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Polarization-Independent Linear Waveguides in 3D Photonic Crystals
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Using a symmetry-based approach, we have designed polarization-independent waveguides in a 3D
photonic crystal. A comprehensive series of numerical experiments, involving the propagation of pulsed
signals through long straight waveguide sections and sharp bends, quantitatively evaluates the bend-
transmission coefficient over the entire bandwidth of the corresponding guided modes. High ( ~ 95%)
polarization-independent bend transmission is achieved within a certain frequency range.
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Lossless guiding of light at length scales approaching
the wavelength of the light itself is a necessary property
for any future integrated optical circuit. While high
index-contrast dielectric waveguides can reduce radiation
losses from features such as sharp bends [1,2], they can-
not completely suppress them and are in general very
sensitive to roughness. Photonic crystals [3,4], on the
other hand, have been shown in certain cases to eliminate
radiation loss [5,6] and thus offer a promising platform
for designing high-performance waveguide networks. A
common drawback, however, to all photonic-crystal
waveguide systems proposed until now (2D [7-10] or
3D [11,12] systems), is that they are highly polarization
selective. Given that the polarization state of an input
signal may not be known and/or may vary over time,
their proper operation would require the use of active
polarization preprocessing devices. In this work, we dem-
onstrate that, by utilizing the symmetries of a proper
choice of 3D photonic crystal [13], one can tune line
defects to create guided modes inside the spectral
gap that are essentially degenerate, with a polarization-
insensitive dispersion relation. We further demonstrate
the stability of these modes to symmetry breaking by
simulating high-transmission polarization-independent
light guiding around a sharp bend. To our knowledge,
this is the first time such polarization-insensitive trans-
mission has been obtained at such length scales.

One approach to polarization insensitivity would be to
design a photonic crystal with line defects possessing the
appropriate cross-sectional symmetry for polarization
degeneracy. Another approach is to employ a photonic
crystal consisting of two kinds of photonic-crystal slabs,
each best suited for confining one of two possible polar-
izations. The latter approach results in planar arrays of
defects, which are amenable to microfabrication, and is
the method used here. The photonic crystal of Ref. [13]
provides precisely this capability, consisting of alternat-
ing slabs of dielectric rods in air (rod layers, appropriate
for confining TM-polarized waves) and air holes in
dielectric (hole layers, appropriate for confining TE-
polarized waves). Waveguiding structures can be de-
signed within this crystal by introducing planar line
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defects in the hole and/or rod layers, resulting in the
formation of defect (guided) bands inside the band gap
[14]. A remarkable property of this 3D crystal is that the
resulting guided modes are very similar to the 2D TE-
and TM-polarized modes one gets from solving a 2D
problem with the dielectric constant defined by the cor-
responding cross section along the defect plane [14].
Hence, in the 3D crystal, a sequence of larger holes in a
hole layer results in a TE-like mode pulled up from the
dielectric band, predominantly polarized with its
magnetic field normal to the defect plane. Similarly, a
sequence of smaller rods in a rod layer also results in a
TM-like mode pulled up from the dielectric band, but
now predominantly polarized with its electric field nor-
mal to the defect plane. Note that these modes are ap-
proximately even (TE) and odd (TM) under reflection on
a plane parallel to the hole and rod layers. In a purely 2D
system, this symmetry is exact, prohibiting mode mixing
even at lattice distortions such as bends or disorder. This is
a key criterion needed to induce a significant suppression
of mode mixing at similar planar lattice distortions.

Because of the omnidirectional gap provided by the
photonic crystal, the above procedure enables the design
of wavelength-scale minimal-loss waveguide networks
for both polarizations. While this is promising for inte-
grated optical systems, still, it does not overcome one of
integrated optics’ old problems: Each polarization satis-
fies a different dispersion relation, resulting in different
propagation properties such as speed and pulse broad-
ening, thus leading to a different response in any device.
However, if we combine the two sequences of line defects
in a way so that the two guided modes are close spatially
yet maintain different symmetry, we may tailor the de-
fect structures to enforce an “accidental degeneracy” in
the guided dispersion relations, i.e., to have them coin-
cide. In this regard, it is important to identify a symmetry
operation along the guide direction, with respect to which
the two modes (eigenstates) transform oppositely, so that
a tailored defect structure respecting this symmetry will
not result in mode mixing and repulsion.

A portion of our structure consisting of two layers is
shown in Fig. 1. We create our waveguides along the set of
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FIG. 1 (color). A schematic of the simulation system and two
successive blowups, one involving the greater bend area and the
other just a small straight part of the waveguide (green/blue
denotes bulk/defect radii). Only the two layers of the 3D crystal
involving the planar line defects are shown for clarity (defect
holes and rods are highlighted in yellow in the middle frame).
The waveguide, defined by the white line,“wraps around” after
the bend using periodic boundary conditions, minimizing the
required computational cell. Monitor points are at A and B.

