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Challenges and obstacles for a bouncing universe in brane models

P. Kanti and K. Tamvakis*
CERN, Geneva, Switzerland

~Received 18 March 2003; published 10 July 2003!

A brane evolving in the background of a charged AdS black hole displays in general abouncingbehavior
with a smooth transition from a contracting to an expanding phase. We examine in detail the conditions and
consequences of this behavior in various cases. For a cosmological-constant-dominated brane, we obtain a
singularity-free, inflationary era which is shown to be compatible only with an intermediate-scale fundamental
Planck mass. For a radiation-dominated brane, the bouncing behavior can occur only for background-charge
values exceeding those allowed for non-extremal black holes. For a matter-dominated brane, the black-hole
mass affects the proper volume or the expansion rate of the brane. We also consider the brane evolving in an
asymmetric background of two distinct charged AdS black hole spacetimes being bounded by the brane and
find that, in the case of an empty critical brane, bouncing behavior occurs only if the black-hole mass
difference is smaller than a certain value. The effects of a brane curvature term on the bounce at early and late
times are also investigated.
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I. INTRODUCTION

The idea of realizing our Universe as a defect@1# in a
higher-dimensional spacetime has received a lot of atten
in the recent years after the introduction of D-branes@2#, i.e.
membranes on which the fundamental string fields sat
Dirichlet boundary conditions. Motivated by string or M
theory @3# and the AdS/Conformal Field Theory~CFT! cor-
respondence@4#, brane models have revealed new possib
ties for the resolution of the hierarchy problem of partic
physics@5–8#. The D-brane is assigned an intrinsic ener
density and pressure arising both from an underlying br
tension and from ordinary (311)-dimensional matter
trapped on it by stringy effects. Gravitons, on the other ha
propagate into the higher-dimensional bulk. Nevertheless
it turns out in the Randall-Sundrum model~RS! @9,10#, vir-
tual gravitons are localized near the brane due to the cu
ture of the higher-dimensional bulk. In this model, our spa
time is embedded in a higher dimensional space with
extra highly curved but infinite fifth dimension. The localiz
tion distance of gravity is proportional to the characteris
length defined by the cosmological constant of the anti–
Sitter ~AdS! bulk space. While the Poincare´-invariant RS
solution requires a fine-tuning of the brane tension, n
Poincare´-invariant solutions are also possible. A fou
dimensional Friedmann-Robertson-Walker~FRW! universe
can arise on a brane embedded in an AdS bulk@11# or an
AdS–black-hole bulk spacetime@12,13#. However, in both
cases, the presence of extra terms, remnants from hig
dimensional theory, may lead to modifications in the evo
tion of the brane at small scales.

The brane-world framework that will be followed in th
paper consists of our physical universe being regarded
(311)-dimensional hypersurface embedded in a~411!-
dimensional AdS bulk. The recent observational evidence
cosmological acceleration motivates the consideration

*On leave from the University of Ioannina, Greece.
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only of acritical brane of a vanishing four-dimensional co
mological constant but also of anon-critical brane as well.
The bulk space background will be taken to be that of a
11)-dimensional AdS black hole@12,14,15# with charge
@16#. Recent investigations@17,18# seem to indicate that, du
to the non-vanishing charge, abouncinguniverse could, in
principle, arise, i.e. a universe that bounces from a contr
ing phase to an expanding one without encountering a
gularity ~see also@13# and @19–28#; for earlier examples of
singularity-free solutions in the framework of superstri
theory, see@29#!. Reference@17# considers a semi-realisti
radiation-dominated brane, while Ref.@18# studies a gener-
ally non-critical but empty brane.

In the present article, we extend existing studies cons
ering a brane evolving in a charged AdS black hole ba
ground. After presenting the theoretical framework of o
analysis and briefly reviewing the derivation of the Frie
mann equation on the brane, we reconsider the evolutio
both a critical and non-critical brane. In the former case,
reconfirm the occurrence of a bounce at small scales
renders the solutions free from both past and future sin
larities. In the latter case, the singularity-free, early regime
followed by an asymptotically expanding de Sitter epoch,
sequence of which successfully models an early, inflation
period. We find that the asymptotic Hubble parameter for
expansion on the brane is bounded from above by the bla
hole mass and that this model is compatible only w
intermediate-scale gravitational theories, i.e. withM5
.1025M P . We then proceed to study the evolution of
radiation-dominated brane and to derive the exact solu
for the scale factor of the four-dimensional subspace, wh
is indeed characterized by a non-vanishing minimum val
A careful examination, however, reveals that the bounc
behavior for a radiation-dominated brane occurs
background-charge values exceeding those allowed for n
extremal black holes. Finally, in the case of a brane fil
with a matter energy density, the presence of the charge
parameter ensures once again the avoidance of the fu
singularity in the case of a closed universe. The presenc
©2003 The American Physical Society14-1
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the black-hole mass, which survives in the Friedmann eq
tion at large scales during the same period, also affects
evolution on the brane: the main implication for a clos
universe is the increase in its proper volume while, for a
and open universe, this term increases or decreases, re
tively, the rate of expansion.

We then proceed to consider a brane evolving in an as
metric background of two distinct charged AdS black-ho
spacetimes being bounded by the brane. In the case o
empty critical brane, we find that, for the occurrence o
bounce, the asymmetry in the black-hole mass parame
has to be smaller than a certain value, in contrast to
symmetric case where bouncing behavior occurs generic
For a radiation- or matter-dominated brane, the effect of
asymmetry is irrelevant both at small and large scales.
finally assume the presence of an intrinsic boundary cu
ture term in the action which is expected to modify the ev
lution of the universe only at large scales. We show th
indeed, the value of the scale factor at the bouncing p
does not depend on this term, even for large values of
associated parameter that determines the magnitude of
term in the action, and that the only effects coming from
boundary curvature term are relevant in the large scale fa
regime.

