

## Synthesis of Nd(FeTi)12 films by sputtering

I. Panagiotopoulos, D. Wang, D. Niarchos, and D. J. Sellmyer

Citation: Appl. Phys. Lett. **62**, 3528 (1993); doi: 10.1063/1.109016 View online: http://dx.doi.org/10.1063/1.109016 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v62/i26 Published by the American Institute of Physics.

## Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about\_the\_journal Top downloads: http://apl.aip.org/features/most\_downloaded Information for Authors: http://apl.aip.org/authors

## ADVERTISEMENT



## Synthesis of Nd(FeTi)<sub>12</sub> films by sputtering

I. Panagiotopoulos

Demokritos, National Center for Scientific Research, Institute of Materials Science, 153 10, Aghia Paraskevi Attikis, Athens, Greece

D. Wang

Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113

**D.** Niarchos

Demokritos, National Center for Scientific Research, Institute of Materials Science, 153 10, Aghia Paraskevi Attikis, Athens, Greece

D. J. Selimyer

Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113

(Received 6 October 1992; accepted for publication 7 April 1993)

Nd(FeTi)<sub>12</sub> films have been synthesized by dc magnetron sputtering. The films have tetragonal ThMn<sub>12</sub> crystal structure as confirmed by XRD and magnetic measurements. The lattice parameters are a=8.57 and c=4.801 Å. The degree of the ThMn<sub>12</sub> phase formation and the texture of the films are found to be dependent on deposition parameters. The films can be aligned with the (001) basal plane in the film plane by suitable deposition conditions. Thus the films are textured so that the easy axis, which is the *c*-axis, is perpendicular to the film plane. After nitrogenation, the tetragonal ThMn<sub>12</sub> crystal structure is retained and the lattice parameters increase to a=8.67 and c=4.862 Å, corresponding to a volume expansion of 3.6%. The coercivity also increases upon nitrogenation.

*R*-Fe-based (R=rare earth) compounds are being investigated intensively at present because of their potential permanent-magnet application after nitrogenation. It is known that  $R(FeTi)_{12}$  compounds with the tetragonal ThMn<sub>12</sub> crystal structure can absorb a moderate quantity of nitrogen when annealed in nitrogen atmosphere. The unit cell volume increases several percent with no change in symmetry and with improved magnetic properties.<sup>1</sup> In this class of materials Nd(FeTi)<sub>12</sub>N<sub>x</sub> is the most promising candidate for permanent-magnet application because of its large anisotropy field, high Curie temperature, and high saturation magnetization.

One of the important characteristics necessary for the desired magnetic properties is a high degree of texture. Sputter deposition may offer great opportunity to achieve a high degree of texture because of the variety of adjustable parameters. The synthesis of  $Sm(FeTi)_{12}$  films by sputtering in a controlled way has been previously reported,<sup>3</sup> but  $Sm(FeTi)_{12}N_x$  is not a good candidate for permanent magnet for bulk or film because of its planar magnetic anisotropy so that a low coercivity is expected.

Here we present our study of the effect of the deposition parameters on the formation of the ThMn<sub>12</sub> phase and the texture of sputtered Nd(FeTi)<sub>12</sub> films. Results on the Nd(FeTi)<sub>12</sub>N<sub>x</sub> films nitrogenated by annealing *in situ* in nitrogen atmosphere are also given.

Nd(FeTi)<sub>12</sub> films were prepared in a dc magnetron sputtering system on heated Ta substrates by using a single alloy target of nominal atomic composition Nd<sub>9.5</sub>Fe<sub>82.5</sub>Ti<sub>8.0</sub>. The base pressure was better than  $5 \times 10^{-7}$ Torr. The argon gas pressure, applied dc power, and substrate temperature were varied in order to achieve the desired phase and a high degree of texture. The sputtering rates were from 6 to 16 Å/s. After the deposition nitrogen gas was introduced into the chamber with a pressure about 100 Torr at various sample temperatures for various lengths of time.

The crystal structure was determined by x-ray diffractometry (XRD) on a Rigaku DMAXB system with Cu  $K_{\alpha}$ radiation. Film composition of Nd<sub>9.4</sub>Fe<sub>83.1</sub>Ti<sub>7.5</sub> in atomic percentage was determined by energy dispersive x-ray spectroscopy attached to a JEOL 840A SEM. A Quantum Design SQUID magnetometer with a maximum field of 55 kOe was used to measure the hysteresis loops at room temperature. Thermomagnetic measurements were made with the help of a Cahn electrobalance.