{[211]} (second nearest neighbor) directions, because
there is a mirror plane perpendicular to the layers, lying
along the axis of a straight {{211]} waveguide, for both
the hole- and rod-layer line defects. This distinguishes
the TE-like and TM-like modes into different irreducible
representations. In contrast, had we chosen a waveguide
along the {{011]} (nearest neighbor) directions, the only
symmetry operation that leaves both the hole- and rod-
layer line defects invariant is a 180° rotation along
{[011]}. However, this operation cannot distinguish be-
tween TE-like and TM-like modes.

The detailed structure of the photonic-crystal is re-
ported in Refs. [13,14]. The hole radius within the hole
layer is r, = 0.414a and the equivalent-rod [14] radius
within the rod layer is r, = 0.175a, where a is the in-
plane lattice constant and is related to the fcc lattice
constant as.. by a = ay../~/2. We use a dielectric contrast
of 12, for which a band gap of 21% is obtained. The first
step is to introduce two line defects to create two guided
modes of opposite polarization: larger holes (r,, =
0.53a) in the hole layer (which will support the TE-like
odd mode) and smaller rods (r;, = 0.08a) in the rod layer
(which will support the TM-like even mode). The dis-
persion relations of these two modes, calculated by the
finite-difference time-domain (FDTD) method [15], are
shown in Fig. 2(a). They differ in both their center fre-
quency and their bandwidth. A key property, however, is
that they are both well described by a cosine dispersion
relation, which makes them easier to match. This cosine
dispersion relation arises because our waveguides are
very similar to a chain of weakly coupled defects. For
stronger coupling, it is expected that the dispersion rela-
tions will divert from the simple cosine form and it will
thus become progressively difficult to match them. We
will use these two bands as a starting point and perturb
the surrounding crystal elements (i.e., other holes and
rods in the vicinity) to force accidental degeneracy.
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FIG. 2 (color). Dispersion relations for the guided modes
resulting from planar line defects in the 3D photonic crystal,
(a) before and (b) after the tuning. Gray areas mark trans-
mission bands while yellow areas mark band gaps.

For simplicity, we limit ourselves to changes in radius
only. Such changes effectively add or remove dielectric
material from the high field-intensity regions, thus intro-
ducing a shift in the corresponding dispersion relation.
We adopt an empirical approach where we fit the effect
of different radius perturbations, and combine them
through a conjugate-gradient search algorithm to find
the combination producing the desired degeneracy. By
combining two perturbations per layer, we find a range
of defect parameters that result in degenerate bands, each
at a different center frequency and bandwidth. A parame-
ter set requiring small radius changes is rg, = 0.55a,
rh, = 0.40a, r,, = 0.085a, and r/,, = 0.10a for the two
hole and rod radii, respectively (see Fig. 1). The corre-
sponding dispersion relations demonstrating the de-
generacy are shown in Fig. 2(b) (additional bands are
slightly pulled up from the “dielectric”’ band as well,
but are not shown here since they do not come close to our
modes of interest). The resulting “doubly degenerate”
guided mode has a bandwidth of about 6% of its center
frequency and a group velocity at the Brillouin-zone
center of about 0.13c. To our knowledge, this is the first
time a polarization-independent dispersion relation
has been demonstrated for a linear waveguide in a 3D
photonic-crystal structure.

A natural and important question is to what degree this
degeneracy maintains a polarization-independent re-
sponse in cases where we break symmetry, such as at a
sharp bend. To answer this, we study a system that in-
volves a 60° bend, as depicted in Fig. 1. Note that the two
layers are not equivalent at the bend. While in the hole-
layer structure we have a smooth transition between the
two straight waveguide branches, in the rod-layer the
bend creates a nearest neighbor coupling of two rods of
radius r,, (normally second-nearest-neighbor coupling in
the straight waveguide). In fact, there is no way to make
both layers have a smooth transition between their two
branches. As we shall see, this introduces slightly differ-
ent high-transmission resonance conditions for each po-
larization. In addition, there will be some mixing between
the two polarization states at the bend, where the mirror
symmetry is destroyed.
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We use the FDTD method to simulate the propagation
of electromagnetic pulses through the bend. The computa-
tional system is taken very large to assure clear separation
among the various pulses. It consists of a cell of size
72a X 16a X 2a,, where a is the lattice period along
the propagation direction, @ = +/3a = /3/2a.., and a,
is the lattice period along the vertical [111] direction
(three bilayers), a, = v/6a = \/3a;... The bend is located
at a distance of 484 from the entrance of the input
waveguide. We use perfectly matched-layer boundary
conditions [16] in the propagation direction, and periodic
boundary conditions in the other two directions. The
waveguide region after the bend is “wrapped around”
using the periodic boundary conditions, minimizing the
required size of the computational cell.

A pulse with a Gaussian profile in time is launched at
the entrance of the waveguide, and the fields are moni-
tored at two positions, as shown in Fig. 3. Position A is
located halfway between the source and the bend and is
the observation point for the incident and reflected pulses,
while position B is located 12a after the bend and is the
observation point for the transmitted pulse (see Fig. 2).
Minimal secondary reflections at the edges of the com-
putational cell are still present, but they appear at later
times and do not contaminate the useful data. We find that
most of the energy is transmitted through the bend. As
expected, the symmetry breaking at the bend results in
transmitted and reflected pulses that are composed of
both modes. However, this mixing is very small, compa-
rable to half the overall reflection from the bend (see
Fig. 3).