II. THE „4¿1…-DIMENSIONAL CHARGED
BLACK HOLE BACKGROUND

We shall consider the following (411)-dimensional
gravitational theory described by the action

S5
1

16pGE
M

d5xA2gS R51
12

,2
2FMNFMND

1
1

8pGE
]M

d4xA2gK, ~1!

whereR5 denotes the scalar curvature of the 5-dimensio
spacetime,, is the AdS curvature length related to thebulk
cosmological constantthroughL5526/,2, andFMN stands
for the field strength of a bulk gauge field. The bulk spaceM
consists in general of two different regions separated by
hypersurface]M signifying the brane, the simplest choic
being two regions related by aZ2 symmetry.K is the trace of
the extrinsic curvatureon ]M defined asKMN5¹MhN in
terms of the unit normal on it. Finally,gmn is the induced
metric on the boundary andG the five-dimensional Newton
constant.

In addition to the above, we assume a term*d4xA2gL
from which a conserved four-dimensional energy-moment
tensorTmn arises, satisfying theIsrael junction conditions

DKmn[Kmn
(1)2Kmn

(2)528pGS Tmn2
1

3
Tl

lgmnD . ~2!

Einstein’s equations in the bulk are satisfied by theAdS
charged black holebackground metric

ds5
252 f ~r !dt21 f 21~r !dr21r 2dV3,k

2 ~3!
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f ~r ![
r 2

,2
1k2

m

r 2
1

q2

r 4
. ~4!

In the above,dV3,k
2 stands for a 3D spatial geometry with th

topology of a plane (k50), a sphere (k51) or a hyperbo-
loid (k521). The parameters appearing in the metric fun
tion f (r ) are related to the Arnowitt-Deser-Misner~ADM !
mass and charge parameters of the black hole through1

m[v4M , q2[3v4
2Q2/16, ~5!

with v4516pG/3V358G/3p.
The black hole possesses in general two horizons the

sition of which is determined by the solution of the cub
equationf (r )50. It will be useful, at this point, to introduce
the dimensionless parameters and variablesm̄[m/,2, q̄2

[q2/,4 and y[r 2/,2. Then, the case oftwo distinct hori-
zonscorresponds to values of the charge

q̄2,q̄1
2 , ~6!

where

q̄6
2 [2

k

3 S m̄1
2

9
k2D6

2

3A3
S m̄1

k2

3 D 3/2

. ~7!

Note that alwaysq̄1
2 .0 andq̄2

2 ,0. The two horizons cor-
respond to the two positive solutions of a cubic equati
namely

yout52
k

3
12S m̄

3
1

k2

9
D 1/2

cos~f2p/3! ~8!

yin52
k

3
12S m̄

3
1

k2

9
D 1/2

sin~p/62f!, ~9!

where we have introduced

1The chargeQ is associated with an Abelian gauge field defined
the bulk and has nothing to do with the usual electric charge car
by brane matter. All standard model fields are assumed to be str
localized on the brane. The two black-hole bulk spacetimes, wh
common boundary is the 3-brane, are characterized by charge
equal value but opposite signs, an assumption which is consis
with the Z2-symmetry. In this way, the lines of the Abelian bu
field start from the positive charge and end at the negative o
extending continuously over the brane, and the Abelian flux is c
served without having to introduce additional charges on the bra
By using the AdS/CFT correspondence, one can derive the form
the potential at the location of the brane@17,27,30,31# which reads
F5,f/r , where f is the 5-dimensional potential given byf
53v4Q/8r 2.
4-2
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f[
1

3
tan21S 2

Aq22q2
2

q1
2 2q2

2Aq1
2 2q2

q22q2
2

D . ~10!

For values of the charge larger than the limiting char
namely forq2.q1

2 , two of the roots of the horizon equatio
are complex and there is only one horizon. Thus, in this c
we have anextremal black hole. The stability status of ex-
tremal black holes is still an open question@31# and, perhaps
they should be avoided as a background.

III. BRANE WORLD IN A CHARGED
BLACK HOLE BACKGROUND

Following the steps of Ref.@12# and introducing a spheri
cally symmetric 3-brane at the positionr 5R, we obtain
from the Israel junction conditions the followingFriedmann
equationon the brane:

@ f ~R!1Ṙ2#1/2

R
5

4pG

3
~r1s!, ~11!

where the overdot denotes the derivative with respect to
proper timet on the brane. In addition,r is the matter en-
ergy density on the brane ands the brane tension. The las
two arise from the brane energy-momentum tensorT0

05

2(r1s), Tj
i 5d j

i p, conserved through the equation

¹mTn
m50⇒ ṙ13

Ṙ

R
~r1p!50. ~12!

Note that this equation is derived only in the case ofZ2
symmetry.2 In an asymmetric situation, we have the mo
general equation

@ f 1~R!1Ṙ2#1/2

R
1

@ f 2~R!1Ṙ2#1/2

R
5

8pG

3
~r1s!.

~13!

The metric functionsf 6(r ) can differ in the vacuum param
etersm6 and,6 .

The four-dimensional metric on the brane correspond
a FRW universe,R(t) being the scale factor. It is

ds4
252dt21R2~t!dV3,k

2 . ~14!

Taking the square of the Friedmann equation~11!, we obtain
the more conventional form

H2[S Ṙ

R
D 2

52
k

R2
1

m

R4
2

q2

R6
1

8pG4

3
L4

1S 4pG

3 D 2

~r212sr!. ~15!

2The radiusr is decreasing on both sides of the brane.
02401
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In the above, we have defined thefour-dimensional cosmo
logical constantas3

8pG4

3
L4[S 4pGs

3 D 2

2
1

,2
>0. ~16!