Figure 1 shows the XRD spectra for films with different thicknesses. The peaks are fitted to the (002), (202), (222), and (004) reflections of the tetragonal  $ThMn_{12}$ structure. Attempts were made to fit to other phases which are related to the ThMn<sub>12</sub> phase by structural transformation, i.e., the rhombohedral Th<sub>2</sub>Zn<sub>17</sub> structure and the disordered TbCu<sub>7</sub> structure. For the Th<sub>2</sub>Zn<sub>17</sub> phase, the fitted result of c/a ratio is much larger than the reported value for bulk samples. This means that more dumbbell Fe pairs are occupying the Nd sites, indicating the ThMn<sub>12</sub> phase is more likely. The disordered TbCu<sub>7</sub> structure<sup>4</sup> is difficult to exclude only by XRD measurement because its lattice parameters, stoichiometry, and properties may change, depending on the precise composition and degree of disorder. It has been reported<sup>5</sup> that the binary NdFe<sub>5+x</sub> compound with an unknown x between 0 and 3.5 has the disordered TbCu7 structure and has a Curie temperature of 97 °C. The experimental results given below suggest that our films do not have this structure as the main phase, but from the XRD data alone we cannot completely rule out a partial presence of the disordered phase.

Least-square fitting of XRD data to the tetragonal



FIG. 1. X-ray diffraction patterns of  $Nd(FeTi)_{12}$  films with different thicknesses on Ta substrates. The deposition conditions are an argon pressure of 1.5 mTorr, a power of 100 W, and a substrate temperature of 390 °C.

ThMn<sub>12</sub> unit cell gives  $a=8.57\pm0.01$  Å and  $c=4.801\pm0.001$  Å, where the uncertainties are determined from the iteration program<sup>6</sup> based on peak positions of the diffraction pattern. The greater error for *a* is due to the lack of enough (*hkl*) reflections which have nonzero *h* and *k* indices because of the film texture.

For the sputtering conditions used films are more or less c-axis preferentially aligned perpendicular to the film plane. Thus in the XRD patterns only (002), (004) peaks and a weak (202) peak appear; in a few cases for weakly textured films a weak (222) peak appears also. The ratio of the intensity of the (002) peak to that of the (202) gives a measure of the degree of texture. This is found to strongly depend on the film thickness and the sputtering conditions.

XRD patterns shown in Fig. 1 are examples for films sputtered under the same conditions (1.5 mTorr, 390 °C, 100 W) but with various final thicknesses from 0.5 to 4  $\mu$ m. For thicker films the intensity of the (202) peak is almost negligible compared to that of the (002). The fact that texture is improved with thickness is understandable since the texture is controlled mostly through sputtering parameters rather than substrate epitaxy for the desired texture. It seems that the Ta substrate does not promote a complete (002) epitaxial growth.

Other substrates such as Cu, glass, and alumina have also been tried. In each case the films have an incorrect phase or have two phases including the  $ThMn_{12}$  phase. More investigation is needed to search for a substrate which will enhance heteroepitaxial growth for this structure especially for thin films.

When films are annealed *in situ* at a temperature of 400 °C for 1 h in nitrogen atmosphere the unit-cell lattice parameters are increased. XRD spectra for both the nitrogenated and non-nitrogenated samples are shown in Fig. 2. The XRD peaks of the nitrogenated film are apparently displaced to the lower angle side due to the volume expan-



FIG. 2. X-ray diffraction patterns of a Nd(FeTi)<sub>12</sub> film and a Nd(FeTi)<sub>12</sub>N<sub>x</sub> film of about 1  $\mu$ m thick on Ta substrates.

sion caused by the nitrogen intake. The broadening in the XRD lines of the nitrogenated film spectrum might be attributed to stress effects (the substrates were curved slightly after nitrogenation) and the effect of incomplete nitrogenation. The unit cell lattice parameters of the nitrogenated samples are  $a=8.67\pm0.01$  Å,  $c=4.862\pm0.001$  Å. This means a volume expansion of 3.6% for the unit cell by nitrogenation.

Figure 3 shows typical hysteresis loops for a  $Nd(FeTi)_{12}$  film of about 1  $\mu$ m thick measured at room temperature with the applied field parallel and perpendicular to the film plane; for the latter case a demagnetization correction has been done. Figure 4 gives the hysteresis loops for a  $Nd(FeTi)_{12}N_x$  film of about 1  $\mu$ m thick measured at room temperature. It is noted that the films have perpendicular anisotropy and this anisotropy is greatly enhanced by nitrogenation. The coercivity for the nitride film is about ten times larger than the value of the  $Nd(FeTi)_{12}$  film. It is noted that the maximum applied field of 55 kOe is below the saturation field for the nitride film when the field is perpendicular to the film plane.