In order to quantify the transmission through the bend,
we study the frequency- resolved pulses going in and out
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FIG. 3 (color). Fields at the observation points A and B, which
are located before and after the bend, respectively. Each
polarization is studied separately with points A and B centered
in the appropriate layer in each case. Red is used for the H, field
of the TE-like mode and blue for the E, field of the TM-like
mode. A pure TE(TM)-like mode will have zero E, (H,) field at
its symmetric center, as is the case for the incident pulses.
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of the bend. Since these are not single-mode waveguides,
we must use data from flux-monitoring planes, positioned
at A and B. For better resolution, as well as a consistency
test, we use two pulses of different center frequencies per
polarization, as shown in the top panels of Fig. 4. The
corresponding ratios of the fluxes at A and B provide
the transmission and reflection coefficients, as shown in
the bottom panel of Fig. 4. These coefficients add up to 1
for all frequencies, with an error of less than 1%. We find
a wide frequency range of high transmission for both
modes, and a frequency wa/2mc = 0.6835 for which
the transmissions coincide to 94.5%. Note that, as ex-
pected, resonant transmission is observed at different
frequencies for the two modes: at lower frequencies for
the TE-like mode and higher frequencies for the TM-like
mode. Also note that the TM mode does not actually
achieve 100% transmission at any frequency within the
useful bandwidth. Further tuning of the bend region could
lead to 100% transmission of this mode if desired.
Around the common transmission frequency, we re-
solve the calculated fluxes into the two modes, in order to
quantify the degree of modal mixing. We find that mixing
is generally small, and that it monotonously decreases for
increasing frequency (from about 5% at wa/2mc = 0.675
to less than 1% at wa/2mc = 0.69). At the common high-
transmission frequency, the transmitted power retains its
polarization to about 97%. The absence of strong modal
mixing is due to the approximate horizontal mirror plane
symmetry, as was mentioned earlier. In Fig. 5, we plot the
field patterns of the propagating modes, obtained by
launching suitable continuous-wave (cw) signals. In the
right panels, we show the corresponding vertical cross
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FIG. 4 (color). Top panels: Spectral profile of the input pulses
used in the numerical experiments for the TE-like and the TM-
like modes. Bottom panel: By taking appropriate ratios of
transmitted, reflected, and input pulses, we extract the corre-
sponding transmission and reflection coefficients.
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FIG. 5 (color). Lateral and vertical modal profiles for a cw
excitation at the common high-transmission frequency for the
TE-like mode (top panels) and the TM-like mode (bottom
panels), where the H, and E, fields are plotted, respectively.
Yellow areas correspond to the high dielectric part of the
structure.

sections, where the effects of the approximate symmetry
become apparent. The TE-like and TM-like modes ap-
pear as two different representations of a single horizon-
tal symmetry plane, thus resulting in minimal mode
mixing in the bend region. An important point to note
here is that the field pattern of the two modes is different.
This will manifest into different coupling coefficients
with a symmetric input such as from a fiber. It will thus
be necessary to tailor the input part of the waveguides in
order to match the coupling coefficients, and thus achieve
polarization-insensitive excitation. This, however, goes
beyond the scope of this paper.

We have demonstrated high (~95%) transmission
through a sharp bend, with a high degree (~97%) of
polarization insensitivity, for certain frequencies. Two
improvements can be achieved by optimizing the crystal
structure at the bend: (i) an increase of the symmetry at
the bend, so that less mode mixing occurs, and (ii)
a change of the resonant-transmission conditions for
the two modes so that they better coincide. Thus,
there are enough degrees of freedom for optimization
that, ultimately, it should be possible to achieve 100%
polarization-independent transmission through sharp
bends in this system.

In addition to guiding light around sharp corners, such
fine-tuned waveguide structures are ideal for minia-
turized passive polarization-processing components.
Because each polarization is primarily guided in a differ-
ent layer, it is very easy to separate the two modes. We can
easily imagine designing devices such as polarization
splitters (each mode bends into a different branch of a
junction), or polarization rotators (one mode tunneling to
the other by resonant mode mixing). These structures
may thus prove to be very useful in future integrated
all-optical systems. In contrast, had we employed the
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alternative approach of designing a photonic crystal
with line defects possessing the appropriate cross-
sectional symmetry for polarization degeneracy, such
operations would be more difficult, as both modes would
be primarily guided by the same crystal elements.

In conclusion, we have shown that polarization-
independent waveguides and waveguide bends can be
designed in a particular class of 3D photonic crystals
by means of forced accidental degeneracy. The only r
equirement is the existence of two well-localized modes
of definite and opposite symmetry. Further improve-
ments and/or creation of novel polarization-processing
devices should be possible by optimizing the structure
parameters.

These computations were performed at the Pittsburgh
Supercomputing Center.
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