The generic case is that of a de Sitter brane. The caseL4
50 of a critical brane is achieved through the well-know
fine-tuning between bulk (G, ,) and brane (s) parameters
of the Randall-Sundrum model.

The above Friedmann equation of the brane feature
dark energyterm m/R4 that has the same scale dependen
as the standard radiation term.4 The term arising from the
presence of the bulk charge corresponds to astiff energy
equation of state (w51) characterized by an exotic negativ
energy density.

IV. REVIEW OF THE EVOLUTION
OF AN EMPTY BRANE

It is instructive to review, and complete, the solutions
the Friedmann equation in the case of an empty br
@14,15,17,18# before proceeding to study more realist
cases. Forr50, Eq. ~15! takes the form

S Ṙ

R
D 2

52
k

R2
1

m

R4
2

q2

R6
1

8pG4

3
L4 . ~17!

We will now consider separately the cases of a criti
(L450) and non-critical (L4Þ0) brane.

A. Empty, critical brane

By assuming an empty and critical brane (L450) and
introducing a new time variabledt5R(h)dh, Eq. ~17!
leads to the solutions shown in Table I, fork50,61. The
parametere is defined ase254q2/m2. All three solutions are
characterized by a minimum radius of contraction beyo
which the universe bounces to an expanding phase. T
there is no primordial or future singularity associated w
these cosmologies. Note that the radius at which the bou
ing occurs is always outside of the outer horizon of the bla
hole, sinceH252 f (R)/R21(8pG/3)s250 implies f (R)
5(8pG/3)s2R2.0.

The solution fork51 is periodic and is characterized b
an infinite number of bounces at the two pointsRmin and
Rmax. This solution does not possess either a big bang or
crunch singularity, and it is possible only fore2,1. This
restriction on the black hole charge (q2,m2/4) is always
satisfied if the black hole of the background has two ho
zons. Indeed, recalling the corresponding constraintq̄2

3The four-dimensional Newton constant can be read off from
linear energy-density term to be 8pG4/3[2s(4pG/3)2.

4The equation of statep5wr, through the conservation equatio

ṙ/r523(11w)Ṙ/R, in the case of radiation (w521/3), corre-
sponds tor}R24.
4-3
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TABLE I. Charged (Q2Þ0), critical (L450) brane.

k51 R25
m

2
(12A12e2cos 2h)

Rmin
2 5

m

2
(12A12e2)

Rmax
2 5m/2, e2,1

Bouncing
cyclic

k50 R25
m

4
(e214h2) Rmin

2 5me2/4, Rmax
2 5`

Bouncing
expanding

k521 R25
m

2
(211A11e2cosh 2h)

Rmin
2 5

m

2
(A11e221)

Rmax
2 5`

Bouncing
expanding
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,q̄1
2 , we see thatq̄1

2 is always smaller thanm̄2/4. A simple

numerical analysis shows thatm̄2/41 1
3 (m̄1 2

9 )2(2/3A3)(m̄
1 1

3 )3/2 is always positive for any value 0,m̄,`. By using
dimensionful parameters, we may write the allowed range
values of the added black hole charge, for the existenc
physically acceptable bouncing universes in a two-horiz
black hole background, as

0,Q2,
16

3v4
2 F2

,2

3 S v4M1
2,2

9 D1
2,

3A3
S v4M1

,2

3 D 3/2G ,

~18!

for a given ADM black hole massM and AdS curvature
length,. Alternatively, for fixedM andQ2, the above con-
straint may be interpreted as a lower bound on the AdS
vature, or, through the relations53/4pG, for a critical
brane, as an upper bound on the tensions of such a brane,
which is introduced in the aforementioned background.

For k50,21, the solutions are characterized by a sin
bounce that demands again a non-vanishing value of
black hole charge. The constraint for the existence of t
horizons still needs to be satisfied and reduces to

Q2,
32M2,

9A3v4M
, ~19!

for k50, and to Eq.~18! with the sign of the first term on the
right-hand side reversed, fork521.

B. Empty, non-critical brane

In the case of non-vanishing four-dimensional cosmolo
cal constantL4, the Friedmann equation is modified only fo
very large values of the scale factorR. The short distance
behavior is dominated by the mass and charge terms. T
the L4Þ0 solutions at short distances are very close to
previously discussed set, while for large distances they
very close to the solutions of the Friedmann equation wit
vanishing charge, since at those distances the charge
becomes irrelevant. The latter set are given in Table II, wh
we have defined a new parameterē through the relationē2

[4k4
2mL4/3, with k4

258pG4.
Joining together the two sets of solutions presented

these two subsections, we see that the cosmology o
02401
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empty brane with a non-vanishing cosmological const
possesses a bouncing point at early times and can ha
generic expanding behavior at late times. This can be a p
sible scenario for an early inflationary era in which the co
mological constant stands for, or includes, an almost cons
energy density of a scalar~inflaton! field. The bounce at early
times guarantees the absence of a big bang singularity5 for
all values ofk as long as the bounds on the charge param
Q presented in the previous subsection are respected. At
times, an additional constraint arises, fork561, for the
validity of the solutions, namelyē2,1. This constraint leads
to an upper bound on the Hubble parameter of
asymptotic expansion on the brane in terms of bulk para
eters, namely

H`
2 [

k4
2

3
L4,

1

4v4M
5

3pM5
3

32M
, ~20!

whereM5 is the fundamental scale of gravity in five dime
sions. If this period of asymptotic exponential expansi
plays the role of standard inflation, then the vacuum ene
density of the brane must be of orderL4;(1016GeV)4 in
order to obtain the correct magnitude of density pertur
tions. This, in conjunction to Eq.~20!, leads to

S M5

M P
D 2

.10211S M

M5
D . ~21!