FIG. 3. Hysteresis loops of a Nd(FeTi)<sub>12</sub> film of about 1  $\mu$ m thick measured at room temperature. The perpendicular loop has been corrected for demagnetization.

Downloaded 01 Apr 2013 to 195.251.197.48. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights\_and\_permissions



FIG. 4. Hysteresis loops of a Nd(FeTi)<sub>12</sub>  $N_x$  film of about 1  $\mu$ m thick measured at room temperature. The perpendicular loop has been corrected for demagnetization.

Thermomagnetic measurements as shown in Fig. 5 indicate that the  $T_c$  of the Nd(FeTi)<sub>12</sub> film is about 250 °C, which is close to the reported value of 274 °C for bulk samples and much higher than the reported value of 52 °C for a sample with Th<sub>2</sub>Zn<sub>17</sub> structure<sup>7</sup> and 97 °C for the disordered TbCu<sub>7</sub> structure.<sup>5</sup> Similar measurements were tried for the nitride films but oxidation was found to be a



FIG. 5. Thermal-magnetization curve for a  $Nd(FeTi)_{12}$  sample. The field was about 500 Oe and temperature changing rate was about 20° per minute.

severe problem from 425 °C and above, by which temperature the magnetization did not show any obvious decrease. We can only say that the Curie temperature is increased qualitatively upon nitrogenation.

Deposition conditions were varied to optimize the phase formation and the texture. The films sputtered at lower pressures show a better (002) texture down to 1.5 mTorr. Under various substrate temperatures and at sputtering gas pressures of 1.5 and 10 mTorr, the (002) texture is more favorable at higher temperatures (up to 430 °C), beyond which  $\alpha$ -Fe starts to form and the degree of (002) texture starts to decrease. The existence of  $\alpha$ -Fe is also seen at a lower temperature (310 °C) where the formation of the ThMn<sub>12</sub> phase is less favored. When the sputtering power is less than 50 W the ThMn<sub>12</sub> phase does not form but only  $\alpha$ -Fe like peaks are seen. For power higher than 50 W, as long as the thickness is kept constant the film texture is not very sensitive to power variations.

In summary, Nd(FeTi)<sub>12</sub> films with ThMn<sub>12</sub> structure have been made by sputtering. The films can be oriented with the *c*-axis, which is the easy magnetic axis, perpendicular to the film plane. After nitrogenation, the lattice parameters increase from a=8.57 and c=4.801 Å to a=8.67, c=4.862 Å, corresponding to a unit cell volume expansion of about 3.6%. Both the coercivity and Curie temperature are increased by nitrogenation.

We are grateful for financial support by the U.S. Department of Energy under Grant DE-FG02-86ER45262 and European Community Project B/E-153 and B/E-405. We also thank F. J. Cadieu for sending a preprint<sup>8</sup> on similar films after the submission of this manuscript.

- <sup>1</sup>K. H. J. Buschow, Rep. Pro. Phys. **54**, 1123 (1991); J. M. D. Coey, Physica Scripta. **T39**, 21 (1991).
- <sup>2</sup>Y. C. Yang, X. D. Zhang, L. S. Kong, and Q. Pan, Appl. Phys. Lett. 58, 2042 (1991).
- <sup>3</sup>F. J. Cadieu, H. Hegde, R. Rani, A. Navarathna, and K. Chen, Appl. Phys. Lett. **59**, 875 (1991).
- <sup>4</sup>M. Katter, J. Wecker, and L. Schultz, J. Appl. Phys. 70, 3188 (1991).
- <sup>5</sup>H. H. Stadelmaier, G. Schneider, and M. Ellner, J. Less-Common Met. **115**, L11 (1986).
- <sup>6</sup>C. W. Burnham, A Fortran IV Computer Program for Least-Squares Refinement of Crystallographic Lattice Parameters, Dept. of Geological Sciences, Harvard University.

<sup>7</sup>L. X. Liao, X. Chen, Z. Altounian, and D. H. Ryan, Appl. Phys. Lett. **60**, 129 (1992).

<sup>8</sup>A. Navarathna, H. Hegde, R. Rani, and F. J. Cadieu, J. Appl. Phys. 73, 6023 (1993).