only important for 
T~  To. For T<< To, 

~ g  2 ----~T (2.15) 
T,aK: Te,geom M2=o " 

The divergence of the cross section (2.14) for T=  Tc 
is to be expected: at T~, the symmetry is restored and 
hence catalysis processes occur everywhere in space. 

The second step is the determination of the ampli- 
fication factor A, defined by 

A2= ~r~'r(P=w(T)) (2.16) 
~'¢r, free q/r, rree (P = w(T) ) " 

Here, ~r,f,e~ are the free finite temperature spinors 
discussed above and ~tr the spinors obtained taking 
into account the long range gauge fields of the string, 
i.e. by solving the Dirac equation in the presence of 
the string. 

However, we must first identify the correct posi- 
tion space Dirac equation at finite temperature. The 
finite temperature Dirac spinors satisfy (2.2), with 
S -1 (p, p) given by (2.4). Assuming a z independent 
solution to ( 2.2 ) we find that (2.2) decomposes into 
separate equations for the upper and lower two-com- 
ponent spinors u ~'~ (p): 

( i f - rh )u~(p)  =0,  (l~+rh)u~(p)=O. (2.17) 

These two two-component Dirac equations can 
easily be solved, and we find that both the upper and 
lower components u~(p) and u~(p) obey the finite 
temperature Klein-Gordon equation 

[p 2 -  mZhys(/~2, fl) I U~'~(p) =0. (2.18) 

TO infer a position space Dirac equation we neglect 
the momentum space dependence of m2phys, i.e. we 
use (2.7) instead of (2.6). 

From (2.18 ), we infer that the position space Dirac 
equation, without gauging, is 

[i~-mphys(T) ] q/r(X) =0. (2.19) 

NOW that we have the correct form of the Dirac equa- 
tion at finite temperature, it remains to gauge it. For- 
tunately, mphys(T) is the pole in the fermion propa- 
gator and hence gauge invariant. Consequently, under 
a gauge transformation ~--. UgtU -1 we must have 
0u--,D u in order to preserve the gauge invariance of 
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(2.19 ). The Dirac equation, modified to finite tem- 
perature, is therefore 

[iI~ - m p h y  s (T) ] q/r(x) = 0. (2.20) 

The only change compared to T= 0 is the replace- 
ment of mo by meff(T). 

The amplification factor at finite T can now be de- 
termined exactly as in ref. [ 2 ] for fermions with in- 
teger charge and in ref. [ 10] for fermions with frac- 
tional charge (see also refs. [4,5]).  For T=0,  the 
amplification factor was found to be 

AI r=o = (Mr-_o'~ ~ (2.21) 
\ m o } '  

where ~ is a model dependent constant which ranges 
from 0 to ½ depending on the fractional charge of the 
fermions with respect to the flux of the string [ 11 ]. 
The mo comes from the mass in the Dirac equation, 
and Mr=o comes from evaluating the wave functions 
at the core radius. Hence, at finite T, (2.21) is re- 
placed by 

(. M(T_)'~¢ (2.22) 
A---- kmphys(T)] " 

For m0 << T<< Te, A is proportional to ( T J T )  ¢. 
Combining (2.14 ) and ( 2.22 ), we obtain, for scat- 

tering of a single particle by a cosmic string (n = 2 ), 
the following finite temperature cross section per unit 
length: 

da ~g2 mphys(T) ( M ( T )  ~4¢ (2.23) 
dl M ( T )  2 \mphys(T)]  " 

In the temperature range mo << T<< To, this scales as 

da 2 1 {mphvs( T)'~ 2-4¢ 

d---I ~g  mphys(T) 

T k T J  " (2.24) 

Here, we have used (2.10) and the fact that Mr=o is 
proportional to To. 

3. Discussion 

yon number by strings, are modified significantly by 
the enhanced string-baryon cross sections discov- 
ered in refs. [4,5 ]. Based on (2.24), our main result, 
we find that they are not changed. 

In ref. [ 3 ] we concluded that, unless the coupling 
constants are large, catalysis by cosmic strings is too 
weak to wipe out the primordial baryon to entropy 
ratio. These calculations were performed assuming a 
geometrical cross section. Here, we find that at high 
temperatures (i.e. early times in the evolution of the 
Universe), the cross sections approach the geomet- 
rical ones, even if they are enhanced at zero temper- 
ature. Hence the conclusions ofref. [ 3 ] are valid even 
for fractional flux on the string. 

The point is that the baryon decay rate is domi- 
nated by the rate at times immediately after the phase 
transition. From (2.24), it follows that the model de- 
pendence (~ dependence) of the cross section disap- 
pears as Tapproaches Tc [but M ( T )  ~-Mr=o still re- 
mains a good approximation ]. Note that by the time 
the approximation M ( T )  ~-Mr=o breaks down, we 
are so close to the critical temperature that the de- 
scription of the broken phase in terms of isolated 
strings, and thus the entire analysis of ref. [ 3 ], will 
become invalid. 

A completely separate question is whether in 
models with cosmic strings, a significant net baryon 
to entropy ratio can ever be generated (in ref. [ 3 ] we 
assumed such a ratio had been generated by some 
means below To). Here, the divergence of the cross 
section as T approaches T~ becomes relevant. To an- 
swer the question, it will be important to integrate 
the rate equations for production and destruction of 
a net baryon to entropy ratio together - given a par- 
ticular scenario for baryogenesis. 

In this paper, we have computed the catalysis cross 
section at finite temperatures. We have shown that 
the model dependent amplification factors tend to 1 
as Tincreases towards Tc. Exactly at Tc, the cross sec- 
tions diverge (as expected). Here again, model de- 
pendence appears. 

Note that our analysis applies not only to catalysis 
cross sections. It extends to the elastic, inelastic and 
Aharonov-Bohm scattering processes. 

The most obvious question is whether the conclu- 
sions of ref. [ 3 ] regarding to the destruction of bar- 
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