Assuming that the black hole mass is at leastM>10M5, the
above constraint puts a lower bound on the value of
five-dimensional Planck scale, i.e.M5.1025M P , in agree-
ment with similar bounds found in the literature for the o
currence of brane inflation in higher-dimensional mod
@32#. Alternatively, pushing the scale of gravity down to th
TeV scale leads to a black hole mass which is many order
magnitude below the fundamental scale, a result that inv
dates the classical field theory approach used in our anal

V. RADIATION DOMINATED BRANE

Let us now consider the realistic case of a brane wit
non-zero energy density that obeys a radiation equation
state (w51/3) and has a scale factor dependence of the fo

5Note, however, that the periodic behavior of the criticalk51
case that describes a cyclic universe is not retained in the pres
of a cosmological constant.
4-4
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TABLE II. Neutral (Q250), non-critical (L4Þ0) brane.

k51 R25
3

2k4
2L4

F11A12 ē2coshS2k4AL4

3
~t2t0! D G R`

2 }e2k4(AL4/3)t asymptotic dS

k50 R25A 3m

k4
2L4

sinhS2k4AL4

3
~t2t0! D R`

2 }e2k4(AL4/3)t asymptotic dS

k521 R25
3

2k4
2L4

F211A12 ē2coshS2k4AL4

3
~t2t0! D G R`

2 }e2k4(AL4/3)t asymptotic dS
rl
de

n
th

s-
sin

th

en

-

-

ale

n

ratic
, are
ried-
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rly,
ses
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e

sity
the
five
nd

f an
r5 r̂/R4. Going back to the Friedmann equation~15! and
substituting the energy density, we obtain

H25S Ṙ

R
D 2

5
8pG4

3
L42

k

R2
1S m1

8pG4

3
r̂ D 1

R4
2

q2

R6

1
4pG4

3s

r̂2

R8
. ~22!

In what follows, we solve the above equation both for ea
and late times and proceed to check the validity of the
rived bouncing solution.

A. Derivation of the solution

There are two distinct scale regimes at which differe
terms dominate. For small scale factors, we may neglect
cosmological constantL4 and the curvature termk/R2. This
is the early regimethat should be responsible for the exi
tence of a bounce and the avoidance of the primordial
gularity. Introducing the new variablesx[R2 and dt

5R2dt̄, the approximate Friedmann equation can take
form

1

4
~x8!25bx22q2x1a, ~23!

where we have defined

a[
4pG4r̂2

3s
, b[m1

8pG4

3
r̂5~11l!

8pG4

3
r̂

~24!

and the prime denotes differentiation with respect to thenew

time t̄. We have also introduced, for later use, a new dim
sionless parameterl defined through the relationm
5l@(8pG4/3)r̂ #. By settingx850 and demanding the ex
istence of a bounce, the following condition on theminimum
valueof the charge parameter emerges:

q4>4ab5
2r̂

s
~11l!S 8pG4

3
r̂ D 2

. ~25!

On the other hand, the solution of Eq.~23! has the form
02401
y
-

t
e

-

e

-

R25
q2

2b
1ADcosh~2Abt̄ !, ~26!

whereD52a/b1(q2/2b)2.0. The time variables are re
lated through

t5
q2

2b
t̄1A D

4b
sinh~2Abt̄ !. ~27!

It is clear that there is a non-zero minimum value of the sc
factor

Rmin
2 5

q2

2b
1AD, ~28!

where the bounce occurs@an arbitrary integration constant i
Eq. ~26! has been chosen such that the pointt50 coincides
with the time of the bouncing#.

For large scale factors, the charge term, and the quad
energy-density term, due to their scale factor dependence
suppressed and thus can be neglected. The resulting F
mann equation for thislate regimeis

H2.
8pG4

3
L42

k

R2
1

b

R4
, ~29!

and coincides in form with the one for a non-critical emp
brane. The corresponding solutions therefore can be obta
from Table II of Sec. IV with the replacementm→b and
ē2→4bk4

2L4/3. They all describe an asymptotically de Sitt
expanding universe. Combining the derived early and l
time solutions, we can successfully model an ea
singularity-free, radiation-dominated epoch that pas
smoothly to an inflationary period for the universe. In th
case, the constraintē2,1 puts an upper bound on th
asymptotic Hubble parameter during inflation, i.e.

H`
2 [

k4
2

3
L4,

1

4 S v4M1
8p

3

r̂

M P
2 D 21

, ~30!

in terms of the black hole mass as well as the energy den
of the precedented radiation-dominated epoch. Viewing
above inequality as a constraint on the ratio between the
and four-dimensional Planck scales, we obtain a bou
which is even stricter than the one derived in the case o
4-5
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empty, non-critical brane. For negligible values of the para
eter r̂, we recover Eq.~21! and the constraint for intermed
ate gravity scale, while for large values ofr̂, M5 is pushed
further towardsM P .

In the case of a vanishing four-dimensional cosmologi
constant~or sub-dominant compared to the linear energ
density term!, we recover at late times a standard, radiatio
type Friedmann equation that describes a radiati
dominated epoch well after the end of inflation. T
solutions in thatlate regime, for all values ofk, can be ob-
tained from the ones presented in Table I of Sec. IV
settingQ250 andm→b. These solutions should duplica
exactly the successful cosmological predictions for nucl
synthesis. As has been noted in the literature before@33–
35,17#, this puts a strong bound on any non-standard con
bution to the energy density, and thus on the black hole m
parameter, that has the same scaling as the linear radi
term. The dark radiation term generated by it should
exceed the effect that an additional neutrino species wo
have on the value of theR24 coefficient. This amounts to
m,1.13G4r̂ or, equivalently, tol,0.14.

B. Validity of the Bouncing Solution

The occurrence of a bounce in a radiation-domina
brane requires, as we saw, a bulk charge larger than a m
mum value that depends on the radiation energy den
namely

q4>
2r̂

s
~11l!S 8pG4

3
r̂ D 2

. ~31!

Nevertheless, as we discussed in Sec. II, the charge o
bulk background metric cannot increase further than a lim
ing valueq1

2 determined by the mass of the black hole, sin
beyond that charge the two horizons merge giving us
extremal black hole the stability of which is questionab
Since neither the curvaturek nor the cosmological constan
are of importance in the regime where the bounce occur
is sufficient to consider this bound in the critical and fl
case. It is

q2,q1
2 5,4

2

3A3
m̄3/25,

2

3A3
m3/2. ~32!

Settingm5l(8pG4/3)r̂ and,225(4pG4/3)s, we get

q4,
4

27S 3

4pG4s Dl3S 8pG4r̂

3
D 3

. ~33!

The two constraints are compatible if

l32
27

4
~11l!5S l1

3

2D 2

~l23!.0. ~34!

This inequality holds only forl.3 and cannot be satisfie
for values as low asl;0.14, which follows from the nu-
cleosynthesis constraint. Thus, unfortunately, the cha
02401
-

l
-
-
-

y

-

i-
ss
ion
t
ld

d
ni-
ty,

he
t-
e
n
.

it
t

e

value required for the occurrence of the bounce correspo
to an extremal black hole background.

An alternative to the two-horizon constraint, which al
puts an upper bound on the value of the charge param
can be obtained from the requirement that the energy den
of the universe at the bouncing point must be larger than
one at the time of nucleosynthesis, i.e.r̂/Rmin

4

.(0.2 MeV)4. This constraint was mentioned in@17# but
was not properly addressed as the authors lacked the e
solution for the scale factor. The value ofRmin varies as a
function of the parametersq2, m and r̂ according to Eq.
~28!. The strongest constraint arises by considering the m
mal possible value ofRmin , and thus the minimal possibl
value of r, which corresponds to large values ofq2 and is
given by Rmin

2 .q2/b. Substituting this value in the expres
sion of the energy density, we obtain the constraint

q4,
~11l!2r̂

~0.2 MeV!4 S 8pG4

3
r̂ D 2

. ~35!

The above upper bound on the value of charge param
replaces Eq.~33! and is necessary for the validity of th
bouncing solution in an extremal black hole, fiv
dimensional background. The requirement, finally, that
quadratic energy-density term be subdominant compare
the linear one, at the time of nucleosynthesis, leads to

s.
1

2

r̂

R4
.~0.17 MeV!4, ~36!

a value which is smaller than the one derived in Ref.@17#.

VI. MATTER DOMINATED BRANE

Concluding our study of the evolution of a fou
dimensional brane embedded in a symmetric, AdS char
black-hole, bulk spacetime, we will now study the case o
matter equation of state for the energy density on the bra
In that case, we haver5 r̃/R3 and the Friedmann equatio
~15! takes the form

H25S Ṙ

R
D 2

5
8pG4

3
L42

k

R2
1

m

R4
1

8pG4

3

r̃

R3

1S 4pG4

3s
r̃22q2D 1

R6
. ~37!

Given the relevance of this particular equation of state at
times in the history of the universe, it would not be mea
ingful to talk about the existence or not of an initial sing
larity. For large values ofR, the charge as well as the qua
dratic energy-density term is subdominant and can be sa
dropped. Them term remains and the relevant question
how this term, remnant of the structure of the 5-dimensio
4-6



CHALLENGES AND OBSTACLES FOR A BOUNCING . . . PHYSICAL REVIEW D68, 024014 ~2003!
TABLE III. Neutral (Q250), critical (L450), matter-dominated brane.

k51 R5
A

2 H11A11
4m

A2
sinFh2h01arctanS 2R02A

2Am1AR02R0
2D G J Expanding-

contracting

k50 R5R01
A

4
(h2h0)21Am1AR0(h2h0)

Power-law
expanding

k521 R5
A

2 H211A12
4m

A2
coshFh2h02lnS AA224m

2Am1AR01R0
21A12R0

D G J Exponentially
expanding
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bulk, affects the evolution of the brane at thelate time re-
gime. For simplicity, we will consider again a critical bran
with L450 and solve for the scale factor, fork50,61. By
using the conformal time coordinatedt5R(h)dh, we ob-
tain the solutions listed in Table III.

In the above, we have definedA5(8pG4/3)r̃ and have
denoted withR0 the value of the scale factor at the beginni
of the matter-dominated era, ath5h0.

For k51, the matter-dominated brane first expands a
then contracts, in agreement with the standard cosmolog
model. At the point whereH, or equivalentlydR/dh, be-
comes zero, the universe stops expanding and then re
lapses. This occurs at

R5
A

2 S 11A11
4m

A2 D , ~38!

and it clearly corresponds to a larger value of the scale fa
compared to the case wherem50. The main implication,
therefore, of the bulk parameters on the evolution of
closed, matter-dominated brane, at large scales, is the
crease of the proper volume of the universe. As the br
contracts, we will eventually reach small values of the sc
factor for which the charge term will become domina
again. In that case, the evolution of the brane would be g
erned by the equation

R4Ṙ25mR22q̃2, ~39!

where we have definedq̃25q22(4pG4/3s) r̃2 and ignored
the curvature and linear energy-density terms which are n
subdominant. Clearly, the above equation is characterize
the vanishing ofṘ at a finite value of the scale factor, name
at Rmin

2 5q̃2/m, as long asq̃2.0, a constraint that puts
lower bound on the charge parameter. If the constraint for
existence of two horizons~33! had not been violated in th
precedented radiation-dominated era, one could have sh
that the two constraints onq2 would have been indeed com
patible, in the matter-dominated era, if s

.(4pG4)3r̃4/4m3. If the alternative upper bound~35! is
used instead, we derive the constraint

s.
~0.2 MeV!2

2~11l!

r̃2

r̂3/2
. ~40!
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For k50 and 21, the four-dimensional brane expand
forever and no future singularity is encountered, as expec
In the case of a flat universe, them term adds a positive
contribution to the value of the scale factor and thus
creases the rate of expansion. For an open universe, how
and for a given timeh, we may easily see that the value
the scale factor is smaller compared to the one form50, and
therefore the bulk parameter delays the expansion of the
verse in this case. The derived solution is valid as long a

v4M,
1

4 S 8pG4

3
r̃ D 2

, ~41!

which puts an upper bound on the black hole massM.

VII. BOUNCING IN AN ASYMMETRIC BACKGROUND

In this section, we shall consider the possibility of a
asymmetric bulk space consisting of two distinct regions t
minating on the brane. To keep things simple, we shall c
sider for both regions a charged AdS black hole geome
characterized by the same AdS length, and chargeuQu but
with different black hole massesM 6 . We shall denote the
two metric functions as

f 6~R!5
R2

,2
1k2

m6

R2
1

q2

R4
. ~42!

The Friedmann equation takes the form~13! which can be
squared twice to give

Ṙ21k5
m

R2
2

q2

R4
1

2R2

,2 S r

s D S 11
r

2s D1
,2

16R6

~Dm!2

S 11
r

s D 2 ,

~43!

where we have assumed a critical brane by making the s
fine-tuning as in the symmetric case, namely

S 4pGs

3 D 2

5
1

,2
5

4pG4

3
s, ~44!

and have also defined

m[
1

2
~m11m2!, ~Dm!2[~m12m2!2. ~45!
4-7
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It is straightforward to see that, in the casem15m2 , the
Friedmann equation~15! for a symmetric bulk is recovered

In the case of an empty, critical brane (r50) the above
evolution equation simplifies to

S Ṙ

R
D 2

1
k

R2
5

m

R4
2

q2

R6
1

,2~Dm!2

16R8
. ~46!

As a result of the asymmetry, there is a positive term pres
that opposes the effects of the charge at small values o
scale factor. In the sameearly regime, the curvature term can
be dropped. Then, the above equation has exactly the s
form as the Friedmann equation in the case of a critic
radiation-dominated universe with a symmetric bulk, w
(Dm)2 playing the role of the quadratic energy-density ter
and thus possesses a bouncing solution for large eno
charge. Introducing againx5R2 and dt5R2dt̄, we can
bring Eq.~46! in the form

1

4
~x8!25mx22q2x1

,2~Dm!2

16
~47!

from which we obtain the solution

R25
q2

2m H 11A12
m,2~Dm!2

4q4
cosh~2Amt̄!J , ~48!

for large enough values of the charge, namely

q4.
m,2~Dm!2

4
. ~49!

This solution is characterized by a minimum value of t
scale factor

Rmin
2 5

q2

2m H 11A12
m,2~Dm!2

4q4 J ~50!

obtained6 at t̄5t50 where the bouncing occurs.
The above lower limit on the charge should be compa

with the upper limit required by the non-extremality of th
background7 namely,

q̄2,q̄1
2 5

2

3A3
min$m̄6

3 %. ~51!

We are, thus, eventually led to the condition

6The two times are related through

t5
q2

4m3/2F2Amt̄1S 12
m,2~Dm!2

4q4 D 1/2

sinh~2Amt̄!G .

7Since the curvature term is always subdominant in the reg
where the bounce occurs, for simplicity we consider thek50 con-
dition.
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~m12m2!2,
32

27

min$m6
3 %

~m11m2!
. ~52!

Therefore, a bounce occurs with the black hole backgro
possessing two distinct horizons provided the asymmetr
not too large.

What about a radiation-dominated brane? In that case,
Friedmann equation is of the form

Ṙ21k5
1

R2 Fm1
2

,2 S r̂

s
D G2

q2

R4
1

1

,2 S r̂

s
D 2

1

R6

1
,2~Dm!2

16S r̂

s
D 2

R2

F11S s

r̂
D R4G 2 , ~53!

where we have introducedr5 r̂R24. For small values of the
scale factor, we can approximate this equation with

Ṙ2.
1

R2 Fm1
2

,2 S r̂

s
D G2

q2

R4
1

1

,2 S r̂

s
D 2

1

R6
. ~54!

Note that the asymmetry, in contrast to the empty-brane c
contributes only with a sub-leading term

@,2(Dm)2s2/16r̂2#R2, which can be dropped to a first ap
proximation in our considerations concerning the occurre
of a bounce. The remaining equation is identical to the on
the symmetric case and yields essentially the samelethal
condition

11
1

2
~l11l2!,

4

27
min$l6

3 %, ~55!

with the l ’s being defined asm65l6(8pG4r̂/3). The
quantity (l11l2)/2 is still constrained by nucleosynthes
to be smaller than 0.14, a result which is in contradicti
with the above inequality: setting (l11l2)/2.0.13, we are
led to the constraint min$l6%.1.9, which cannot be true
given the constraint on their sum and the positiv
definiteness ofl6 .

In the case, finally, of a matter-dominated universe w
r5 r̃/R3, the Friedmann equation~43! becomes

Ṙ21k5
m

R2
1S r̃2

,2s2
2q2D 1

R4
1

2r̃

,2s

1

R
1

,2~Dm!2

16~R31 r̃/s!2
.

~56!

At large scales, the (Dm)2 term has anR26 dependence
which makes this term negligible compared to the remain
ones. In the same way, at small scales, this term has the s
scaling as the curvature term and is again subdomin
Therefore, an asymmetric bulk has no effect on the evolut
of a matter-dominated universe.

e

4-8
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VIII. EFFECTS OF AN INTRINSIC CURVATURE TERM

It has been pointed out@36# that the divergence arising fo
the energy-momentum tensor at the boundary of
Schwarzschild-AdS space requires the introduction of anin-
trinsic curvaturescalar counterterm. Such a term, arising
other frameworks as well@37#, is certainly not forbidden. We
shall, thus, assume the presence in the action of the term@38#

DS5
b,

32pGE d4xA2gR4 , ~57!

whereb is a dimensionless constant that controls the ‘‘tu
ing on’’ and ‘‘off’’ of the boundary curvature term.A priori,
t,
ly

ith

lyt
n
iv

in
n

ri-

02401
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such an addition is mostly expected to modify the ‘‘late,’’
large-scale, evolution of the brane and not the small-sc
behavior responsible for the bounce. The resulting evolut
equation on the brane, for aZ2-symmetric bulk spacetime, is

2AṘ21 f ~R!5
8pG

3
R~r1s!2

b,

2R
~Ṙ21k!, ~58!

with our standard metric functionf (R)5k2m/R21q2/R4

1R2/,2. Taking the square of the above equation, we obt
a quadratic algebraic equation with solution
Ṙ21k5
8R2

~b, !2 H 11
b,

2 S 4pG

3 D ~r1s!2A11
b2

4
1b,S 4pG

3 D ~r1s!2
~b, !2

4 S m

R4
2

q2

R6D J . ~59!
his

(

ed
In what follows, we will perform the same fine-tuning tha
in the caser50 andb50, leads to a critical brane, name
,215(4pG/3)s.

Considering first the case of an empty brane (r50), we
obtain the equation

Ṙ21k5
4~b12!

~b, !2
R2H 12A12S b,

b12D 2S m

R4
2

q2

R6D J .

~60!

For small values of the parameterb, this equation can be
replaced with

Ṙ21k.
2R2

~b12! S m

R4
2

q2

R6D , ~61!

which has the solutions displayed in Table I of Sec. IV, w
the parameter rescaling

m→mY S 11
b

2 D , q2→q2Y S 11
b

2 D ,

e2→S 11
b

2 D e2. ~62!

The smallness ofb required for the validity of the above
approximation isb2!m3/,2q4;q1

2 /q2,1.
For an appreciable value ofb, such as the counterterm

valueb51, the above equation cannot be integrated ana
cally but the expectation that the small-scale behavior is
going to be modified can be clarified by some support
arguments. Ignoring the curvature term proportional tok, we
can rewrite the expression under the square-root symbol
manifestly positive fashion in terms of the metric functio
f (R), which is positive for all points outside the outer ho
zon. Our equation is
i-
ot
e

a

H25
4~b12!

~b, !2 H 12A4~b11!

~b12!2
1

f ~R!

R2 S b,

b12D 2J .

~63!

Positivity of H2 demands

1.
4~b11!

~b12!2
1

f ~R!

R2 S b,

b12D 2

, ~64!

which turns out to beb independent, namely

f ~R!

R2
,

1

,2
⇒R2.

q2

m
[Rmin

2 . ~65!

Thus, the minimal value of the scale factor, obtained in t
way, turns out to beb-independent.

In the case of non-zero energy density on the braner
Þ0), our Friedmann equation is

H21
k

R2
5

8

~b, !2 H 11
b

2 S 11
r

s D
2AS 11

b

2 D 2

1bS r

s D2
~b, !2

4 S m

R4
2

q2

R6D J .

~66!

Ignoring thek term, we can repeat the argument we us
in the r50 case and arrive again at ab-independent condi-
tion

m

R4
2

q2

R6
1

1

,2 F2
r

s
1S r

s D 2G.0, ~67!
4-9
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which, for example, forr corresponding to radiation (r

5 r̂R24) leads to our well-known constraintq4

.4(r̂/s,)2(m12r̂/s,).
At large scales, the curvature is, of course, expected

influence the evolution. For largeR, but not necessarily sma
b, we derive again Eq.~61! for an empty brane. The solu
tions are again obtained from Table I of Sec. IV by using
rescaled parameters~62!. For the casesk50,21, for which
R is eternally expanding after the bounce, there is alway
value ofR large enough for the approximation to be trust
for any value ofb. In the cyclic universe, however, obtaine
for k51, there is a maximum value of the scale factor giv
by Rmax

2 5m/(b12). When substituted in the expression u
der the square root in the exact equation~60!, with the charge
term having been neglected as subdominant, a term (b,)2/m
arises, which needs to be small compared to unity for
approximation to be valid. Even for values ofb of O(1),
this term is indeed negligible provided that the black h
mass-length parameterAm is much larger than the AdS
length,. In that case, the cyclic behavior of thek51 solu-
tion is retained for any value ofb; in the opposite case, onl
small values ofb are allowed.

IX. CONCLUSIONS AND DISCUSSION

As in the case of an AdS bulk spacetime, the generali
Friedmann equation derived on a brane embedded in
AdS–black-hole bulk spacetime allows for modifications
the evolution of the four-dimensional subspace at sm
scales. This result allows us to study the early time regi
as well as the late-time regime for closed universes,
investigate whether the corresponding cosmological sin
larities can be indeed avoided. The main attractive featur
the brane-world model considered in the present article
which the five-dimensional spacetime is described by an A
charged black hole, is the fact that it realizes the bounce id
the existence of a non-zero minimum value of the scale
tor that smoothly connects a contracting with an expand
phase in the evolution of the four-dimensional subspace
all cases considered, this is indeed possible for a n
vanishing value of the charge parameter of the fi
dimensional black hole. The bounce effect therefore p
dicted in the charged AdS black hole background provi
support for a singularity-free cosmology in which the b
bang singularity is not present, as well as for acyclic uni-
verse@39# scenario in which neither the Big Bang nor a b
crunch singularity is present.

Unfortunately, it is not possible to formulate a model th
would allow us to study both the early and late time regim
in the history of the universe, since different epochs
dominated by different energy densities. It is therefore n
essary to distinguish between regions with smoothly c
nected but differing equations of state, an approach follow
here in chronological order. By studying first, in Sec. IV, t
case of an empty brane with either a zero or non-zero c
mological constant, embedded in a charged AdS–black-h
bulk spacetime, and joining together the two sets of so
tions, we were able to model a singularity-free, early infl
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tionary era: the solutions are free from the big bang sin
larity and they smoothly interpolate to a de Sitter expand
phase. The derived constraints on the various paramete
the model put an upper bound on the Hubble paramete
the asymptotic de Sitter phase which, when combined w
the demand that the magnitude of the density perturbat
produced in this period have the correct size, leads to
intermediate-scale higher-dimensional gravitational theo
i.e. M5.1025M P .

We might assume instead that the early time regime
dominated by a radiation-type equation of state. The der
tion of the exact solution for the scale factor on the brane
small scales, confirms the existence of a bouncing and
absence of the big bang singularity. Assuming that t
singularity-free, radiation-dominated epoch lasts until t
time of nucleosynthesis without interruption, we are forc
to satisfy a stringent constraint on the maximum value of
radiation-type energy-density term that appears in the Fr
mann equation. As our analysis revealed, the range of par
eters of the background, for which the bouncing is possi
and the nucleosynthesis constraint is satisfied, exceeds
limit allowed by a non-extremal black hole and may lead
an unstable background. This problem may be avoided
assuming that the dominant equation of state does not rem
the same for the whole range of values from the bounc
point to the time of nucleosynthesis. Since the universe m
be radiation dominated at nucleosynthesis time, that lea
two options:~i! either the equation of state is dominated,
the bouncing point, by the cosmological constant, which th
leads to an inflationary period and finally to a late radiatio
dominated period, or~ii ! an early radiation-type equation o
state gives way to an intermediate inflationary period,
mentioned in Sec. V, before coming back to alate radiation-
dominated period at the time of nucleosynthesis.

As the universe expands, the radiation-dominated ene
density becomes subdominant and gives its place to
matter-dominated one. In Sec. VI, we studied the modifi
tions that the generalized Friedmann equation brings to
evolution of the brane at this large-scale regime. In the c
of an open or flat brane, the charge-dependent term is alw
negligible and it is only the black-hole-mass-dependent te
that survives and affects the expansion rate of the br
while preserving the eternal expansion predicted by the fo
dimensional cosmological model. In the case of a clos
brane, the latter term causes an increase in the proper vo
of the universe but it cannot prevent subsequent collap
Assuming that the equation of state remains matter do
nated during this late small-scale regime, the charge t
becomes dominant and ensures passage from the contra
to a subsequent expanding phase and, thus, avoidance o
big crunch.

However, cosmological observations@40–43# strongly in-
dicate that the present universe is spatially flat and acce
ating due to some dominant dark-energy component.
simplest possibility is that this dark energy of unknown o
gin is in the form of a small cosmological constant that p
the universe in an indefinitely expanding de Sitter pha
This scenario can be easily accommodated in the framew
of the second set of solutions derived in Sec. IV, which p
4-10



o
ca
n
d

on
ki
.
t

h
d
b

lid
t
f
le

er
e
c

th
ec
h
a
i

ps
n-
x

-
ime
one.
n-
in

or a
to

ear,
rst
rge
s of
tion
ery
ond
rge

f the
of

at
rk
.T.
-
c-

N-

CHALLENGES AND OBSTACLES FOR A BOUNCING . . . PHYSICAL REVIEW D68, 024014 ~2003!
dict an asymptotic de Sitter expansion for all values ofk. The
same solutions could also model the alternative scenari
which the dark energy is generated by a slowly varying s
lar field @44#, with a w.21 equation of state and thus a
almost constant energy density. In such a scenario, the
rived de Sitter expanding phase is only an intermediate
that eventually will give way to an asymptotic Minkows
regime as the speed of expansion will start decreasing
both cases, it is only the black-hole mass parameter tha
relevant to the present-time evolution, by restricting t
Hubble parameter for the, either eternal or temporary,
Sitter expansion phase, while the charge parameter has a
lutely no effect.

In addition to the uncertainty about the presently va
equation of state, the very late evolution is also open
speculation and conjecture, leaving open the possibility o
contracting and, perhaps, cyclic, behavior. If, for examp
the dark energy eventually becomes negative, the univ
will collapse @45#. In the cosmic contraction scenario, th
background charge will be essential in avoiding a big crun
and bouncing back into an expanding state, just like in
case of a matter-dominated phase. Nevertheless, the sp
energy density required for a late-time contracting phase
to be inserted in the brane energy-momentum tensor in
arbitrary fashion. The fundamental physics associated w
its required form is still lacking. An interesting and perha
fruitful approach would be to try to investigate ways of no
trivial bulk-brane interactions resulting, through the e
s.

R.

,

.
.
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change of energy@46#, in a dynamical evolution of the equa
tion of state on the brane that accounts for the present t
accelerating phase as well as for a possible contracting

Let us finally note that, according to our analysis co
ducted in Secs. VII and VIII, variants of the above model,
which the bulk spacetime is assumed to be asymmetric
brane curvature term is added in the action, do not lead
any radical changes in the type of behavior encountered n
or the existence itself of, the bouncing point. In the fi
variant, it is only in the case of an empty brane and, for la
values of the black-hole mass difference on the two side
the brane, that the extra term in the Friedmann equa
tends to prohibit the occurrence of the bouncing. In ev
other case, the effect of this term is irrelevant. In the sec
variant, the brane curvature term has an effect only at la
scales, as expected, and can be ignored at the time o
bouncing, either at early or late times, without any loss
information.
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